Механические свойства материалов в рамках технологии производства подшипника качения радиального

Выбор материала для изготовления подшипника качения, основные требования к нему и технологическое обоснование. Оптимизация методов диагностики и диагностических параметров на разных этапах жизненного цикла, а также контроль качества данной детали.

Рубрика Производство и технологии
Вид курсовая работа
Язык русский
Дата добавления 24.05.2017
Размер файла 371,8 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

Размещено на http://www.allbest.ru/

Курсовая работа

Механические свойства материалов в рамках технологии производства подшипника качения радиального

Введение

подшипник качение технологический

Курсовая работа предусматривает описание подшипника качения, его свойства, технологический процесс производства, и контроль его качества.

Цель курсовой работы:

· закрепление, углубление, расширение и систематизация теоретических знаний по дисциплине «Механические и Физические свойства материалов»;

· приобретение опыта использования исходных технолого-нормировочных, нормативных, справочных и литературных данных;

· развитие навыков самостоятельной работы.

Курсовая работа предполагает наличие следующих разделов:

1) Описание детали.

2) Выбор материала для подшипника качения.

3) Описание технологического процесса изготовления подшипника качения.

4) Описание испытаний подшипника качения.

5) Контроль качества подшипника качения.

1. Описание детали

подшипник качение технологический

Подшипник является опорным кинематическим механизмом, предназначенным для определения взаимного расположения подвижных частей механической конструкции и обеспечения их эффективного перемещения относительно друг друга.

В зависимости от характера трения, подшипники подразделяются на два вида:

1.подшипники скольжения (снижающие трение при скольжении);

2. подшипники качения (снижающие трение при качении).

Рис. 1. Виды подшипников качения

По типу воспринимаемой нагрузки:

Радиальные (нагрузка вдоль оси вала не допускается).

Радиально-упорные, упорно-радиальные. Воспринимают нагрузки как вдоль, так и поперек оси вала. Часто нагрузка вдоль оси только одного направления.

Упорные (нагрузка поперек оси вала не допускается)

Линейные. Обеспечивают подвижность вдоль оси, вращение вокруг оси не нормируется или невозможно. Встречаются рельсовые, телескопические или вальные линейные подшипники.

По числу рядов тел качения:

Однорядные,

Двухрядные,

Многорядные.

Подшипники качения, как и подшипники скольжения, предназначены для поддержания вращающихся осей и валов.

Электродвигатели, подъемно-транспортные и сельскохозяйственные машины, летательные аппараты, локомотивы, вагоны, металлорежущие станки, зубчатые редукторы и многие другие механизмы и машины в настоящее время немыслимы без подшипников качения.

Как правило, подшипники качения состоят из двух колец, элементов качения и сепаратора. В зависимости от направления основной нагрузки, подшипники делятся на радиальные и упорные. Дополнительно, в зависимости от типа элементов качения подшипники делятся на шариковые подшипники и роликовые подшипники, которые в дальнейшем классифицируются в зависимости от разницы в их конструкции или специального назначения. В данной курсовой работе мы рассмотрим подшипник качения радиальный однорядовый.

Рис. 2. Эскиз подшипника качения радиального однорядного

По сравнению с подшипниками скольжения подшипники качения имеют следующие основные преимущества:

1.начальный момент вращения или трение являются низкими, а разница между начальным моментом вращения и крутящим моментом незначительная.

2.из-за применения международных стандартов, подшипники качения являются общедоступными и заменяемыми на международном рынке.

3. содержание, замена и техническое обслуживание подшипников не является сложной процедурой, т.к. узел, куда устанавливается подшипник, имеет простую конструкцию.

4. Многие виды подшипников качения способны воспринимать оба вида нагрузки, т.е. радиальную и осевую, одновременно или независимо.

5. Подшипники качения можно применять в широком диапазоне температур.

6. На подшипниках качения можно устанавливать предварительный натяг для образования отрицательного зазора и получения большей жесткости.

Радиальные однорядные шарикоподшипники являются наиболее распространенными подшипниками качения и используются практически во всех типах оборудования. Дорожки качения наружного и внутреннего колец имеют дуги чуть большего радиуса по сравнению с шариками. Помимо радиальных нагрузок возможно приложение осевых нагрузок в обоих направлениях. Из-за небольшого крутящего момента, они применяются там, где требуются высокие скорости вращения с малой потерей мощности. Помимо открытого типа, данные подшипники могут быть закрыты с одной или обеих сторон металлическими шайбами или резиновыми уплотнения, и заполнены консистентной смазкой. Также, они иногда используются со стопорными кольцами. Что касается сепараторов, чаще всего данные подшипники используются со стальными сепараторами.

2. Выбор материала для изготовления подшипника качения

2.1 Требования к материалу

На кольца и элементы качения подшипников воздействует высокое повторяющееся давление при малом объеме скольжения. Сепараторы подвергаются растяжению, сжатию и контактному скольжению с элементами качения, и либо с одним, либо двумя кольцами подшипника. Поэтому материалы, используемые для изготовления колец, элементов качения и сепараторов, должны обладать следующими свойствами:

Свойства материалов для колец и элементов качения подшипников

Высокая контактная усталостная прочность при качении

Высокая жесткость

Высокая износоустойчивость

Свойства материалов для сепараторов

Высокая размерная стабильность

Высокая механическая прочность

Другие важные характеристики, такие как простота изготовления, ударопрочность, термостойкость и сопротивление коррозии, учитываются в зависимости от индивидуальных особенностей условий применения.

2.2 Материалы применяемые при производстве отечественных подшипников. Свойства выбранной стали-ШХ15

Таблица 1. Материалы применяемые при производстве отечественных подшипников

Наименование, марка

Основное свойства

Применение

Хромистая сталь ШХ15

Высокоуглеродистая хромистая, T?120°C

Подавляющее большинство колец и тел качения, кольца толщиной менее 10 мм, ролики до 22 мм

Хромистая сталь ШХ15СТ

Повышенная прокаливаемость, содержит больше кремния и марганца

Кольца толщиной менее 30 мм и ролики диаметром более 22 мм

Хромистая сталь ШХ20СТ

Содержит еще больше кремния и марганца, чем ШХ15СТ

Кольца толщиной более 30 мм

Хромистая сталь ШХ4

Индукционная закалка

Железнодорожные подшипники

Хромистые стали ШХ15-Ш, ШХ15ШД

Уменьшенное содержание неметаллических включений

Подшипники повышенной долговечности и надежности

Цементуемая сталь 18ХГТ

Поверхностный сплав повышенной твердости и мягкая сердцевина после термической обработки

Кольца роликовых подшипников

Цементуемая сталь 20Х2Н4А

Поверхностный сплав повышенной твердости и мягкая сердцевина после термической обработки

Кольца и ролики крупногабаритных подшипников

Самая распространенная сталь объемной закалки - это хромистая сталь, содержащая примерно 1% углерода и 1,5% хрома в соответствии со стандартом ISO 683-17:1999. В отечественной промышленности такая сталь обозначается ШХ15. Эта сталь является старейшей и наиболее изученной маркой из существующих из-за постоянно повышающихся требований к ресурсу подшипников. Можно считать ее наиболее сбалансированной по технологическим и потребительским характеристикам. После закалки мартенсит или бейнит, ее твердость составляет от 58 до 65 HRC (или 179 - 207 Мпа твердости по Бринеллю)

Химический состав в% стали ШХ15

C

0,95 - 1,05

Si

0,17 - 0,37

Mn

0,2 - 0,4

Ni

до 0,3

S

до 0,02

P

до 0,027

Cr

1,3 - 1,65

Cu

до 0,25

Fe

~96

В данном курсовой работе рассмотрим подшипник качения радиальный однорядовый изготовленный из стали марки ШХ15.

3. Технологии изготовления и эксплуатации подшипников качения

Исходя из типа подшипника, определяется и технология его производства, которая часто бывает весьма различной. Рассмотрим стадии изготовления наиболее распространенного типа подшипника - шарикового однорядного радиального подшипника основного конструктивного исполнения. Изготовление колец подшипника: 1. Производство исходной заготовки по заданному диаметру подшипника (металлической трубы или прута (рис. 3)).

Рис. 3. Металлическая труба (исходная заготовка)

2. Обработка давлением и вальцевание исходной заготовки (металлической трубы или прута). Вальцевание представляет собой плющение и сдавливание исходного слоя для придания ему большей плотности, гладкости и равномерной толщины. Происходит это посредством пропуска заготовки между двумя вращающимися валами (отсюда термин - вальцевание). 3. Токарная обработка заготовки - нарезка из заготовок отдельных колец и обработка всех поверхностей с целью придания будущему кольцу подшипника нужных диаметров (внешнего и внутреннего) и ширины. 4. Термическая обработка колец подшипника - закалка (нагрев до температуры 850 градусов Цельсия и быстрое охлаждение в жидкости) и отпуск (содержание колец при температуре 170 градусов). 5. Шлифовка поверхностей колец подшипника - внешние и внутренние и боковые стороны. Шлифовка дорожек качения на внутреннем и внешнем кольцах подшипника. 6. Суперфиниширование - Шлифование дорожек качения до окончательной степени гладкости (зависимости от требований к их шероховатости - обозначается в номере подшипника литерой У, У1, У2).

Рис. 4. Кольца, полученные из заготовки

Изготовление тел качения подшипника (шарики): 1. Нарезка исходных заготовок из специальной стальной проволоки заданных размеров в зависимости от диаметра тел качения. 2. Сдавливание предварительных заготовок и придание им шарообразной формы вплоть до размеров близких к окончательным - с разницей до 100 микрон. 3. Термическая обработка тел качения - закаливание, охлаждение и отпуск. 4. Шлифовка тел качения, придание им окончательных размеров и последующая полировка.

Изготовление сепаратора 1. Пробивка исходной заготовки (стального листа определенной ширины и толщины) под отверстия для тел качения (шариков). 2. Штамповка предварительного сепаратора - придание отверстиям и профилю сепаратора необходимой формы. 3. Сверление отверстий под заклепки, с помощью которых кольца сепаратора будут соединены в одно целое.

Сборка подшипника из готовых деталей. Подшипники собираются следующим образом - внутреннее кольцо укладывается в наружное, между ними укладывается ряд шариков. Один из краев внутреннего кольца поднимается для возможности укладки всего ряда шариков, а затем подшипник «защелкивается» и тела качения плотно встают на дорожках качения. С двух сторон заклепками крепится сепаратор (латунный, металлический, полиамидный и т.д.). Сдача готовых подшипников, их проверка, маркировка, смазка, и комплектация в тару. Проверенные на заводе подшипники отечественного производства легко различаются по темной поверхности внешнего кольца (подшипники проверяются обычно выборочно из партии).

Эксплуатация подшипников

Необходимо периодически осматривать и обслуживать подшипник и контролировать условия его работы для того, чтобы продлить срок службы подшипника. Обычно применяют следующие методы:

а) Проверка состояния подшипникового узла в рабочем режиме

Для определения срока замены подшипника и интервала добавления смазочного материала, изучите ее свойства, принимая во внимание такие факторы, как рабочая температура, вибрации, шумы подшипников

б) Контроль состояния подшипников

Старайтесь тщательно обследовать подшипник во время периодических осмотров машины и замены неисправных деталей. Проверьте состояние дорожки качения. Проверьте наличие повреждений. Подтвердите возможность дальнейшего использования подшипника или необходимость его замены.

Причины поломок и критерии расчёта подшипников

Главная особенность динамики подшипника - знакопеременные нагрузки.

Циклическое перекатывание тел качения может привести к появлению усталостной микротрещины. Постоянно прокатывающиеся тела качения вдавливают в эту микротрещину смазку. Пульсирующее давление смазки расширяет и расшатывает микротрещину, приводя к усталостному выкрашиваниюи, в конце концов, к поломке кольца. Чаще всего ломается внутреннее кольцо, т.к. оно меньше наружного и там, следовательно, выше удельные нагрузки. Усталостное выкрашивание - основной вид выхода из строя подшипников качения.

В подшипниках также возможны статические и динамические перегрузки, разрушающие как кольца, так и тела качения.

Следовательно, при проектировании машины необходимо определить, во-первых, количество оборотов (циклов), которое гарантированно выдержит подшипник, а, во-вторых - максимально допустимую нагрузку, которую выдержит подшипник.

Вывод: работоспособность подшипника сохраняется при соблюдении двух критериев:

Долговечность.

Грузоподъёмность.

4. Оптимизация методов диагностики и диагностических параметров на разных этапах жизненного цикла подшипника

Вибрационная диагностика подшипников качения, невозможна без, учета влияния привода, обеспечивающего вращение подшипника, на контролируемую вибрацию либо подшипника, либо подшипникового узла, либо корпуса машины, в которую установлен диагностируемый подшипник.

Впервые после изготовления вибрационная диагностика подшипника может проводиться на этапе его выходного контроля на заводе-изготовителе, где, как правило, проводится выборочный контроль продукции. Подшипник при этом устанавливается и приводится во вращение на специальном стенде выходного контроле, схема которого приведена на рис. 5.

Рис. 5. Схема стенда для выходного контроля подшипников качения: 1 - фундамент; 2 - массивная рама; 3 - вал со шкивом; 4 - радиальный подшипник скольжения; 5 - радиально-упорный подшипник скольжения; 6 - электродвигатель с ременной передачей; 7 - переходная втулка; 8 - контролируемый подшипник качения; 9 - устройства для создания нагрузки на неподвижное кольцо подшипника; 10 - датчик вибрации; 11 - виброизоляторы; 12 - упорная шайба на валу

Для минимизации влияния вибрации привода на контролируемую вибрацию неподвижного наружного кольца подшипника вал, на который насаживается подшипник, вращается в высоко­точных Подшипниках скольжения и приводится во вращение ременной передачей от малошумного электродвигателя, установ­ленного на собственном массивном фундаменте, виброизолированном от фундамента вала с диагностируемым подшипником. Основной задачей вибрационного контроля является количественная оценка неровностей поверхностей качения, поэтому вибрация наружного кольца (обычно виброскорость) контролируется в вертикальном направлении в трех полосах частот: низкочастотной (от 50 до 300 Гц), среднечастотной (от 300 до 1800 Гц) и высокочастотной (от 1800 до 10000 Гц) при минимальных радиаль­ных и осевых нагрузках на подшипник. Частота вращения подшипника обычно выбирается равной 1800 об/мин. Величина вибрации на средних и высоких частотах существенно зависит и от свойств смазки, поэтому измерения вибрации проводятся с использованием либо специальных смазок, либо с конкретным типом смазки, рекомендуемой для испытываемых подшипников.

При таком подходе не контролируется ряд геометрических характеристик подшипника, а именно, разноразмерность тел качения, являющаяся источником вибрации подшипника на частоте вращения сепаратора, несосность посадочной поверхности и поверхности качения внутреннего кольца, являющаяся источником вибрации на частоте вращения, овальность поверхности качения внутреннего кольца, являющаяся источником вибрации на второй гармонике частоты вращения подшипника. Кроме того, практически не контролируется угловая несимметрия жесткости элементов качения, вызываемая, например, внутренними трещи­нами в металле. Для контроля несимметрии жесткости по вибрации необходимо нагружать подшипник до величин, сопоставимых с номинальными нагрузками, а это резко усложняет стенды и объем работ по выходному контролю подшипников. Поэтому заводы-поставщики подшипников предпочитают дополнительно проводить выборочный контроль физических свойств элементов подшипника невибрационными методами.

Задача входного контроля подшипников качения на машиностроительных и ремонтных предприятиях существенно отличается от задачи выходного контроля, так как вибрационный контроль достаточно часто бывает единственным используемым способом входного контроля, от которого необходимо получить максимум информации о реальном состоянии подшипника при минимуме затрат. В этом случае стенд для входного контроля можно существенно упростить, добавить в него возможность создания больших радиальных нагрузок на подшипник, но параллельно усложнив аппаратуру измерения и анализа вибрации. Упростить стенд

удается в случае диагностики подшипников в режиме свободного выбега, а усложнить контрольную аппаратуру - используя узкополосный синхронный спектральный анализ вибрации. Можно даже производить одновременную диагностику двух подшипников качения разного типа, установленных с разных концов радиально нагруженного маховика (рис. 6.)

Диагностика подшипников в этом случае производится по величинам каждой из значимых подшипниковых составляющих вибрации в спектре вибрации, измеряемом от частоты вращения сепаратора до 100-300 гармоники частоты вращения вала и по подшипниковым составляющим в спектре огибающей высокочастотной вибрации.

Рис. 6. Схема стенда для входного контроля подшипников качения: 1 - массивная рама; 2 - переходники для установки подшипников; 3 - ротор с активным сердечником и двумя диагностируемыми различными подшипниками; 4 - электромагнитное устройство для создание радиальной нагрузки,; 5 - электродвигательдля разгона ротора; 6 - ременная передача с натяжителем; 7 - датчики вибрации; 8-фотоэлектрический датчик оборотовна штативе с магнитной основой; 9 - виброанализатор

Следующий этап диагностики подшипников качения - после их установки в машину при выходном контроле вибрации машины. На этом этапе контролируется появление дефектов сборки, а при отсутствии входного контроля подшипников по вибрации - наличие дефектов изготовления подшипников.

Дефекты монтажа подшипников обнаруживаются двумя основными методами. Простейшим может считаться контроль появления ударных импульсов в подшипниках по ультразвуковой вибрации неподвижного кольца. Эти импульсы появляются из-за продавливания слоя смазки в местах наибольшего нагружения поверхностей качений. Второй метод - узкополосный анализ вибрации подшипниковых узлов с поиском значимых составляющих подшипниковой вибрации высокой кратности и сравнением их величин с пороговы­ми значениями для конкретного типа машин, а также анализ спек­тров огибающей высокочастотной вибрации подшипниковых узлов. Второй метод более трудоемкий, но, он используется значительно чаще, так как позволяет определить вид дефектов для их после­дующего, устранения. Этот метод может быть автоматизирован, что во много раз сокращает его трудоемкость. Следует отметить, что для успешного разделения дефектов монтажа подшипников и дефектов других узлов машины подшипники можно диагностировать ив режиме свободного выбега ма­шины, используя дополнительную информацию о времени ее полного или частичного выбега. Необходимо также помнить, что применение в подшипнике смазок низкого качества также приводит к росту среднечастотной и высокочастотной подшипниковой вибрации, резко затрудняя поиск и оценку степени опасности обнаруживаемых дефектов монтажа.

Следующий этап диагностики подшипников - после установки машин на месте их эксплуатации. Основная задача диагностики состоит в обнаружении перегрузок подшипников из-за дефектов монтажа, идентификации твида перегрузок и определения причин их появления. Для решения этих задач чаще всего используется рассмотренный ранее второй метод обнаружения дефектов монтажа подшипников, а основными причинами перегрузок являются несоосность валов, дефекты соединительных муфт и повышенные осевые нагрузки на валы.

Основными задачами диагностики подшипников качения в процессе их эксплуатации являются долгосрочный прогноз их безотказной работы и своевременное обнаружение дефектов. Задача обнаружения дефектов в свою очередь делится на две: обнаружение зарождающихся дефектов с наблюдением за их развитием (мониторинг состояния) и обнаружение предаварийного со­стояния подшипника (аварийная защита). Главными критериями оценки эффективности любого метода и средства диагностики

подшипников качения являются вероятность пропуска предаварийного состояния подшипника и длительность долгосрочного прогноза его безаварийной работы.

Дефекты эксплуатации в подшипниках по величине и влиянию на длительность прогноза безотказной работы делятся на: зарождающиеся (слабые), развивающиеся (средние), развитые (сильные) и аварийно-опасные (опасные). Первые не влияют на длительность прогноза безотказной работы подшипника, которая может доходить до 20% от его среднего ресурса, но, как правило, не превышает шести месяцев. Они могут исчезать в процессе приработки, не переходя по величине в следующую, группу. Вторые после их образования не, могут исчезнуть, но они практически не увеличивают вероятность отказа подшипника ранее того времени, когда перейдут в группу сильных дефектов. Сильные дефекты оказывают влияние на надежность подшипника, повышая до величины 1-5% вероятность его отказа за ограниченное время, достаточное для подготовки к его замене (около месяца или 1-2% от среднего ресурса). Подшипники с опасными дефектами желательно заменять при первой возможности, а до замены постоянно контролировать их развитие, аварийно останавливая машину при больших скоростях развития дефекта.

Обнаружение дефектов подшипников может вестись по подшипниковой вибрации во всех диапазонах частот, начиная от низких, например, с частоты вращения сепаратора, и заканчивая ультразвуковыми, в том числе выше 100 кГц. Методы контроля(мониторинга) состояния подшипнишв качения по сложности алгоритмов обнаружения дефектов делятся на два основных направления. Первое направление включает в себя оперативные методы, не требующие информации о характеристиках подшипника, кроме частоты его вращения, и не дающие информации о виде дефекта, а для многих дефектов и о степени его опасности. Длительность измерения вибрации при использовании таких методов обнаружения минимальна и обычно не превышает времени, за которое подшипник совершает 3-5 оборотов подвижного кольца. Для обеспечения безопасной работы подшипников качения интервалы между измерениями их вибрации с оценкой состояния при ис­пользовании оперативных методов не должны быть большими, т.е. в типовых ситуациях не должны превышать 1-3 суток непрерывной работы.

Второе направление включает в себя методы обнаружения дефектов с накоплением и подробным анализом вибрации подшипников. Эти методы требуют длительных измерений вибрации (более 50-100 оборотов), более сложных, обычно спектральных методов анализа сигналов, а также подробных данных о параметрах подшипника, но позволяют с разной для разных методов достоверностью определять вид и глубину развития дефектов. Это, в свою очередь, позволяет прогнозировать безотказную работу подшипника и переходить на длительные (более 1-2 месяцев) интервалы между диагностическими измерениями.

По возможностям долгосрочного прогноза методы диагностики делятся на три группы: методы, позволяющие обнаруживать зарождающиеся дефекты для прогноза их развития и планирования работ по обслуживанию, методы обнаружения развитых (средних и сильных) дефектов для планирования работ по ремонту и методы обнаружения аварийно-опасных дефектов для своевременной остановки оборудования.

В основе методов первой группы лежит использование ре­зультатов измерения ультразвуковой или, как минимум, высоко­частотной вибрации подшипниковых узлов. Но при этом следует учитывать, что чем выше частота измеряемой вибрации, тем меньшее количество дефектов, но на более ранней стадии развития, можно обнаружить. По данным измерений вибрации на очень высоких частотах можно получить неоднозначный долгосрочный прогноз состояния подшипников, так как часть дефектов при этом пропускается. В качестве примера следует привести результаты, получаемые с помощью индикаторов состояния подшипников, обнаруживающих ударные импульсы и акустическую эмиссию не­подвижного кольца подшипника, по ультразвуковой вибрации с частотами выше 80-100 кГц. Очень рано обнаруживая дефекты наружного кольца и смазки подшипника, такие индикаторы начинают обнаруживать дефекты других поверхностей качения и скольжения только косвенно и в развитом состоянии, когда продукты износа ухудшают состояние смазки. Как следствие, долгосрочный прогноз безаварийной работы подшипника становится невозможным, поэтому для мониторинга состояния подшипников измерения ультразвуковой вибрации проводятся достаточно час­то, с интервалами в несколько дней. После обнаружения дефекта проводится глубокая диагностика подшипника (машины) теми методами второй группы, которые дают возможность определения вида и величины дефекта.

В основе метода второй группы лежит измерение среднечастотной вибрации подшипниковых узлов. Для обнаружения, и особенно для оценки величины средних и сильных дефектов обычно измеряется и анализируется не только среднечастотная, но и низкочастотная вибрация подшипниковых узлов контролируемой машины. Кроме этого может проводиться анализ также, высокочастотной или ультразвуковой вибрации для определения вида дефекта, что необходимо, в первую очередь, для прогноза работоспособности подшипника, так как скорости развития разных дефектов могут различаться в десятки раз.

В основе методов третьей группы лежит измерение величины низкочастотной вибрации машины (подшипникового узла или корпуса) преимущественно в радиальном к оси вращения ротора направлении. Поскольку вид дефекта подшипника при аварийной защите оборудования не имеет значения, подробный, в частности спектральный анализ низкочастотной вибрации с параллельным измерением и анализом среднечастотной и высокочастотной вибрации, не является обязательным признаком методов третьей группы.

По результатам многолетних исследований вибрации подшипников качения в составе различных типов машин и оборудования и на основании опыта использования многих видов систем контроля и диагностики машин, во время их эксплуатации для решения типовых задач по контролю состояния подшипников качения во время эксплуатации можно рекомендовать следующие алгоритмы и технические средства.

1. Для систем аварийной защиты с автоматическим отключением оборудования рекомендуются средства контроля величины вибрации (виброскорости) в стандартной полосе частот от 10 до 1000 Гц, которые могут дополняться средствами контроля температуры.

2. В стационарно установленных системах аварийной сигнализации параллельно со средствами, указанными в п. 1, рекомендуется измерять величину высокочастотной или ультразвуковой вибрации для своевременного обнаружения опасных изменений состояния смазки.

3. В стационарно установленных системах мониторинга рекомендуется дополнительно к средствам, указанным в пп. 1 и 2, либо измерять величину и параметры статистического распределения значений (для обнаружения опасных ударных импульсов) среднечастотной вибрации подшипникового узла; либо анализировать ее спектральный состав. Спектральный анализ вибрации рекомендуется производить с большими интервалами, поэтому его можно выполнять и переносными средствами измерения и анализа вибрации.

4. В переносных средствах оперативного контроля состояния подшипников качения рекомендуется измерять величину вибрации подшипникового узла в трех полосах частот - на низких частотах, начиная со 2-3 гармоники частоты вращения подшипника до 20-30 гармоники, на средних частотах (без перекрытия с полосой низкочастотной вибрации) и на высоких (ультразвуковых) частотах. При этом важно в каждой из полос обеспечить измерение именно подшипниковых составляющих вибрации, исключив те области частот, где доминируют составляющие вибрации другой природы. Кроме величины вибрации в средствах оперативного контроля можно рекомендовать для своевременного обнаружения ударных импульсов измерять параметры статистического распределения значений либо вибрации в выбранных среднечастотных и высокочастотных полосах частот, либо ее огибающей. При обнаружении средствами оперативного контроля опасных отклонений состояния необходимо проводить более глубокий анализ вибрации для принятия решений о сроках проведения и объеме работ по обслуживанию или ремонту машины.

5. В переносных средствах глубокой (превентивной) диагностики с долгосрочным прогнозом безаварийной работы подшипника необходимо измерять и анализировать спектральными методами вибрацию каждого подшипникового узла во всех частотных областях. Только так можно обнаружить и с необходимой для прогноза точностью определить вид и глубину каждого дефекта. При этом необходимо применять дополнительные виды обработки сигналов, для того чтобы не пропускать опасных дефектов в той стадии раз­вития, когда спектральные методы перестают работать. Это означает, что необходимо, как минимум, выполнять измерения и спек­тральный анализ подшипниковой вибрации и колебаний ее мощности (огибающей) в частотном диапазоне от частоты вращения сепаратора, по крайней мере, до частоты 25-30 кГц.

Отсутствие результатов измерения и анализа вибрации хотя бы в одной из частотных областей (низкие, средние, высокие и ультразвуковые) снижает достоверность глубокой диагностики до таких значений, которые не позволяют переходить на обслуживание и замену подшипников по фактическому состоянию.

Следует отметить, что современные средства и программное обеспечение для глубокой диагностики и прогноза состояния подшипников качения, позволяющие переходить на обслуживание по фактическому состоянию, кроме анализа вибрации в широком диапазоне частот могут использовать результаты контроля температуры подшипниковых узлов, анализа тока электродвигателя, приводящего во вращение контролируемый агрегат, а также анализа состава смазки и других параметров подшипников.

5. Контроль качества подшипника

В настоящее время на практике используются четыре метода оценки технического состояния подшипников качения:

Метод ПИК-фактора;

Метод прямого спектра;

Метод спектра огибающей;

Метод ударных импульсов.

5.1 Метод ПИК-фактора

Для контроля технического состояния подшипников по данному методу необходимо иметь простой виброметр, позволяющий измерять два параметра вибросигнала:

среднеквадратичное значение уровня (СКЗ) вибрации, т.е. энергию вибрации;

пиковую амплитуду (ПИК) вибрации (положительную, отрицательную или полный размах - значения не имеет).

Отношение двух этих параметров ПИК/СКЗ, называется ПИК - фактором. Восциллограмме нового хорошо смазанного подшипника присутствует стационарный сигнал шумового характера (рис. 7.а).

С течением времени, по мере появления дефектов на деталях подшипника, в сигнале начнут появляться отдельные короткие амплитудные пики, соответствующие моментам соударения дефектов (рис. 7.б).

В дальнейшем, с развитием дефекта, сначала увеличиваются амплитуды пиков, потом постепенно увеличивается и их количество (рис. 7.в). Например, дефект, появившись на одном из шариков, создаёт впоследствии забоину на кольце, с него она переносится на другой шарик, дефекты шариков начинают вырабатывать сепаратор до полного разрушения.

Если изобразить результаты измерений на графике, мы увидим зависимости, показанные на рисунке 8. По мере появления и развития дефекта нарастает функция ПИК, а СКЗ меняется очень мало, поскольку отдельные очень короткие амплитудные пики практически не меняют энергетические характеристики сигнала.

 

Рис. 7. Рис. 8.

5.2 Метод прямого спектра

Для контроля за техническим состоянием подшипников по данному методу необходим анализатор спектра вибрации (виброанализатор).

Метод базируется на анализе спектра вибрации - выявлении периодичности (частоты) появления амплитудных всплесков (рис. 1в). Вибрационный сигнал анализируется узкополосным виброанализатором, и по частотному составу спектра (рис. 3) можно идентифицировать возникновение и развитие дефектов подшипника. Каждому дефекту на элементах подшипника (тела качения, внутреннее и наружное кольцо, сепаратор), соответствуют свои частоты, которые зависят от кинематики подшипника и скорости его вращения.

Наличие той или иной частотной составляющей в спектре сигнала говорит о возникновении соответствующего дефекта, а амплитуда этой составляющей - о глубине дефекта.

Достоинства:

высокая помехозащищённость (маловероятно наличие в механизме источников, создающих вибрации на тех же частотах, что и дефекты подшипника);

высокая информативность метода. Возможна оценка состояния элементов подшипника (тел качения, внутреннего и наружного кольца, сепаратора), поскольку они генерируют разные частотные ряды в спектре.

Недостатки:

метод дорогостоящий, если виброанализатор использовать только для контроля подшипников;

метод малочувствителен к зарождающимся и слабым дефектам в связи с тем, что подшипники в большинстве случаев являются маломощными источниками вибрации. Небольшой скол на шарике или дорожке не в состоянии заметно качнуть механизм, чтобы мы увидели эту частотную составляющую в спектре. И только при достаточно крупных дефектах амплитуды этих частотных составляющих начинают заметно выделяться в спектре.

Метод используется достаточно широко и даёт хорошие результаты.

Рис. 9

5.3 Метод спектра огибающей

Для контроля технического состояния подшипников по данному методу необходим анализатор спектра вибрации с функцией анализа спектра огибающей высокочастотной вибрации. Метод базируется на анализе высокочастотной составляющей вибрации и выявлении модулирующих ее низкочастотных сигналов.

На рисунке 7 видно, что высокочастотная часть сигнала изменяет свою амплитуду во времени, т.е. она модулируется какимто более низкочастотным сигналом. Выделение и обработка этой информации и составляют основу этого метода.

Рассмотрим подшипник с зарождающимся дефектом (скол, трещина и т.п.) на наружной обойме. При ударе тел качения о дефект возникают высокочастотные затухающие колебания, которые будут повторяться (модулироваться) с частотой, равной частоте перекатывания тел качения по наружному кольцу. Именно в этом модулирующем сигнале содержится информация о состоянии подшипника.

Установлено, что наилучшие результаты метод даёт в том случае, если анализировать модуляцию не широкополосного сигнала, получаемого от акселерометра, а предварительно осуществить узкополосную фильтрацию сигнала, выбрать основную (несущую) частоту в диапазоне от 4 до 32 кГц и анализировать модуляцию этого сигнала.

Для этого отфильтрованный сигнал детектируется, т.е. выделяется модулирующий сигнал (или ещё его называют «огибающая сигнала»), который подаётся на узкополосный виброанализатор, и мы получаем спектр интересующего нас модулирующего сигнала, или спектр огибающей, что и дало название методу.

Обработка сигнала очень сложна, но результат стоит того. Дело в том, что небольшие дефекты подшипника не в состоянии вызвать заметной вибрации в области низких и средних частот. В тоже время для модуляции высокочастотных вибрационных шумов энергии возникающих ударов оказывается вполне достаточно. Таким образом, метод обладает очень высокой чувствительностью.

Спектр огибающей при отсутствии дефектов представляет собой почти горизонтальную волнистую линию (рис. 10а). При появлении дефектов над уровнем линии сплошного фона начинают возвышаться дискретные составляющие, частоты которых однозначно просчитываются по кинематике и оборотам подшипника (рис. 10б). Частотный состав спектра огибающей позволяет идентифицировать наличие дефектов, а превышение соответствующих составляющих над фоном однозначно характеризует глубину каждого дефекта.

Достоинства - высокая чувствительность, информативность и помехозащищенность.

Недостаток - высокая стоимость, необходим анализатор спектра вибрации с функцией анализа спектра огибающей высокочастотной вибрации.

Метод очень широко используется в стационарных системах контроля технического состояния оборудования.

Рис. 10 а Рис. 10 б.

5.4 Метод ударных импульсов

Метод ударных импульсов основан на измерении и регистрации механических ударных волн, вызванных столкновением двух тел. Ускорение частиц материала в точке удара вызывает волну сжатия, которая распространяется в виде ультразвуковых колебаний. Ускорение частиц материала в начальной фазе удара зависит только от скорости столкновения и не зависит от соотношения размеров тел. Период времени мал, и заметной деформации не происходит. Величина фронта волны является мерой скорости столкновения (удара) двух тел. Во второй фазе удара поверхности двух тел деформируются, энергия движения отклоняет тело и вызывает в нем колебания.

Для измерения ударных импульсов используется пьезоэлектрический датчик, на который не оказывают влияние фон вибрации и шум. Вызванная механическим ударом фронтальная волна сжатия возбуждает затухающие колебания в датчике (преобразователе).

Пиковое значение амплитуды этого затухающего колебания прямо пропорционально скорости удара (V). Поскольку затухающий переходный процесс очень хорошо определяется и имеет постоянную величину затухания, его можно отфильтровать от других сигналов, т.е. от сигналов вибрации. Анализ затухающего переходного процесса - основа метода ударных импульсов.

Наблюдаемый процесс аналогичен процессу, происходящему в камертоне: как бы вы по нему ни ударили - он звенит на своей собственной частоте. Так и подшипниковые узлы от соударения дефектов «звенят» на своей частоте. Частота эта практически всегда лежит в диапазоне 28-32 кГц, но, в отличие от камертона, эти колебания очень быстро затухают, поэтому на осциллограммах они выглядят практически, как импульсы, что и дало название методу - метод ударных импульсов.

Результаты измерений очень легко нормировать по скорости соударения, зная геометрию подшипника и его обороты. Амплитуды ударных импульсов однозначно связаны со скоростью соударения дефектов и глубиной дефектов. Поэтому по амплитудам ударных импульсов можно достоверно диагностировать наличие и глубину дефектов.

Достоинства - высокая чувствительность, информативность и помехозащищенность. Метод прост и дёшев в реализации, существуют простые портативные приборы.

Недостаток - Существует одно ограничение, связанное с конструктивным исполнением механизма. Поскольку речь идёт об измерении параметров ультразвуковых колебаний, которые заметно затухают на границах разъёмных соединений, для точности измерений необходимо, чтобы между наружным кольцом подшипника и местом установки датчика находился сплошной массив металла. В большинстве случаев это не вызывает проблем.

Метод широко используется, прост и доступен персоналу, обслуживающему оборудование.

Рис. 11

Заключение

Электродвигатели, подъемно-транспортные и сельскохозяйственные машины, летательные аппараты, локомотивы, вагоны, металлорежущие станки, зубчатые редукторы и многие другие механизмы и машины в настоящее время немыслимы без подшипников качения. Подшипниковая отрасль активно развивается, в настоящие время мы не нуждаемся в импортозамещении.

Библиографический список

1. Франценюк И.В., Казаджан В.Б., Барятинский В.П. Достижения в улучшении качества электротехнических сталей на НЛМК // Сталь. 1994. №10. С. 35-38.

2. Лобанов М.Л., Русаков Г.М., Редикульцев А.А. Электротехническая анизотропная сталь. Часть I. История развития // Металловедение и термическая обработка металлов. 2011. №7 (673). С. 18-25

3. Чуйко Н.М., Мошкевич Е.И., Перевязко А.Т., Галицкий Ю.П. Трансформаторная сталь. М.: Металлургия, 1970. 264 с.

4. Марочник сталей http://metallicheckiy-portal.ru/marki_metallov/stk/SHX15

5. Подшипники качения NSK каталог Е1102k

Размещено на Allbest.ru


Подобные документы

  • Расчет гладких цилиндрических соединений с натягом. Определение и выбор посадок подшипников качения. Схема расположения полей допусков подшипника. Взаимозаменяемость и контроль резьбовых сопряжений и зубчатых передач. Расчет калибров и размерной цепи.

    контрольная работа [394,5 K], добавлен 09.10.2011

  • Шарики как наиболее нагруженные детали при эксплуатации подшипников качения. Термическая обработка стали ШХ15. Назначение и условия работы детали. Схема распределения нагрузки между телами качения в подшипнике. Основные материалы и твердость тел качения.

    контрольная работа [1,7 M], добавлен 08.02.2013

  • Конструкция детали "Корпус подшипника". Механические свойства стали. Коэффициент использования материала. Выбор и расчет заготовки. Межоперационные припуски, допуски и размеры. Расчет режимов резания. Расчет измерительного и режущего инструмента.

    курсовая работа [998,8 K], добавлен 22.01.2012

  • Исследование общих сведений, условий работы и критериев работоспособности подшипника качения, работающего по принципу трения качения. Изучение особенностей подбора, посадки, крепления и смазки подшипников. Материалы для изготовления подшипников качения.

    презентация [172,0 K], добавлен 25.08.2013

  • Назначение посадок сопрягаемых размеров узла, их расчет и выбор с натягом, при переходной посадке, для подшипника качения. Допуски резьбовых соединений и расчет зубчатого колеса. Расчет размерной цепи и контроль технических требований детали вала.

    контрольная работа [698,2 K], добавлен 04.10.2011

  • Рассмотрение видов повреждений элементов подшипников качения. Разработка причинно-следственных связей между видами и причинами повреждения. Типичные отказы подшипников качения и их причина. Влияние нагрузки и её направления на работу подшипников качения.

    контрольная работа [4,0 M], добавлен 31.05.2010

  • Устройства адаптивного (самоприспосабливающегося) управления. Геометрические параметры станка. Выбор оборудования и оснастки. Подготовка и отладка управляющих программ. Классификация углеродистой стали обыкновенного качества. Контроль качества детали.

    дипломная работа [2,3 M], добавлен 15.02.2015

  • Построение схем расположения полей допусков для сопряжения в системах отверстия и вала. Расчет и выбор посадки с зазором подшипника скольжения по упрощенному варианту. Выбор посадки с натягом (прессовые посадки). Расчет и выбор посадок подшипника качения.

    курсовая работа [2,7 M], добавлен 07.08.2013

  • Описание конструкции и служебного назначения детали "Стакан подшипника главной муфты". Выбор типа производства. Обоснование способа получения заготовки. Маршрутный план обработки детали с выбором оборудования. Конструирование режущего инструмента.

    дипломная работа [1,0 M], добавлен 14.07.2016

  • Обоснование и выбор посадок зубчатых механизмов. Разработка рабочего чертежа детали вала. Расчет посадки для гладкого цилиндрического соединения. Назначение различных посадок подшипника качения. Расчет калибров и выбор универсальных средств измерений.

    контрольная работа [285,6 K], добавлен 25.07.2014

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.