Применение ионного микроскопа

Ионный микроскоп как прибор, в котором для получения изображения применяется создаваемый источником пучок ионов. Внутреннее устройство, принцип работы и сферы практического использования. Типы ионных микроскопов, сравнение. Визуализация структур графена.

Рубрика Производство и технологии
Вид реферат
Язык русский
Дата добавления 02.03.2017
Размер файла 448,7 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

Размещено на http://www.allbest.ru/

Ионный микроскоп - микроскоп, в котором для получения изображения применяется создаваемый источником пучок ионов.

По принципу действия ионный микроскоп аналогичен электронному - прошедший через исследуемый объект пучок ионов фокусируется системой электростатических или магнитных линз и даёт на экране увеличенное изображение объекта, это изображение может быть сфотографировано. Преимущества: более высокая разрешающая способность - из-за того, что длина волны де Бройля для ионов значительно меньше, чем для электронов, в ионном микроскопе очень малы эффекты дифракции, которые ограничивают разрешающую способность микроскопа, меньшее влияние изменения массы ионов при больших ускоряющих напряжениях, лучшая контрастность изображения. Вместе с тем, ионный микроскоп обладает недостатками - заметной потерей энергии ионов при прохождении даже через очень тонкие объекты, что вызывает разрушение объектов, слабым фотографическим действием, большой хроматической аберрацией, разрушение люминофора экрана ионами.

Более эффективным оказался ионный микроскоп без линз - ионный проектор.

Сканирующий гелиевый ионный микроскоп (СГИМ, гелий-ионный микроскоп, ионный гелиевый микроскоп, гелиевый микроскоп, HeIM) - сканирующий (растровый) микроскоп, по принципу работы аналогичный сканирующему электронному микроскопу, но использующий вместо электронов пучок ионов Гелия.

В настоящее время (начало 2016 года) Сканирующая электронная микроскопия, фактически исчерпала возможности своего дальнейшего развития, поскольку, на протяжении 50-летнего процесса непрерывного совершенствования методов и техники, вплотную подошла к фундаментальному ограничению предельного разрешения, которое заключается в невозможности дальнейшего уменьшения диаметра сфокусированного пятна электронного пучка за счет эффекта дифракции.

Согласно теории оптических систем, разработанной Эрнстом Аббе, минимальный диаметр пучка электромагнитной волны определяется выражением:

Сравнение изображений зубной эмали мыши, полученные с помощью СЭМ (a, b) и СГИМ (c, d). Изображения, полученные с помощью СГИМ имеют превосходную глубину резкости, и отображают внутреннюю структуру полостей эмали, которые отображаются в виде черных пятен в СЭМ-изображениях

Как известно, при движении заряженной частицы в однородном электрическом поле, его энергия, определяемая как W=q·U (где q - величина заряда частицы, а U - ускоряющее напряжение электрического поля) преобразуется в её кинетическую энергию Wк=mqV2/2.

Таким образом, с помощью СГИМ можно получать данные, которые невозможно получить с помощью микроскопов, которые используют фотоны или электроны в качестве источника излучения.

При этом, как и в других системах сфокусированных ионных пучков, СГИМ позволяет сочетать модификацию образцов с их локальным анализом с суб-нанометровым разрешением[4].

При взаимодействии Гелий-ионного пучка с образцом, происходит возбуждение гораздо меньшего объёма образца, и, следовательно, обеспечение резких изображений с большой глубиной резкости изображаемого пространства для широкого диапазона материалов.

По сравнению с СЭМ, процент выхода вторичных электронов достаточно высок, что позволяет СГИМ работать со сверхнизкими токами пучка (до 1 фемтоампера).

Основные преимущества СГИМ по сравнению с СЭМ:

· Высокое пространственное разрешение до 0,25 нм (Благодаря свойствам ионов Гелия и малой области взаимодействия ионов с образцов)

· Малое влияние дифракционных эффектов на качество изображения благодаря большой массе ионов по сравнению с электронами.

· Более высокая чувствительность к рельефу поверхности образца (благодаря локализации генерации вторичных электронов в приповерхностных (3-5 нм) слоях образца)

· Более качественные изображения во вторичных ионах при сравнимых воздействиях пучком заряженных частиц на образец (среднее количество сгенерированных ионом вторичных электронов выше, чем сгенерированных электроном)

· Глубина резкости изображения в СГИМ в 5-10 раз больше чем СЭМ.

· Исследование диэлектрических материалов гораздо проще благодаря более низким токам пучка и отсутствию сложных систем компенсации заряда.

Источник ионов

В отличие от большинства приборов со сфокусированным ионным пучком, использующих жидкометаллические источники ионов, в СГИМ используется газовый автоионный источник.[3][6]

Схема и изображение источника ионов гелия. Три ярко светящиеся точки в центре являются атомами вольфрама.

К источнику ионов Гелия СГИМ предъявляется ряд требований:

· Источник ионов СГИМ должен обладать достаточной яркостью для обеспечения оптимального отношения сигнал/шум детектора

· Источник ионов должен быть компактным с тем, чтобы была возможность размещать его внутри колонны СГИМ и минимизировать вибрации.

· Источник ионов СГИМ должен быть стабильным, чтобы обеспечивать минимальную флуктуацию потока ионов в течение нескольких часов работы.

· Источник ионов СГИМ должен работать в широком диапазоне энергий, не менее 10 эВ - 30 кэВ

В качестве источника используется острие из вольфрама, к которому приложено высокое напряжение. Выбор вольфрама в качестве материала эмиттера обусловлен тем, что он обладает необходимыми механическими свойствами, которые позволяют исключить его деформацию под действием сильных электростатических полей и низкокотемпературных режимов работы. В результате специального термополевого цикла на заточенном конце вольфрамовой проволоки формируется трёхгранная пирамида, на вершине которой располагаются одиночный атом вольфрама. Газообразный гелий ионизуется в сильном электрическом поле вблизи острия, принципы автоионизации описаны в работах Мюллера[7]. Режим автоионного микроскопа позволяет наблюдать источник с атомарным разрешением, что используется для формирования и юстировки источника. Для стабилизации источника и повышения эффективности автоионизации острие охлаждается жидким азотом.

Величина генерируемого ионного тока изменяется квазилинейно с ростом давления гелия в диапазоне давлений до 100:1, с максимальным значением тока эмиссии до 100 pA. Температурный режим подбирается исходя из оптимальных параметров генерируемого ионного тока. Так, если температура будет слишком низкая, то скорость поглощения ионов гелия будет слишком медленной. С другой стороны, при слишком высоких значениях температуры, поляризованные атомы Гелия будут обладать слишком большой кинетической энергией, и не удерживаться на наконечнике источника достаточное время, с тем чтобы быть эффективно ионизированными. Стабильность тока пучка ионов в СГИМ обеспечивается обычно на уровне 2-3%/час.

Оптическая система

Схема колонны СГИМ

Для фокусировки и отклонения ионного пучка используется электростатическая оптическая схема, аналогичная системам со сфокусированным ионным пучком.

Зависимость ионного тока от приложенного напряжения нелинейно, по мере увеличения напряжения, ток эмиссии возрастает, достигает своего максимального значения, после чего начинает убывать. При дальнейшем повышении напряжения, его энергии начинает хватать для отрыва атомовкатода, тем самым затупляя его конец и ухудшая его характеристики. Напряжение, при котором ток эмиссии достигает своего максимального значения называется «напряжением наилучшего изображения, ННИ» (BIV, Best Image Voltage), и для ионов гелия, это происходит при величине электрического поля в области острия катода около 4,5 В/Е. На данное значение влияет форма острия катода, (чем острее конец катода, тем меньшее напряжение нужно приложить для достижения ННИ).

На рисунке показаны основные оптические компоненты СГИМ (на примере модели Carl Zeiss ORION). Все линзы, сканеры и дефлекторы являются электростатическими, потому что траектория движения заряженных частиц, и в частности, ионов очень слабо зависит от магнитных полей. Ионы, образующиеся с помощью источника, достигают требуемой энергии ускорения и проходят через диафрагму, которая формирует пучок ионов, отсекая внеосевые ионы. Далее пучок ионов проходит через группу электростатических линз, которые выполняют его коллимацию и подстройку. Регулируемая апертурная диафрагма позволяет подбирать оптимальное соотношение разрешения и глубины резкости изображения с одной стороны и тока пучка с другой (путём изменения диаметра поперечного сечения пучка ионов). Далее пучок ионов проходит через систему отклоняющих катушек, которая реализует алгоритм сканирования пучка (отклоняет его в заданном направлении в зависимости от приложенного управляющего напряжения). Затем пучок ионов фокусируется на образце с помощью электромагнитного объектива (Final lens).

Взаимодействие ионов с веществом

Ионы, как и электроны в СЭМ, могут проникать во внутренний объём твердых и жидких образцов. Поскольку отслеживать траектории движения каждого иона в отдельности невозможно, описание их взаимодействия с веществом носит статистический характер (рассматриваются усредненные параметры). Для описания средней максимальной глубины проникновения ионов в образец используют приближение Kanaya и Okayama [8], которое учитывает плотность образца и энергию пучка ионов.

В результате взаимодействия ускоренных ионов с веществом кинетическая энергия налетающих ионов передается электронам и атомам материала. При этом некоторые из электронов вещества вылетают в вакуум (вторичные электроны). Часть ионов Гелия отражается от атомов вещества назад (Обратнорасеяные ионы). Кроме того, некоторые из атомов вещества могут быть выбиты налетающими ионами, что приводит к распылению материала.

Импульс налетающих ионов слишком мал для эффективного возбуждения глубоких уровней атомов, поэтому возбуждения рентгеновского излучения в СГИМ не наблюдается.

Генерация в СГИМ вторичных электронов аналогична данному процессу в СЭМ, однако сигнал вторичных электронов при их возбуждении ионами в СГИМ при тех же условиях и для того же образца, почти всегда будет мощнее, чем при возбуждении электронами в СЭМ, поскольку тормозная способность материала для ионов значительно выше, чем для электронов. В результате, генерация вторичных электронов в СГИМ происходит в приповерхностных слоях образца, и имеют большую вероятность выхода из образца, в отличие от СЭМ, где генерация вторичных ионов распределена в объёме образца. Для математического описания процесса генерации вторичных электронов используется численный метод Монте-Карло[9][10].

Образование обратнорассеянных ионов после их соударения с образцом происходит в некотором телесном угле. Размер и форма области локализации обратнорассеяных ионов важна, поскольку они влияют на качество регистрируемого сигнала как обратнорассеянных ионов, так и вторичных электронов. Увеличенный телесный угол рассеяния ионов на атомах исследуемого материала (по сравнению с электронами), позволяет повысить контраст по атомному номеру, как в режиме регистрации вторичных электронов, так и при регистрации обратно-рассеянных ионов. Если область локализации вторичных ионов мала по объёму, то их высокая концентрация способствует высокому пространственному разрешению во вторичных ионах. С другой стороны, высокая концентрация вторичных ионов в области падения ионного пучка на образец, будет ухудшать контраст и разрешение сигнала во вторичных электронах вследствие их рекомбинации с ионами. Детектирование обратнорассеянных ионов позволяет также исследовать свойства кристаллической решетки образца.

Оптимальный режим работы подбирается исходя из характеристик исследуемого образца путём подбора типа ионов (для этого в СГИМ Carl Zeiss Orion помимо ионов Гелия используются ионы Неона и Галлия), ускоряющего напряжение, фокусировки и режима сканирования.

Для тонких образцов СГИМ позволяет работать в режиме просвечивающего сканирования, подобно просвечивающему растровому электронному микроскопу. Для этих целей в схему СГИМ вводится специальный адаптер[14]

Детекторы

СГИМ оборудован двумя детекторами:

· детектором Эверхарта-Торнли для регистрации вторичных электронов[15]

· микроканальной пластиной для регистрации обратнорассеянных ионов[16].

Компенсация заряда

Для компенсации положительного электрического заряда, накапливающегося на поверхности диэлектрических материалов, используется расфокусированный электронный пучок.

Применение

Слева картина XIII века Китайского поэта Ли Бо, справа - её репродукция, уменьшенная в 100 000 раз, созданная с помощью СГИМ (Dr Paul Alkemade, Delft University of Technology)

Микроскопия диэлектрических материалов и биологических образцов

Благодаря использованию расфокусированного пучка электронов для компенсации заряда образца, СГИМ позволяет получить изображения диэлектрических материалов, и, в частности непокрытых биологических образцов с высоким разрешением. Так, с помощью СГИМ в крыльях бабочек из семейства Papilio ulysses были выявлены новые наноразмерные структуры, которые было невозможно визуализировать с помощью СЭМ. Также СГИМ успешно применяется для визуализации внутриклеточных структур.[18][19][20] В частности, с его помощью проводятся исследования структуры пор в эпителиальных клетках аденокарциномы человека Caco2.[21]Благодаря высокому пространственному разрешению, СГИМ позволил изучить белковые структуры бычьей печени [22](в ходе исследований было установлено, что она имеет структурированную пространственную ориентацию с шагом сетки 8,8 нм Ч 6,7 нм) и почек крысы[23]. Также применение СГИМ позволяет анализировать трехмерное распределение минеральных и органических фаз (протеина, амелогенина, эмали) в зубе мыши.[24] Кроме того, СГИМ успешно применется для исследований биополимеров.]

Получение изображений подповерхностных слоев

Сформированная наноплазмонная структура из 100-нм слоя золота на стеклянной подложке, при последовательной обработки образца ионными пучками Галлия (а), Неона (б) и Гелия (с). Итоговое изображение регистрировалось в ионах Гелия.

Последовательность 4-нм отверстий, сформированных СГИМ в 30-нм нитридокремниевой мембране. Время изготовления одного отверстия составляло около 1 сек. Adam Hall, JSNN

Анализ обратнорассеянных ионов Гелия в СГИМ позволил разработать бесконтактный метод оценки электронных межсоединений[26].

Ионолюминесценция (люминесценция, возбуждаемая бомбардировкой образца ионами)

С помощью ионолюминесценции СГИМ проводится ряд исследований свойств запрещенной зоны полупроводниковых материалов[, тонких пленок GaN на сапфире,[28] легированных Церием квантовых точек в гранате и легированные LaPO4 нанокристаллов.[29]

Визуализация структур графена

СГИМ широко используется для исследования свойства графена в различных формах (как находящегося в свободно подвешенном состоянии, так и расположенного на подложке из диоксида кремния)[30][31][32], а также проницаемость его пор для различных атомов[33][34], свойства ширины его запрещенной зоны[35] и особенности процессов его формирования для устройств наноэлектроники[36][37]

Модификация образца

Модификация образца в СГИМ проводится путём напыления и травления материалов, аналогично методу сфокусированного ионного пучка в СЭМ. Однако данные методы используют различные ионы для модификации образца. Так, в СГИМ в качестве ионов для бомбардировки образца используются ионы Гелия, Неона и Галлия, а в СЭМ - Галлия Золота и Иридия).

Внешний вид Сканирующего Гелий Ионного Микроскопа Carl Zeiss ORION

Ионно-лучевая литография

Традиционно, рельеф фоторезистов формируется методами сфокусированного ионного пучка и электронно-лучевой литографии. Преимущества ионно-лучевой литографии в сравнении с электронно-лучевой заключаются в том, что фоторезисты более чувствительны к пучкам ионов, чем электронов и отсутствует «эффект близости» («proximity effect»), который ограничивает минимально возможный размер модифицируемой области при электронно-лучевой литографии.[38][39] А преимущество СГИМ по сравнению с технологией сфокусированного ионного пучка заключается в возможности сфокусировать пучок в меньшую область и в возможности работы с более легкими ионами. Так, применение СГИМ в качестве ионно-лучевого литографа позволяет достичь новых технологических норм (менее 10 нм).[40][41][42][43]

Формирование наноразмерных структур

Высокое разрешение СГИМ и возможность выбора используемых ионов позволяет формировать широкий круг наноразмерных структур с его помощью.[44][45] В частности, СГИМ применяется для формирования наноразмерных платиновых структур посредством разложения и осаждения органоплатиновых газообразных соединений ионным пучком,[44][46] трехмерных структур на кремниевой подложке[47], осаждения металлов из газообразной фазы.[48] Помимо ионов Гелия, для формирования наноразмерных структур в СГИМ используются ионы Неона и Галлия, а также их комбинации.[49][50] Также СГИМ широко применяется для формирование перспективных наноплазмонных кристаллов[51][52][53][54][55] и микро- и наноэлектромеханических систем.[56]

Справка

Сканирующий гелиевый ионный микроскоп был разработан компанией A.L.I.S., в настоящий момент являющейся частью компании Carl Zeiss. Первый коммерчески доступный СГИМ появился в 2007 г. Фабрика по производству СГИМ расположена в г. Пибоди (США).

К настоящему моменту в мире установлено более 20 приборов, в основном в научно-исследовательских центрах (Национальный Институт Стандартов и Технологий США, Гарвардский Университет, Университет Твенте, Национальный университет Сингапура, Университет Билефельда). В России единственный СГИМ установлен в Междисциплинарном ресурсном центре по направлению «Нанотехнологии»[57] Санкт-Петербургского государственного университета.

Ионный проектор (полевой ионный микроскоп, автоионный микроскоп) - безлинзовый ионно-оптический прибор для получения увеличенного в несколько млн. раз изображения поверхности твёрдого тела (чаще металла). С помощью ионного проектора можно различать детали поверхности, разделённые расстояниями порядка 0,2-0,3 нм, что даёт возможность наблюдать расположение отдельных атомов в кристаллической решётке. Ионный проектор был изобретён в 1951 Э. Мюллером (Е. W. Miiller), который ранее построил электронный проектор.

Принцып действия

Принципиальная схема ионного проектора показана на рис. 1. Положительным электродом и одновременно объектом, поверхность которого изображается на экране, служит остриё тонкой проводящей иглы. Атомы (или молекулы) газа, заполняющего объём прибора, ионизуются в сильном электрическом поле вблизи поверхности острия, отдавая ему свои электроны. Возникшие положит, ионы приобретают под действием поля радиальное ускорение, устремляются к флуоресцирующему экрану (потенциал которого отрицателен) и бомбардируют его. Свечение каждого элемента экрана пропорционально плотности приходящего на него ионного тока. Поэтому распределение свечения на экране воспроизводит в увеличенном масштабе распределение вероятности образования ионов вблизи острия, отражающее структуру поверхности объекта. Масштаб увеличения примерно равен отношению радиуса экрана к радиусу кривизны острия , т.е. .

Вероятность прямой ионизации атома (молекулы) газа электрическим полем оказывается значительной, если на расстояниях порядка размеров атома (молекулы) газа создаётся падение потенциала порядка ионизационного потенциала этой частицы (смотрите Ионизация полем). Это значит, что напряжённость поля должна достигать ~(2-6)*108 В/см, т.е. 20-60 В/нм. Столь сильное поле легко создать у поверхности острия (на расстоянии 0,5-1 нм от неё) при достаточно малом радиусе кривизны поверхности - от 10 до 100 нм. Именно поэтому (наряду со стремлением к большим увеличениям) образец в ионном проекторе изготовлен в виде тонкого острия.

Вблизи острия электрическое ноле неоднородно - над ступеньками кристаллической решётки или отдельно выступающими атомами его локальная напряжённость увеличивается: на таких участках вероятность ионизации полем выше и количество ионов, образующихся в единицу времени, больше. На экране эти участки отображаются в виде ярких точек.

Схема ионного проектора: 1 - жидкий водород; 2 - жидкий азот; 3 - остриё; 4 - проводящее кольцо; 5 - экран

ионный микроскоп визуализация графен

Иными словами, образование контрастного изображения поверхности определяется наличием у неё локального микрорельефа. Другим фактором, влияющим на контраст изображения, является электронная природа атома: так, например, в сплаве Со и Pt более электроотрицательные атомы Pt отображаются как яркие точки, а находящиеся рядом атомы Со не видны.

Изображение, формируемое ионным проектором, характеризуется низкой яркостью. Отдельный выступающий на поверхности образца атом «эмитирует» примерно от 103 до 108 ионов/с, которые формируют на экране изображение обычно ~1 мм2. Непосредственное фотографирование такого изображения требует времени экспозиции в случае использования водорода или гелия порядка 10 - 103 с при потенциале на эмиттере от 20 до 4 кВ. Следовательно, для наблюдения и распознавания поверхностей, которые нестабильны при приложенном изображающем поле, и фотографирования изображений подобных поверхностей в доли секунды необходимо усиление яркости изображений.

Повышение ионного тока (а следовательно, яркости и контрастности изображения) за счёт повышения давления газа и увеличения подачи газа к острию малоэффективно и имеет недостатки. Например, давление обычно не превышает 10-3 мм рт. ст., иначе начинается газовый разряд; а усиленная подача газа может привести к разрушению экрана вследствие бомбардировки. Для получения ярких и контрастных изображений в ионном проекторе используются фотоэлектронные усилители яркости, волоконно-оптические пластины, микроканальные пластины, а также конвертирование ионного изображения в электронное.

Разрешающая способность ионного проектора находится в обратной зависимости от тангенциальной составляющей скорости иона, т.е. чем меньше кинетическая энергия ионизующейся частицы, тем выше . Поэтому остриё ионного проектора обычно охлаждается (до 4-78 К). При этом увеличивается аккомодация частиц изображающего газа. В сильном электрическом поле атомы газа адсорбируются на участках с наибольшей локальной напряжённостью поля (так называемая полевая адсорбция). Их присутствие даёт возможность получать высокодетализированное изображение (рис. 2), т.к. полевая ионизация изображающих частиц облегчается при полевой адсорбции на ранее адсорбированных частицах. Чем выше потенциал ионизации частиц, тем большее разрешение они обеспечивают. Лучшими изображающими газами являются гелий и неон. Однако при этом требуются более сильные электрические поля, что ограничивает круг исследуемых объектов из-за полевого испарения (смотрите Десорбция полем). Примесь к рабочему газу другого снижает величину изображающего поля за счёт понижения порогового поля полевой адсорбции.

Изображение поверхности вольфрамового острия радиусом 95 нм при увеличении в 106 раз в электронном проекторе (a) и в гелиевом ионном проекторе (б) при темп-ре 22 К. На первом изображении можно видеть только расположение разл. кристаллич. плоскостей на поверхности острия; с помощью ионного проектора можно различить атомную структуру ступеней кристаллической решётки (светлые точки на кольцах)

Часто в ионных проекторах применяют внутренний, микроканальный умножитель (МКУ), который конвертирует ионный ток в электронный, многократно его усиливает и обеспечивает яркое изображение на экране. МКУ позволили использовать разнообразные рабочие газы, понижать их давление и тем самым значительно расширили возможности И. п.

Применение

Ионные проекторы широко применяются для исследования атомной структуры поверхности металлов, сплавов и соединений. С его помощью определяются параметры поверхностной диффузии отдельных атомов и их элементарных ассоциатов; при этом выявляются механизмы перемещения, что недоступно для других методов. С помощью И. п. наблюдают и изучают двухмерные фазовые превращения; в атомном масштабе исследуют внутренние дефекты в металлах и сплавах (вакансии, атомы в междоузлиях, дислокации, дефекты упаковки и др.); исследуют потенциалы межатомного взаимодействия, электронные свойства элементарных поверхностных объектов; анализируют объёмы образцов посредством управляемого послойного удаления поверхностных атомов, используя полевое испарение при криогенных температуpax. Исследования с применением ионных проекторов привели к радикальному пересмотру представлений о границах зёрен в поликристаллах. Сочетание И. п. с масс-спектрометром, регистрирующим отдельные ионы, привело к изобретению атомного зонда, расширившего аналитические возможности прибора.

Литература

1. Мюллер Э., Конь Т., Автоионная микроскопия, пер. с англ., М., 1972;

2. Их же. Полевая ионная микроскопия, полевая ионизация и полевое испарение, пер. с англ., М., 1980.

Размещено на Allbest.ru


Подобные документы

  • Ионный источник - устройство для получения направленных потоков (пучков) ионов. Типовые схемы ионно-лучевой обработки поверхностей и объектов в вакууме. Разработка технологического процесса сборки источника очистки ионного. Принцип работы устройства.

    курсовая работа [790,7 K], добавлен 02.05.2013

  • Понятие и классификация погрузочных машин, их разновидности и выполняемые функции, особенности и условия практического применения. Буропогрузочные машины: типы и внутреннее устройство, сферы использования на сегодня. Погрузочно-транспортные машины.

    реферат [880,6 K], добавлен 25.08.2013

  • Использование ионных двигателей для маршевого и межорбитального полета в космическом пространстве. Применение космических электрореактивных двигательных установок. Разработка маршрутного плана технологического процесса детали "катодная оболочка".

    дипломная работа [173,4 K], добавлен 18.12.2012

  • Общая характеристика исследуемой холодильной установки, ее внутреннее устройство, взаимосвязь элементов и узлов, принцип работы и сферы практического применения. Расчет и построение заданного и рекомендуемого цикла. Параметры узловых точек процесса.

    контрольная работа [8,7 M], добавлен 04.02.2015

  • Проведение испытаний единичного экземпляра микроскопа измерительного ТМ-500 для целей утверждения типа. Анализ нормативной документации по испытаниям и средствам измерения. Воздействие влияющих внешних факторов на метрологические характеристики прибора.

    дипломная работа [471,0 K], добавлен 14.05.2011

  • Понятие и функциональные особенности погрузочно-разгрузочных машин, сферы их практического применения и значение. Группа режима работы и направления ее исследования. Классификация и типы кранов, их специфика. Устройство, элементы тележки, принцип работы.

    презентация [155,8 K], добавлен 17.05.2013

  • Назначение и конструктивные особенности микроскопа и детали "Корпус". Определение типа производства. Выбор способа получения заготовки. Разработка маршрутного технологического процесса. Расчет технико-экономических показателей проектируемого участка.

    дипломная работа [5,6 M], добавлен 21.08.2012

  • Обзор технологии работы микроскопа, который открыл человеку мир живой клетки. Анализ принципиального устройства микроскопа АСМ. Особенности сканирующей зондовой микроскопии: преимущества и недостатки по отношению к другим методам диагностики поверхности.

    курсовая работа [506,4 K], добавлен 01.05.2010

  • Понятие и история открытия графена, его характерные свойства и признаки, способы получения. Перспективы развития и применения: техника и электроника, опреснение соленой воды, аккумуляторы. Особенности и направления использования материала в медицине.

    реферат [981,8 K], добавлен 08.06.2016

  • Механизированный инструмент как подкласс технологических машин со встроенными двигателями, принцип их работы и устройство, направления практического применения. Типы инструмента и их функциональные особенности. Описание инструмента для монтажных работ.

    учебное пособие [3,7 M], добавлен 21.06.2013

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.