Вихревой теплогенератор для систем теплоснабжения
Виды и конструкции тепловых гидродинамических устройств, применяемых в качестве автономных источников отопления. Использование вихревых теплогенераторов при строительстве электрофицированных объектов, прокладке газовых коммуникаций и труб теплоснабжения.
Рубрика | Производство и технологии |
Вид | статья |
Язык | русский |
Дата добавления | 27.02.2017 |
Размер файла | 1,2 M |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
Размещено на http://www.Allbest.ru/
Вихревой теплогенератор для систем теплоснабжения
Шваб Виктор Викторович
На протяжении многих лет (более 15) в различных городах Москва, Жуковский, Подольск, Мытищи, Пенза, Ростов-на-Дону, Ижевск, Тверь, Королев, Донецк и др. ведутся интенсивные разработки вихревых теплогенераторов.
Вихревые теплогенераторы - тепловые устройства гидродинамического типа, применяющиеся в качестве автономных источников отопления и ГВС.
Использование вихревых теплогенераторов выгодно при строительстве электрофицированных объектов, прокладка газовых коммуникаций и труб централизованного теплоснабжения к которым невозможна или неэкономична (пример по продбазе «Дружба» г. Мытищи: в октябре 1996г. угольная котельная находилась в состоянии разрухи, ближайшая котельная на удалении 1500 м, а газопровод-900м. Потребность в тепле - минимальная 24 кВт без ГВС. Потребляемая электрическая мощность вихревых теплогенераторов 11 и 7,5 кВт/ч).
Кроме того, оправдано их применение совместно с теплогенераторами работающими на жидком топливе, фото №1 (пример по ст. Перово: Потребность в тепле 96 кВт/ч, техническая возможность по потребляемой электрической мощности 100 кВт/ч. Установлено: две установки вихревых теплогенераторов суммарной тепловой мощностью - 36 кВт/ч, один теплогенератор мощностью 60 кВт/ч работающий на дизельном топливе фото №1). При этом в случае установки трех-тарифного электрического счетчика можно снизить себестоимость выработанной тепловой энергии на 15-25%.
От существующих электронагревателей вихревые теплогенераторы отличаются значительно более высокой эффективностью - отношением производимой тепловой энергии к потребляемой электрической. По заключению РКК «Энергия» №77- 6/33 от 01.12.1994 г. Вихревые теплогенераторы типа «ЮСМАР» имеют средний условный коэффициент преобразования энергии на 23% выше по сравнению с электродными теплогенераторами и на 42% выше по сравнению с ТЭНовыми. А самое главное отличие то, что при использовании вихревых теплогенераторов не требуется получать технические условия на термическую нагрузку.
Важно отметить, что вихревые теплогенераторы могут приводиться не только электродвигателями, но и ветром, водой горных речек, дизельными и бензиновыми двигателями.
Можно выделить три конструктивные разновидности вихревых теплогенераторов (по классификации Сергея Геллера, изобретателя из Ростова-на-Дону журнал «ТМ» 11/2005):
· пассивные тангециальные;
· пассивные аксиальные;
· активные.
К пассивным относятся Вихревые теплогенераторы статистичекого типа, не содержащие подвижных частей в устройствах формирования потока жидкости. Они различаются по характеру ввода потока в рабочую камеру - тангециальному (завихритель, рабочая вихревая камера, тормозное устройство, выходной патрубок, перепускная магистраль) или аксиальному (входной патрубок, рабочая камера с сужающим устройством, турбулизатор, выходной патрубок).
Завихритель выполнен в виде улитки, подводящей поток холодной жидкости из насоса на периферию цилиндрической вихревой камеры. В камере поток закручивается и движется к осевому выходному патрубку, перед которым тормозится специальным устройством. В процессе вихревого движения и торможения жидкости в рабочей камере создается зона схлопывания в которой жидкость нагревается и поступает в выходной патрубок. Часть горячей жидкости для поддержания зоны схлопывания может отводиться с его выхода на вход через перепускную магистраль.
Завихрители могут выполняться с винтовыми или спиральными профилями рабочих камер, с постоянными или сужающимися сечениями патрубков, с одной или более рабочими камерами, с одним или несколькими тангенциальными вводами, с вводами типа вихревых форсунок и т.п.
Рабочие камеры этих нагревателей могут быть прямоточными, двойными противоточными, цилиндрическими, коническими, сложной формы и т.д.
Разнообразны и конструкции тормозных устройств - от тел обтекания до лопастных спрямляющих аппаратов.
В пассивных аксиальных вихревых теплогенераторах используются различные диафрагмы с цилиндрическими, коническими, щелевидными или спиральными отверстиями, с одним и более отверстиями, с аксиальным или смещенным отверстиями, с одной или несколькими последовательно установленными перегородками и т.д.
Применяются и теплогенераторы смешанного типа в которых для повышения эффективности работы одновременно используются как завихрители, так и диафрагмы.
К активным относятся вихревые теплогенераторы в которых механическая активация рабочего тела происходит в результате воздействия на жидкость подвижных активаторов - вращающихся, колеблющихся или совершающих сложное движение.
Подающаяся во входной патрубок вихревого теплогенератора активного типа холодная жидкость закручивается вращающимся активатором, ускоряется, активируется и нагревается. Это происходит в процессе движения в сторону неподвижного тормозного устройства, на котором поток затормаживается, дополнительно активируется и нагревается. Через выходной патрубок горячая жидкость подается к потребителю.
Разновидности активных вихревых теплогенераторов отличаются между собой конструкциями активаторов и тормозных устройств. Активаторы могут выполняться также в виде турбин, тел вращения с продольно профилированными поверхностями, перфорированных цилиндрических или конических барабанов, однонаправленных или противоположно вращающихся перфорированных дисков и пр.
В каждом из трех типов вихревых теплогенераторов могут дополнительно создаваться специальные режимы работы, способствующие активации жидкости и, как следствие, - увеличению тепловыделения. С этой целью задаются неоднородности давления в рабочей камере, возбуждаются автоколебания в жидкости, формируются дополнительные вихревые течения, обеспечиваются ударные торможения встречных струй, производится ультрозвуковая обработка жидкости и пр.
Кроме того, каждый их вихревых теплогенераторов может использоваться в различных тепловых схемах систем теплоснабжения и отопления. И зачастую именно неудачно выбранная тепловая схема может привести к неэффективной работе вихревого теплогенератора.
Несмотря на отсутствие подвижных частей и высокую эксплуатационную надежность пассивных теплогенераторов, вихревые теплогенераторы активного типа более перспективны для практического использования, поскольку обеспечивают более эффективный нагрев жидкости и позволяют снизить уровень шума (один их главных недостатков вихревых теплогенераторов). Т.к. для работы пассивных вихревых теплогенераторов требуются насосы с повышенными техническими характеристиками по напору и производительности, на которые устанавливаются электрические двигатели с частотой вращения 3000 об/мин. Конструкция же вихревого теплогенератора активного типа позволяет использовать малошумные электрические двигатели с частотой вращения 1500 об/мин.
Исходя из конструктивных особенностей различных Вихревых теплогенераторов, и на основании анализа практического опыта использования некоторых их пассивных теплогенераторов, можно сделать два важных вывода, которые необходимо учитывать в практике применения систем теплоснабжения на основе вихревых теплогенераторов.
Во-первых, тепловыделяющее действие кавитации в потоках жидкости проявляется обычно при условиях, отличающихся от условий ее возникновения. Особенно важно учитывать данное явление при проведении измерений расходов жидкости и разности температур, т.к. погрешности измерений будут значительны.
Во-вторых, тепловыделение связано с зоной схлопывания, которую необходимо создавать и поддерживать (как необходимо налаживать, например, горелку на водогрейном котле).
Оба этих вывода приводят к мысли о пользе тщательного изучения данного явления на основе широкого практического применения вихревых теплогенераторов с целью объяснения правдоподобного механизма возникновения причудливой, еще не познанной во всем своем многообразии связи кавитации с тепловыделением.
Отсутствие же убедительных и доступных широкой аудитории экспериментальных данных привело к появлению многочисленных гипотез об основной причине появления тепловой энергии и высокой эффективности вихревых теплогенераторов.
Размещено на http://www.Allbest.ru/
Фото 1. Система теплоснабжения административно-бытового здания Дирекции по ремонту пути Московской железной дороги г. Москва, Кусковский тупик (ст. Перово).
Размещено на Allbest.ru
Подобные документы
Виды систем центрального отопления и принципы их действия. Сравнение современных систем теплоснабжения теплового гидродинамического насоса типа ТС1 и классического теплового насоса. Современные системы отопления и горячего водоснабжения в России.
реферат [353,4 K], добавлен 30.03.2011Расчет тепловых нагрузок района города. График регулирования отпуска теплоты по отопительной нагрузке в закрытых системах теплоснабжения. Определение расчетных расходов теплоносителя в тепловых сетях, расход воды на горячее водоснабжение и отопление.
курсовая работа [269,3 K], добавлен 30.11.2015Анализ принципа действия и технологических схем ЦТП. Расчет тепловых нагрузок и расходов теплоносителя. Выбор и описание способа регулирования. Гидравлический расчет системы теплоснабжения. Определение расходов по эксплуатации системы теплоснабжения.
дипломная работа [639,3 K], добавлен 13.10.2017Расчет гидравлического режима тепловой сети, диаметров дроссельных диафрагм, сопел элеваторов. Сведения о программно-расчетном комплексе для систем теплоснабжения. Технико-экономические рекомендации по повышению энергоэффективности системы теплоснабжения.
дипломная работа [784,5 K], добавлен 20.03.2017Выбор вида теплоносителей и их параметров, обоснование системы теплоснабжения и ее состав. Построение графиков расходов сетевой воды по объектам. Тепловой и гидравлический расчёты паропровода. Технико-экономические показатели системы теплоснабжения.
курсовая работа [1,6 M], добавлен 07.04.2009Котельная, основное оборудование, принцип работы. Гидравлический расчет тепловых сетей. Определение расходов тепловой энергии. Построение повышенного графика регулирования отпуска теплоты. Процесс умягчения питательной воды, взрыхления и регенерации.
дипломная работа [1,2 M], добавлен 15.02.2017Особенности теплоснабжения населенных пунктов. Характеристика потребителей тепловой энергии поселка Шексна. Анализ параметров системы теплоснабжения, рекомендации по ее модернизации. Технико-экономическая оценка инвестиций в реконструкцию тепловых сетей.
дипломная работа [1,4 M], добавлен 20.03.2017Исследование и характеристика особенностей объектов теплоснабжения. Расчет и построение температурного графика сетевой воды. Определение и анализ аэродинамического сопротивления котла. Рассмотрение основных вопросов безопасности и экологичности проекта.
дипломная работа [525,9 K], добавлен 22.03.2018Области применения методов вихревых токов. Классификация датчиков вихревых токов, общая характеристика сигналов. Закономерности влияния электропроводности на сигнал различных типов датчиков. Расчет абсолютных значений сигнала датчика с помощью годографа.
дипломная работа [2,2 M], добавлен 27.07.2010Описание существующей системы теплоснабжения зданий в селе Шуйское. Схемы тепловых сетей. Пьезометрический график тепловой сети. Расчет потребителей по теплопотреблению. Технико-экономическая оценка регулировки гидравлического режима тепловой сети.
дипломная работа [2,7 M], добавлен 10.04.2017