Тепловые режимы обмуровок слоевых топок
Применение нормативного метода расчета топочного теплообмена к слоевым топкам. Динамика изменения температур по толщине кирпичной обмуровки при остановке теплогенератора. Изучение измерений нестационарной температуры обмуровки при тепловой нагрузке.
Рубрика | Производство и технологии |
Вид | статья |
Язык | русский |
Дата добавления | 27.02.2017 |
Размер файла | 285,4 K |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
Размещено на http://www.allbest.ru/
Тепловые режимы обмуровок слоевых топок
Б.Я. Каменецкий, ведущий научный сотрудник, ГНУ ВИЭСХ, г. Москва
В слоевых топках с циклической загрузкой топлива обмуровка кроме основной функции снижения потерь тепла играет также еще одну особую роль. В силу своей тепловой инерции обмуровка достаточно долгое время сохраняет свою температуру, что способствует прогреву и воспламенению фракций топлива. При загрузке свежей порции топливо закрывает почти всю поверхность слоя, вследствие чего температура поверхности слоя резко снижается, что видно из рис. 1. Температура газов в топке также снижается, и в этот интервал времени в системе топочного теплообмена температура поверхности обмуровки оказывается самой высокой. Излучение от поверхности обмуровки на слой в эти моменты способствует прогреву и верхнему зажиганию топлива [1].
С целью исследования тепловых режимов, определения тепловых потоков на внутренней стороне и потерь тепла проведены измерения температурных режимов топочных обмуровок. Работы осуществлялись на отопительном котле с ручной слоевой топкой, у которого обмуровка из шамотного кирпича толщиной 380 мм является одновременно постаментом для двух пакетов котельных секций. Высота постамента - 1,2 м, в том числе 0,5 м - над колосниковой решеткой.
Измерения температуры проводились с помощью зонда - трубки из кварцевого стекла диаметром 8,5 мм с ХА-термопарами, перемещаемой в сквозном отверстии боковой стены обмуровки. В котле сжигали каменный кузнецкий уголь марки 2СС, топочный цикл (время между соседними загрузками) составлял 10 мин.
Результаты измерений нестационарной температуры обмуровки при тепловой нагрузке решетки 0,55 МВт/м2 (расход топлива - 72 кг/ч) представлены на рис. 2.
Температура на наружной поверхности обмуровки на высоте 0,4 м от уровня колосниковой решетки составила 60 ОС, а на внутренней поверхности - 800 ОС. По толщине кладки температура снижается к наружной поверхности непропорционально, что свидетельствует о снижении теплового потока через обмуровку в результате растечек (перетоков) тепла в вертикальном направлении. Растечки тепла возникают вследствие неравномерного прогрева обмуровки по высоте: температура кирпича в зольнике ниже температуры колосников и составляет 60-70 ОС, а на верхнем торце кладки, соприкасающемся с котельными секциями, - 80-100 ОС.
На наружной поверхности обмуровки тепловой поток, рассчитанный как по условиям конвективной теплоотдачи при естественной конвекции воздуха q=бек(tн-tв), так и по теплопроводности обмуровки q=б*dt/dx дает значение 0,5 кВт/м2, а на внутренней поверхности - q=2,7 кВт/м2. Тепло вые потери с боковой и нижней поверхности обмуровки составляют значительную величину - 4% от мощности котла 220 кВт даже при толщине обмуровки 380 мм.
Еще большей величины достигают потери тепла в окружающую среду при снижении толщины обмуровки. Например, в топке теплогенератора с шурующей планкой мощностью 2 МВт без тепловоспринимающих экранов неэкранированная кирпичная обмуровка высотой 2 м имеет толщину только 250 мм. Для обеспечения ее надежной работы пришлось увеличить избыток воздуха в топке до значения б=2,6. Тем не менее, температура внутренней поверхности обмуровки составила 1100 ОС на уровне 1,8 м от колосниковой решетки и 900 ОС на уровне 0,4 м (рис. 3). Средние тепловые потоки через обмуровку возросли до 2,2 кВт/м2 на уровне 0,4 м, и до 2,6 кВт/м2 на уровне 1,8 м. В этом случае различие температур по высоте обмуровки, достигает 200 ОС на внутренней поверхности и снижается по толщине, что приводит к перетокам тепла от верхних слоев к нижним.
Интересные результаты зафиксированы при остановке этого теплогенератора. При прекращении подачи топлива и продолжающейся работе вентилятора тепловыделение в топке уменьшается, что приводит к быстрому охлаждению обмуровки с внутренней поверхности и монотонному снижению ее температуры (рис. 4). Через 25 мин тепловой поток, направленный из топки на поверхность обмуровки, снижается до 0 и затем меняет свое направление. При дальнейшем охлаждении топки и снижении температуры внутренней поверхности обмуровки возникает максимум в распределении температур по толщине обмуровки. Температура слоев внутри обмуровки даже повышается, и максимум температур перемещается внутрь. Причина такой деформации температурного поля обмуровки связана с более интенсивным охлаждением внутренней поверхности, особенно нижних слоев, приводящим к большим перетокам тепла от верхних центральных слоев. Через 45 мин они еще остаются нагретыми до 300 ОС.
Выводы
1. В котлах со слоевыми топками тепловая инерционность обмуровки способствует прогреву и воспламенению загружаемого топлива.
2. Тепловые потери с боковой и нижней поверхности обмуровки (шамотный кирпич) составляют значительную величину - 4% от мощности котла 220 кВт даже при толщине обмуровки 380 мм.
3. Вследствие неравномерного прогрева обмуровки по высоте возникают растечки тепла. В случае прекращения подачи топлива при работающем вентиляторе это приводит к тому, что максимум температур перемещается внутрь обмуровки.
топочный теплообмен температура обмуровка
Литература
1. Каменецкий Б.Я. О применимости Нормативного метода расчета топочного теплообмена к слоевым топкам // Теплоэнергетика. 2006. № 2. С. 58-60.
2. Новости Теплоснабжения - журнал для специалистов в сфере теплоснабжения. Актуально. Профессионально. Доступно.
Размещено на Allbest.ru
Подобные документы
Разработка метода непрерывного измерения температуры жидкой стали в ДСП - контроля распределения температуры по толщине огнеупорной футеровки. Математическое описание процесса теплообмена через кладку. Алгоритм работы микропроцессорного контроллера.
контрольная работа [529,0 K], добавлен 04.03.2012Методика выполнения измерений: сущность, аппаратура, образцы, методика испытания, обработка результатов. Теоретические основы расчета неопределенности. Проектирование методики расчета неопределенности измерений. Пример расчета и результаты измерений.
курсовая работа [296,2 K], добавлен 07.05.2013Составляющие процесса тепловой обработки бетона. Подъем температуры до максимально установленного уровня, выдерживание при нем и охлаждение изделия до температуры окружающей среды. Конструктивный и технологический расчет производственной установки.
реферат [396,6 K], добавлен 10.06.2014Сравнение фонтанирования и псевдоожижения. Разработка метода расчета коэффициента гидравлического сопротивления топочного устройства и технологической схемы экспериментальной установки. Изучение движения газовзвеси в экспериментальной топочной камере.
курсовая работа [900,1 K], добавлен 31.07.2015Обзор математических моделей и зависимостей для расчета контактных температур. Распределение тепловых потоков между заготовкой, стружкой и шлифовальным кругом в зоне шлифования. Определение массового расхода смазочно-охлаждающей жидкости для шлифования.
лабораторная работа [95,6 K], добавлен 23.08.2015Цели разработки государственных стандартов Российской Федерации. Определения стандартов, условные обозначения, применение. Альтернативы основному методу определения стандартных отклонений повторяемости и воспроизводимости стандартного метода измерений.
реферат [47,3 K], добавлен 12.11.2013Краткое описание шахтной печи. Расчет температуры и продуктов горения топлива. Тепловой баланс и КПД печи. Расчет температур на границах технологических зон и построение кривой обжига. Аэродинамический расчет печи, подбор вспомогательных устройств.
курсовая работа [188,0 K], добавлен 12.03.2014Определение параметров сварочной ванны аналитическим и графическим способами. Построение графиков изотермических циклов, линий и максимальных температур. Особенности определения КПД процесса и эффективной тепловой мощности. Определение режимов сварки.
курсовая работа [399,5 K], добавлен 19.11.2013Определение поверхности теплообмена и конечных температур рабочих жидкостей. Расчетные уравнения теплообмена при стационарном режиме - уравнение теплопередачи и уравнение теплового баланса. Расчёт кожухотрубчатого и пластинчатого теплообменных аппаратов.
курсовая работа [5,2 M], добавлен 03.01.2011Расчет температурного поля во время сварочных процессов. Определение температуры в начале, середине и конце сварного шва. Период выравнивания температуры. Быстродвижущиеся источники теплоты. Результаты вычислений температуры предельного состояния.
курсовая работа [99,4 K], добавлен 05.09.2014