Неподвижные опоры как объекты надежности в системе теплоснабжения
Неподвижные опоры как важнейший элемент тепловых сетей, их назначение, способы конструкционных исполнений. Исследование усилий и вызванных ими напряжений, возникающих в опорах. Прочностной расчет неподвижных опор, анализ статистических данных повреждений.
Рубрика | Производство и технологии |
Вид | статья |
Язык | русский |
Дата добавления | 27.02.2017 |
Размер файла | 205,1 K |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
Размещено на http://www.allbest.ru
Неподвижные опоры как объекты надежности в системе теплоснабжения
Фридман Я.Х. - старший научный сотрудник,
издательство «Новости теплоснабжения».
Одними из важнейших конструкционных элементов тепловых сетей, которые обеспечивают эксплуатационную надежность, являются неподвижные опоры. Они служат для разделения теплопроводов на участки, независимые друг от друга в восприятии различного вида усилий. Обычно неподвижные опоры размещаются между компенсаторами или участками трубопроводов с естественной компенсацией температурных удлинений. Они фиксируют положение теплопровода в определенных точках и воспринимают усилия, возникающие в местах фиксации под действием силовых факторов от температурных деформаций и внутреннего давления. Благодаря этой своей функции они еще называются «мертвыми».
В данной работе высказывается ряд соображений касательно усилий и вызванных ими напряжений, возникающих в неподвижных опорах.
Усилия, воспринимаемые неподвижными опорами, складываются из:
неуравновешенных сил внутреннего давления;
реакции подвижных (свободных) опор;
реакции компенсаторов от силовых факторов, вызванных температурными деформациями;
4) гравитационных нагрузок.
Неподвижные опоры бывают следующих конструкционных исполнений: лобовые, щитовые и хомутовые.
Согласно статистике отказов в камерах на дефекты от наружной коррозии труб приходится 80-85%. Это количество дефектов примерно распределено согласно прилагаемой таблице из [1]. Это согласуется и с нашими наблюдениями, где на повреждения, относящиеся к неподвижным опорам, приходится около 50% от числа повреждений в камерах, имеющих неподвижные опоры. неподвижный опора напряжение повреждение
Причины коррозии неподвижных опор.
Неподвижные опоры подвергаются различным видам коррозии, которые вызваны следующими причинами:
влияние блуждающих токов в щитовых опорах из-за отсутствия надежных электроизоляционных вставок
возникновение капели с перекрытий из-за конденсации влаги приводит к усиленной коррозии наружной поверхности труб
3) приварка косынок создает предпосылки для интенсификации процессов внутренней коррозии в местах расположения сварных швов и околошовной зоны.
4) одновременное воздействие переменных циклических напряжений и коррозионной среды вызывают понижение коррозионной стойкости и предела выносливости металла.
Методика прочностного расчета неподвижных опор.
Согласно СНиП 2.04.07-86 «Тепловые сети» c.39 п.7: «Неподвижные опоры труб должны рассчитываться на наибольшую горизонтальную нагрузку при различных режимах работы трубопроводов, в том числе при открытых и закрытых задвижках».
В настоящее время неподвижные опоры подбираются по альбомам «Нормали тепловых сетей. НТС-62-91-35. НТС-62-91-36. НТС-62-91-37», выпущенным институтом «Мосинжпроект». По этим нормалям для каждой величины Ду приводится максимальная осевая сила, величину которой не должна превосходить результирующая сила от действующих осевых сил как слева так и справа. На самом деле на опору кроме осевой действуют еще две перерезывающие силы, а также крутящий и два изгибающих момента. В наиболее общем случае на опору действуют все виды нормальных и касательных напряжений т.е. имеет место сложнонапряженное состояние.
При прочностном расчете оказывается, что запасы прочности в сечениях теплопровода, проходящих через неподвижные и подвижные опоры, принимают наименьшие значения по длине теплопровода, т.е. это наиболее нагруженные сечения. В нормативной документации не существует никаких рекомендаций по запасам прочности расчетных точек сечений теплопроводов относительно допускаемого временного сопротивления и допускаемого напряжения текучести.
Предлагается следующий порядок прочностного расчета неподвижных опор:
Прочностной расчет участков теплопровода, находящихся от рассматриваемой опоры как с левой таки с правой стороны. В результате определяются 3 силовые и 3 моментные нагрузки, действующие на неподвижную опору со стороны правого теплопровода (P1x, P1y, P1z, M1x,M1y, M1z.) и левого теплопровода(P2x, P2y, P2z, M2x, M2y, M2z.) (рис. 2 и 3).
Решение системы уравнений относительно 6 результирующих неизвестных: Px, Py, Pz, Mx, My, Mz,где:
Px, Py - поперечные силы, паралельные соответственно осям OX и OY
Pz - продольная сила, направленная сила вдоль оси OZ
Мх и My - изгибающие моменты, вектора моментов которых направлены соответственно по осям OX и OY
Mz - крутящий момент, вектор момента которого направлен вдоль оси OZ.
3) В каждой расчетной точке вычисляются 6 напряжений (по 6-тисиловым факторам из п.3), характеризующих напряженное состояние:
3 нормальных напряжения: ах, ау, az и 3 касательных напряжения: тху, xxz, xyz.
4) Выбор коэффициента прочности сварного шва.
Наиболее слабым местом стальных трубопроводов, по которому следует вести проверку напряжений, являются сварные швы. ф - коэффициент прочности сварного шва (ф = 0,7 … 0,9)
4.1 По маркам сталей из которых изготовлены неподвижная опора и теплопровод выбирается та сталь напряжения текучести (at) и временного сопротивления (ав ), которой являются меньшими. Расчетные at и ав берутся при t = 150 ОC.
4.2 Определение допустимых расчетных напряжений относительно напряжений текучести и временного сопротивления: [at] = ф xat; [ав] = ф х ав
5) По 6 напряжениям (ax, ay, az,тху, xxz, xyz) особым образом выбираются новые оси координат OX1,OY1 и OZ1 так, чтобы 3 касательныхнапряжения приняли нулевые значения ( существует только один возможный вариант направления осей).
В итоге получаем только 3 нормальных напряжения: al, a2 и a3, причем al > а2 > аЗ.
На основании 3-ей и 4-ой теорий прочности (в машиностроении и статической прочности металлоизделий применяют 3-ью и 4-ую теории прочности ) получаем коэффициенты запаса относительно допускаемых напряжений текучести и коэффициентов запаса по допускаемому временному сопротивлению сварных швов.
6) Рекомендуемые величины запасов:
по текучести [m]= 2 … 2.2;
по временному сопротивлению [n] = 4… 4.5.
Такой высокий запас по текучести обеспечит уменьшение вероятности появления отказов, связанных с усталостью металла, из-за термических напряжений возникающих при регулировании температуры воды в отопительный период.
Разработана компьютерная программа TENZOR 11.ЕКА, опирающаяся на ряд положений из [2] и позволяющая выполнить п.п. 1...6.
В подавляющем большинстве случаев неподвижные опоры являются узлами, на которые приходятся самые большие нагрузки. Это происходит из-за плохой работы подвижных опор, вызванной увеличенным коэффициентом трения скольжения (до 0,4) и их увеличенной просадочности. При наружной и внутренней коррозии в неподвижных опорах происходит перераспределение напряжений, что приводит к их повышенной повреждаемости.
При ремонтах лучше не разрушать всю неподвижную опору и не вырезать старую трубу, а использовать своеобразную вставку. На рис. 1 показан один из применяемых вариантов подхода при производстве ремонта щитовой неподвижной опоры. После выполнения обрезки трубопровода, внутрь тела трубы опоры 1 вставляется и приваривается предварительно разрезанная вдоль образующей труба усиления 2. Для этой вставки берется заготовка из той же самой трубы. Это позволит, как довести запасы прочности соответственно рекомендациям п. 6, так и уменьшить объемы ремонтных работ.
При наличии неподвижной опоры промышленного изготовления, для повышения ее долговечности и надежности во время эксплуатации возможно проведение усиления такой опоры, которое проводится точно таким же образом.
Для защиты трубы и неподвижной опоры от коррозии и как один из наиболее простых методов по обеспечению надежности работы опор можно предложить увеличение толщины стенки трубы в опоре. При этом, толщина стенки трубы s подбирается так, чтобы ее величина при прочностном расчете соответствовала рекомендуемым величинам запаса прочности п.6.
В хомутовых неподвижных опорах кроме расчета теплопровода рассчитывается также и толщина стержня хомута на напряжения растяжения, с учетом рекомендаций п.6.
Практический пример.
Рассмотрим практический пример расчета неподвижной опоры.
Данные для расчета:
Ду = 200 (0 219X6), длина участка 209 м.
1 = 8 м - расстояние между подвижными опорами
р = 10 ати = 10,2 МПа - давление воды (избыточное)
t1 = 10 ОC -- монтажная температура
t2 = 130 ОC - максимальная температура воды
а = 12x106 град ' - коэффициент линейного расширения стали.
По марке стали (сталь 20 при t=150ОC)
at = 165 МПа - напряжение текучести ав = 340 МПа - временное сопротивление
Е = 2.1ХЮ6 кг/см2 = 2.14ХЮ5 мПа - модуль упругости 2-го рода
ц = 0,3 - коэффициент Пуассона
ф = 0,8 - коэффициент ослабления металла сварного шва.
Определение расчетных напряжений относительно допускаемых напряжений текучести и временного сопротивления
[at] = q>xat = 132 МПа = 1346 кг/см2 - допускаемое напряжение текучести
[ав] = фХав = 272 МПа =2775 кг/см2 - допускаемое напряжение для временного сопротивления.
Выполняя п. 1…3 для схемы (рис. 2) и рассмотрев систему уравнений равновесия п.2 получаем на рис. 3 следующие результирующие усилия действующие на опору A:
Рх = 4.5 кН; Py = 11.2 кН; Pz = 9.5 кН;
Мх = 5.2 кНХм ; My = 4.1 кНХм; Mz = 0. кНХм.
Выполняя п.п. 4… 6 получаем следующие запасы прочности относительно допускаемых напряжений текучести и временного сопротивления соответственно по 3-ей и 4-ой теориям прочности:
пЗ = 4.3; n4 = 3.1
тЗ = 2.43; m4 = 1.67.
Данные системы не удовлетворяют п.6, поэтому требуется взять из сортимента трубопроводов трубу с тем же внутренним диаметром, но большей толщиной стенки (s = 7).
В случае невозможности реализации такого варианта, можно изменить конструкции щитовых и лобовых опор, введя трубу усиления поз.2 так, как это показано на рис.1.
Выводы
В заключении отметим, что прочностной расчет неподвижных опор и анализ статистических данных повреждений позволяет сделать следующие выводы:
При проектировании Тепловых сетей для повышения надежности неподвижной опоры необходимо выполнять прочностные расчеты участков теплотрассы, располагающихся с обеих сторон от этой опоры, что позволит определить результирующие усилия, действующие на опору.
Прочностные расчеты участков теплопровода требуется проводить как для режима эксплуатации, так и для режима опрессовки. Необходимо проводить прочностной расчет по допускаемым напряжениям для всех участков теплопровода с учетом ослабления металла сварного шва.
Для малых диаметров для упрощения процедуры проектирования необходимо применять трубу как минимум в 2 раза большей толщины стенки, чем на основном трубопроводе.
В связи с высокой частой отказов неподвижных опор требуется усилить конструкции узлов этих опор так, чтобы величина запаса прочности относительно допускаемого напряжения текучести была не менее [m]= 2 … 2.2, а значения запасов прочности по допускаемому временному сопротивлению должны быть не меньше [n] = 4… 4.5.
5. Все металлические конструкции должны быть надежно защищены.
6. При проектировании следует обязательно предусматривать двусторонний доступ к неподвижной опоре для возможности ее осмотра, полного восстановления антикоррозионного покрытия и герметизации кольцевого зазора.
Литература
1. Л.В.Родичев. Статистический анализ процесса коррозионного старения теплопроводов. СТРОИТЕЛЬСТВО ТРУБОПРОВОДОВ. № 9, 1994 г.
2. А.П.Сафонов. Сборник задач по теплофикации и тепловым сетям. М.: Энерго-издат, 1980.
Размещено на Allbest.ru
Подобные документы
Устройство абсорбционной колонны. Конструктивное исполнение элементов. Определение толщин стенок, днищ корпуса и рубашки. Расчет аппарата на устойчивость против изгибающих моментов. Подбор и расчет опоры. Прочностной расчет основных элементов аппарата.
курсовая работа [1,8 M], добавлен 18.05.2014Силовая высоковольтная опора СВО110: назначение, конструктивные особенности и условия работы. Описание существующего технологического процесса изготовления опоры СВО 110, проектирование нового процесса. Охрана труда и безопасность при выполнении работ.
дипломная работа [1,7 M], добавлен 08.06.2017Опорами или подшипниками называют устройства, поддерживающие вращающиеся валы и оси в требуемом положении. Опоры механизмов должны обеспечить наибольшую точность перемещения, минимальные потери на трение. Существуют подшипники скольжения и качения.
реферат [1,4 M], добавлен 18.01.2009Способы соединения деталей и сборочных единиц. Разъемные соединения: подвижные и неподвижные. Достоинства резьбовых соединений. Назначение крепежной, крепежно-уплотнительной и ходовой резьбы. Штифтовые, шпоночные, шлицевые и профильные соединения.
реферат [1,7 M], добавлен 17.01.2009Описание тепловых сетей и потребителей тепловой энергии. Рекомендации по децентрализации, осуществлению регулировки и отводящим трубопроводам. Технико-экономическая оценка инвестиций в реконструкцию тепловых сетей. Анализ потребителей в зимний период.
дипломная работа [349,8 K], добавлен 20.03.2017Проект теплоснабжения промышленного здания в г. Мурманск. Определение тепловых потоков; расчет отпуска тепла и расхода сетевой воды. Гидравлический расчёт тепловых сетей, подбор насосов. Тепловой расчет трубопроводов; техническое оборудование котельной.
курсовая работа [657,7 K], добавлен 06.11.2012Назначение, технические характеристики и технологичность опоры шарикоподшипника. Определение типа производства и размера партии детали. Обоснование выбора оборудования, режущего и измерительного инструментов. Разработка расчетно-технологической карты.
дипломная работа [2,7 M], добавлен 02.09.2013Анализ принципа действия и технологических схем ЦТП. Расчет тепловых нагрузок и расходов теплоносителя. Выбор и описание способа регулирования. Гидравлический расчет системы теплоснабжения. Определение расходов по эксплуатации системы теплоснабжения.
дипломная работа [639,3 K], добавлен 13.10.2017Расчет тепловых нагрузок района города. График регулирования отпуска теплоты по отопительной нагрузке в закрытых системах теплоснабжения. Определение расчетных расходов теплоносителя в тепловых сетях, расход воды на горячее водоснабжение и отопление.
курсовая работа [269,3 K], добавлен 30.11.2015Кинематический расчет привода и его передаточного механизма. Определение допускаемых напряжений передачи редуктора. Расчет быстроходной и тихоходной косозубой цилиндрической передачи. Выбор типоразмеров подшипников и схем установки валов на опоры.
курсовая работа [1,2 M], добавлен 19.05.2015