Чудо-миксер или новое пришествие вечного двигателя
Анализ результатов испытаний работоспособности тепловой установки вихревого теплогенератора ТС-1 и определение коэффициента преобразования электрической энергии в тепловую. Теоретические аспекты энергетической эффективности вихревых генераторов.
Рубрика | Производство и технологии |
Вид | статья |
Язык | русский |
Дата добавления | 28.02.2017 |
Размер файла | 40,8 K |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
Размещено на http://www.allbest.ru/
Физико-технический институт им. А.Ф. Иоффе РАН, г. Санкт-Петербург
Чудо-миксер или новое пришествие вечного двигателя
Е.Б. Александров, академик РАН
Выполняя поручение академика Э.П.Круглякова, я в декабре 2008 г. принимал участие в подготовке телевизионной передачи, посвященной так называемым вихревым теплогенераторам. Выбор председателя Комиссии по лженауке пал на меня, видимо, потому что у меня уже был некоторый опыт обращения к этой теме [1]. Режиссер передачи планировал отснять интервью с руководством группы компаний «Тепло XXI века», совместив с демонстрацией действия «вихревого теплогенератора», который его создатели более торжественно называют «гидродинамическим тепловым насосом». Установка использовалась для нагрева воды в системе водяного отопления офисного здания в центре Москвы. Пояснения по ее устройству и функционированию давал председатель совета директоров группы «Тепло XXI века» К.В.Урпин, сообщивший для начала, что их фирма устанавливает свое оборудование по всей России, в странах СНГ а также в Южной Корее и в Японии.
«Вихревые теплогенераторы» представляют собой устройства, преобразующие электроэнергию в тепло не путем прямого (резистивного) нагрева, а окольно: сначала электроэнергия преобразуется в механическую энергию вращения электродвигателя, нагруженного на «активатор», представляющего собой систему вращающихся и неподвижных дисков с отверстиями. При заполнении «активатора» водой, последняя нагревается. Затея выглядит достаточно странно: вместо того, чтобы просто нагревать воду банальным кипятильником, громоздится дорогая и тяжелая электромеханическая конструкция, подверженная износу, нуждающаяся в обслуживании и очень шумная. Однако все эти недостатки будто бы с лихвой искупаются одним чудесным свойством системы: она якобы производит больше тепловой энергии, чем затрачивает электрической! Выигрыш характеризуется отношением полученной энергии к затраченной, которое лежит обычно в пределах 1,3^2. Говоря без обиняков, воплощена древняя мечта человечества о «вечном двигателе» первого рода.
В своем рассказе К.В. Урпин не стал вдаваться в объяснения истоков лишней энергии, сказав лишь, что высказывается много различных гипотез - от «холодного» термоядерного синтеза в кавитационных пузырьках до таинственных торсионных полей. Сам он не верит в «термояд», поскольку из генераторов, «слава Богу, не зафиксировано выхода нейтронов». Скорее он склонен думать, что дополнительная энергия связана с разрывом связей между молекулами воды, но это дело науки, а он практик. Далее Урпин познакомил слушателей с большим набором отзывов от потребителей - все исключительно похвальные, многие содержат результаты измерений эффективности теплогенераторов, которая никогда не бывает меньше 130%. А иногда превышает 200% (доходит и до 450%!). «Японцы, например, используя наш агрегат ТС1-055, намерили 195% и отметили удивительный результат - при переносе установки на полметра ее эффективность возросла до 218%» (и впрямь, удивительный результат!). Далее говорилось, что для эффективной работы установки нужна хорошая теплоизоляция помещения (!). Если все сделано хорошо, то 1 кВт электрической мощности достаточен для обогрева помещения площадью 200 м2, в то время как обычный тепловой электрический нагреватель (ТЭН) тратит 1 кВт на 10 м2. «Так это значит, что КПД установки не 130%, а 2000%!» - вставил я. «Ну, выходит, так!» - согласился докладчик.
Я спросил Урпина, знает ли он об интернетных публикациях его конкурента - «академика из Молдовы» Ю.С. Потапова, который строит аналогичные агрегаты в Северодвинске. Потапов уже шесть лет назад публиковал в интернете сведения о реализации «замкнутой» системы, т.е. об идеальном вечном двигателе: из генерируемого тепла производится электроэнергия, которая опять используется для получения тепла (избыточного), так что агрегат, производя тепловую и электрическую энергию из ничего (по-научному, из «физического вакуума!»), не нуждается в электросети. Потапов шикарно называл эти волшебные устройства «квантовыми теплоэлектростанциями». Урпин отвечал уклончиво: да, он знает Потапова и сам его представлял в Северодвинске. Слыхал и о замкнутой системе и однажды ездил с Потаповым на ее демонстрацию, но она почему-то не состоялась. Однако, настаивал Урпин, Потапов ему не конкурент, у компании «Тепло XXI века» вообще конкурентов нет.
Я спросил об обороте фирмы. Ответ был - «коммерческая тайна». Но по ходу дела говорилось, что установлено уже не менее 500 генераторов различной мощности. Самый дешевый - с мощностью мотора 50 кВт - стоит 399 тыс. руб. Более мощные дороже.
После демонстрации установки и подробного рассказа Урпина по сценарию телепередачи предполагался наш с ним диспут. Выступая в роли оппонента, я начал с того, что сама идея отапливать помещение электричеством в основе порочна, т.к. в нашей стране КПД тепловых электростанций не превышает 40%. Полученное из тепла очень дорогое электричество снова перегонять в тепло достаточно нелепо. Но, в некоторых случаях, признал я, это тактически оправдано - когда топлива под рукой нет или оно дорогое, а есть много дешевой электроэнергии. При этом, с моей точки зрения, сначала превращать электричество в механическую работу, а потом ее перегонять в тепло уже совсем странно. Наши предки почти две сотни лет назад измерили тепловой эквивалент работы, и он с тех пор не изменился, как никто не отменял и закон сохранения энергии. Сколько я знаю, все разговоры о появлении избыточного тепла в лучшем случае базируются на плохих измерениях. А когда делались аккуратные измерения, то всегда оказывалось, что тепла выделяется немного меньше, чем затрачено электроэнергии (видимо, предположил я, часть энергии улетает через окна в виде шума, которого очень много).
Это был мой монолог Последовал довольно вялый спор - Урпин говорил, что «мы все хорошо измеряем, у нас есть сертификаты, благодарные отзывы» и т.д. Я в ответ предложил ему получить сертификат от РАН - тогда компании откроется дорога в систему ЖКХ, которая сегодня не берет «вихревые генераторы», требуя объяснения, откуда появляется избыточная энергия. Да, согласился Урпин, они с удовольствием пригласят комиссию РАН. Я не к месту сказал, что если подтвердится избыточная энергия, то им обеспечена нобелевская премия - 1 млн долл США. Нет, ответил Урпин, нам это не надо. «Почему?» - «Да деньги маленькие, мы сами много больше заработаем». После этого я сказал, что при столь большой эффективности естественно все же сделать замкнутую систему, отказаться от внешней электрической сети, и тогда вообще отпадет потребность в газе и нефти. Но эта мысль совершенно не порадовала представителей «Тепла XXI века» - нет, они не претендуют на вытеснение своей установкой нефтегазовой промышленности!
Режиссер съемки обратился к инженеру по эксплуатации демонстрируемой установки и спросил, какой, по его измерениям, у нее КПД. Тот угрюмо ответил, что у него таких данных нет, он измерениями не занимается. На обратном пути оператор съемки между делом рассказал, что он разговаривал с одним покупателем «вихревого генератора» где-то в глубинке и спросил, действительно ли он экономит энергию. Тот ответил, что для него не стоял вопрос, какую систему обогрева ставить - губернатор велел покупать «вихревой генератор» и баста. А до того, во время «диспута», я получил от Урпина вопрос, как объяснить тот факт, что потребители шлют благодарные отзывы и пишут об экономии энергии, если, как я полагаю, экономии нет. Я ответил, что снабженец, который купил такое устройство, никогда не признается, что свалял дурака - его с работы уволят!
Несмотря на наши полярные взгляды на «вихревые генераторы», мы с К.В.Урпиным расстались мирно и договорились о продолжении диалога. Диалог свелся к обмену письмами, которых за два месяца набралось более двух десятков.
Осваивая полученное новое знание, я обратился к благодарным отзывам потребителей продукции «Тепла XXI века» на сайте www.ecoteplo.ru. Их изучение показало, что лишь в одном отзыве содержались сведения об измерениях эффективности теплогенератора, допускавшие хоть какой-то анализ. А именно, белорусский «Волковысский завод кровельных и строительно-отделочных машин» прислал официальный «Протокол испытаний работоспособности тепловой установки (вихревого теплогенератора ТС-1) и определение коэффициента преобразования электрической энергии в тепловую». Протокол содержал приложение с довольно подробным описанием измерительных процедур и таблицами полученных результатов. Тем не менее, анализ этих данных оказался делом непростым, поскольку в них встречались противоречия и пробелы (в этом анализе мне помогал мой давний коллега Ю.Н.Толпаров - прим. авт.).
Испытания были разделены на два этапа. В первом участвовала только вода в расширительном баке, которая принудительно прогонялась через «активатор» дополнительным циркуляционным насосом. Измерялась ее начальная и конечная температура и количество потраченной электроэнергии. За 28 минут произошел нагрев 400 л воды от 10 до 84 ОС. Замерен расход электроэнергии - 36 кВтч. Эти данные позволяют вычислить коэффициент преобразования, который оказывается равным 0,96.
Далее цитирую свой отзыв, высланный авторам протокола: «При этом не учитывались потери тепла на нагрев воздуха в помещении. Однако эти потери по оценке, использующей схему и данные составителей протокола, составляют менее 400 ккал, т.е. чуть более 1% от полного количества тепла, переданного воде.
Не учтена и теплоемкость оборудования, но и она также заведомо пренебрежима по сравнению с теплоемкостью 400 л воды. Следует заметить, что, с другой стороны, не учтена электрическая мощность циркуляционного насоса, которая также целиком переходила в нагрев воды (учет этой мощности, не указанной в отчете, должен был привести к снижению коэффициента преобразования. - Прим. авт.). Поэтому в целом полученный результат представляется верным в пределах точности порядка нескольких процентов. Этот результат (K<1) полностью соответствует обычным представлениям об эффективности перевода электрической энергии в тепло и не обнаруживает никаких аномалий».
На втором этапе испытаний к теплогенератору подключался рабочий контур теплоснабжения со значительным увеличением полного объема циркулирующей воды. При этом включался дополнительный циркуляционный насос и производились замеры расхода воды и перепада температуры на входе и выходе «активатора». Измерения производились в нестационарных условиях. Авторы протокола пришли в выводу, что на втором этапе установка продемонстрировала коэффициент преобразования K=1,48. Анализ данных, относящихся к этому этапу, обнаружил недопустимо низкую точность измерений. Например, измерение расхода воды проводилось с точностью до 100 л, а производительность циркуляционного насоса на протяжении 15 минут почему-то изменилась в 1,4 раза. Перечень претензий к процедуре проделанных измерений, заключение об их некорректности и предложение прокомментировать его и заполнить пробелы отчета были направлены авторам протокола еще в конце января 2009 г. Ответа не последовало.
Поиск публикаций показал, что тема «вихревых генераторов» совсем не отражена в академических научных журналах, хотя частенько всплывала в СМИ и даже в периферийных отраслевых технических журналах. В.К. Урпин прислал мне статью одного из директоров группы «Тепло XXI века» С.В. Козлова под названием «Может ли КПД «вихревого теплогенератора» быть больше единицы?», опубликованную «в порядке обсуждения» журналом «Энергетика в Сибири» [2]. Статья имеет элегантный эпиграф - «Мы все учились понемногу, чему-нибудь и как- нибудь...», который хорошо согласуется с ее довольно необычным содержанием. Первая треть статьи посвящена «ликбезу» в области термодинамики и освежает знания читателя о цикле Карно, о КПД тепловой машины и, главным образом, о принципе действия тепловых насосов - обращенных тепловых машин (или, попросту говоря, холодильников), позволяющих переносить тепло от холодного тела к более горячему за счет потраченной работы. Эффективность теплового насоса характеризуется коэффициентом КТЭ, который равен отношению количества перенесенного тепла к затраченной работе. КТЭ идеального теплового насоса всегда больше 1 (как величина, обратная КПД) и может неограниченно нарастать по мере снижения разности температур между охлаждаемым и обогреваемым объемом.
Все это давно и хорошо известно, но не имеет никакого отношения к теме статьи, поскольку «вихревые генераторы» не имеют ничего общего с тепловыми насосами, кроме лукавого второго названия «тепловые гидродинамические насосы» (ТГН). Несомненно, это понимает и автор, поскольку после дидактических демонстраций схемы реального теплового насоса он переходит к описанию вихревого генератора, никак не пытаясь связать эти два устройства. Замечу, что название ТГН автор использует в качестве обобщающего, потому что механически нагревать воду можно разными способами (цитирую) - «Воздействовать на жидкий теплоноситель можно с помощью разных устройств: насоса типа «улитка» и «вихревой трубы», дисков, турбин и т.д.».
Далее в статье приводятся весьма сомнительные рекомендации по испытанию ТГН с путаными деталями, которые я раскритиковал в письме к Урпину. С.В. Козлов сурово выговорил мне за это: «В статье четко говорится, что приведенная методика применяется только для определения работоспособности теплового гидродинамического насоса, а не для определения КПЭ. Общепринятой методики определения КПЭ до настоящего времени нет, но мы заинтересованы в ее создании. Это и сказано в статье». Яснее не скажешь. Тем самым, разработчики ТГН вообще не несут ответственности за заявленные ими заведомо невозможные цифры энергетической эффективности.
Завершает эту примечательную статью внезапная патетическая филиппика против «современных инквизиторов, пригревшихся в комиссиях по лженауке».
К статье подверстаны одобрительные отзывы. Один из них, подписанный ныне покойным адептом так называемых «торсионных технологий» Е.А. Акимовым, содержит весьма характерное признание: «К сожалению, в подавляющем большинстве случаев экспериментальные установки с КПД>100% независимую экспертизу не проходили, хотя по документам изобретателей они имеют КПД 200%, а то и больше. При строгой метрологии часто оказывается, что такие установки имеют в действительности КПД<100%».
Это похоже на призыв к «комиссиям по лженауке» жить мирно: дескать, с энергией всякое бывает - иной раз сохраняется, а иной раз и нет!
Говоря о профессиональных публикациях на эту тему, следует упомянуть статью [3], авторы которой, видимо, стоят у истоков техники гидродинамического нагревания жидкостей. В статье весьма скрупулезно рассмотрен теоретический аспект вопроса об энергетической эффективности таких устройств и прогнозируется КПД около 80%. В публикациях С.В. Геллера детально описана существенно отличная конструкция вихревого генератора под названием «аппарат БРАВО» - «гидродинамический аппарат для отопления, горячего водоснабжения, а также безопасного нагрева технологических жидкостей». Статья [4] Геллера посвящена измерениям тепловой эффективности этих аппаратов. Автор ставит под сомнение «заявления продавцов вихревых теплогенераторов о коэффициентах преобразования, превышающих 100%», и детально описывает свою методику измерения эффективности таких устройств. В статье приводятся примеры измерений эффективности аппарата «БРАВО», результаты которых обнаруживают разброс КПД в пределах 75,6+87,2%, что, по утверждению автора, коррелирует с КПД двигателя, вращающего «активатор». Автор отмечает, что КПД преобразования электрической энергии в тепловую может быть в пределе доведен до 100% при использовании электроагрегата, погруженного в термоизолированный бойлер. На сайте www.bravotech.ru в отношении этих аппаратов отмечено, в частности, что «тепло в аппарате может генерироваться с использованием энергии гидравлических и пневматических магистралей (сетей), без использования электродвигателя для привода насоса». вихревой генератор тепловой энергия
Едва ли следует связывать прозаическое значение КПД<1 с частной неудачей конструкции аппарата «БРАВО». Имеются и другие примеры корректно выполненных измерений энергетической эффективности вихревых генераторов иных конструкций, приводивших к такому же результату. Например, сайт РосТепло.ру (www.rosteplo.ru) поместил детальный отчет [5] измерений эффективности вихревого теплогенератора ТПМ-5,5-1, изготовленного по лицензии кишиневской фирмы «Юсмар» того самого «молдавского академика» Ю.С. Потапова, который рекламировал волшебные «квантовые теплоэлектростанции». Отчет составлен группой сотрудников НАН Украины, сделавших вывод, что «Коэффициент преобразования энергии испытанного теплогенератора не превышает единицы для всех исследованных режимов».
Закончу этот вынужденно краткий обзор публикаций, посвященных вихревым генераторам, концептуальной статьей [6], отличающейся к тому же обширной библиографией - 67 ссылок. Автор выносит в заголовок вопрос: «Могут ли гидродинамические теплогенераторы работать сверхэффективно?», подразумевая под этим возможность производства большего количества тепла, чем затрачено механической работы. Анализируя всевозможные схемы подобных генераторов, автор приходит к отрицательному ответу на поставленный вопрос и одновременно предлагает убедительное объяснение иллюзии производства избыточного тепла, возникающей как следствие некорректного измерения. В основе объяснения лежит идея об уменьшении теплоемкости воды, насыщенной микроскопическими кавитационными пузырями. Это приводит к аномальному (обратимому) разогреву вспененной воды на выходе активатора и к завышению оценки тепловой энергии. Похоже, однако, что чаще ошибки замера произведенного тепла связаны с тривиальной неоднородностью температуры в буферном объеме или даже в сечении потока воды.
Что касается нашей интенсивной переписки с В.К.Урпиным, то она внезапно прервалась в конце февраля 2009 г. после того, как я послал ему (по его запросу) свой план проведения контрольных измерений. Не получив никакого ответа, я через полгода снова побеспокоил своего респондента, и он ответил, что мой план его не устраивает. Дело, по его мнению, обстоит не так просто, как я себе представляю, да и вообще компания «Тепло XXI века» в связи с экономическим кризисом закрывает свою опытную станцию и не может сейчас отвлекаться на исследования.
В статье [2] С.В. Козлов так формулирует свое кредо: «Никто не утверждает, что тепловые гидродинамические насосы отвергают закон сохранения энергии или законы термодинамики, просто в настоящий момент нельзя однозначно объяснить, за счет чего выделяется дополнительная энергия». Что ж, позиция вполне законная. Дело за малым: доказать, что дополнительная энергия выделяется! За прошедший год моего пристального знакомства с этой темой кроме голословных заявлений я не обнаружил ни одного реального свидетельства выделения избыточной энергии. Не обнаружили таких свидетельств и мои многочисленные предшественники - профессиональные теплотехники, результаты анализов которых я обнаружил в интернете. Сошлюсь на заключение [7] пятилетней давности - редакции сайта www.thermonews.ru, которая без всякой «политкорректности» называет ложью сообщения о КПД вихревых генераторов, превышающих единицу. Процитирую под конец печальную заключительную фразу из этой статьи: «Неужели ликбез про вечный двигатель и бесплатный сыр будет длиться бесконечно?».
Литература
1. Александров Е.Б. Дезинформационно-спиновые волны // Известия. 2003. № 37-М.
2. Козлов С.В. Может ли КПД «вихревого теплогенератора» быть больше единицы?//Энергетика Сибири. 2007. № 1 (12). С. 8-12.
3. Хозяев И.А., Ашуралиев Э.С. Гидродинамический нагреватель жидкостей // Вестник ДГТУ. 2001. Т. 1, № 4 (10). С. 11-18.
4. Геллер С.В. Гидродинамические генераторы. Аспект эффективности // Экология и промышленность России, октябрь 2008. С. 1-4.
5. Халатов А.А., Коваленко А.С., Шевцов С.В. Результаты испытаний вихревого теплогенератора ТПМ 5.5-1: Доклад на научно-технической конференции «Аномальные физические явления в энергетике и перспективы создания нетрадиционных источников энергии», 15-16 июня 2005, г. Харьков, Украина. www.rosteplo.ru.
6. Фурмаков Е.Ф. Могут ли гидродинамические теплогенераторы работать сверхэффективно? Доклад на международном конгрессе «Фундаментальные проблемы естествознания и техники 2008», 4-9 августа 2008 г. С.-Пб. Россия. www.shaping.ru.
7. «Лохотрон must go on», 2005, www.thermonews.ru.
Размещено на Allbest.ru
Подобные документы
Описание идеализированного цикла теплового двигателя с изохорно-изобарным процессом подвода энергии в тепловой форме и с политропными процессами сжатия и расширения рабочего тела. Определение параметров двигателя, индикаторная и тепловая диаграммы цикла.
курсовая работа [3,1 M], добавлен 02.01.2014Выбор и описание энергетической установки. Расчет эффективной мощности главных двигателей танкера. Построение индикаторной диаграммы и определение параметров, характеризирующих рабочий цикл. Описание тепловой схемы и основных систем дизельной установки.
дипломная работа [1,3 M], добавлен 15.03.2020Принцип действия, устройство, схема вихревого насоса, его характеристики. Рабочее колесо вихревого насоса. Движение жидкости в проточных каналах. Способность к сухому всасыванию. Напор и характеристики вихревых насосов. Гидравлическая радиальная сила.
презентация [168,5 K], добавлен 14.10.2013Техническая характеристика двигателя. Тепловой расчет рабочего цикла двигателя. Определение внешней скоростной характеристики двигателя. Динамический расчет кривошипно-шатунного механизма и системы жидкостного охлаждения. Расчет деталей на прочность.
курсовая работа [365,6 K], добавлен 12.10.2011Основные характеристики ракетного двигателя и целесообразные области их применения. Описание двигателя РД-583, определение влияния соотношения компонентов на его энергетические характеристики. Анализ процессов в рабочем теле энергетической установки.
курсовая работа [345,3 K], добавлен 06.10.2010Общая характеристика исследуемого двигателя. Тепловой расчет и тепловой баланс дизеля А-01М, определение основных деталей его систем, вычисление их параметров. Требования эксплуатационной безопасности и экологичности двигателя внутреннего сгорания.
курсовая работа [758,0 K], добавлен 18.08.2011Работы по устройству тепловой сети, трубопровода горячего водоснабжения и узла учета тепловой энергии, теплоносителя и горячей воды методом ГНБ с помощью установки Vermeer 16х20А. Назначение и состав бурового раствора. Устройство тепловой камеры УТ2.
курсовая работа [658,2 K], добавлен 23.03.2019Описание видов холодильной техники и принципов работы. Рассмотрение требований к хранению и замораживанию. Разработка структурной схемы рефрижераторной установки, определение тепловой мощности, расчет вихревого охладителя. Обзор рынка авторефрижераторов.
дипломная работа [3,9 M], добавлен 02.08.2015Определение параметров характерных точек термодинамического цикла теплового двигателя. Анализ взаимного влияния параметров. Расчет коэффициента полезного действия, удельной работы и среднего теоретического давления цикла. Построение графиков зависимостей.
контрольная работа [353,3 K], добавлен 14.03.2016Описание двигателя MAN 9L 32/40: общая характеристика и функциональные особенности, структурные элементы и их взаимодействие. Выбор и обоснование исходных данных для теплового расчета двигателя, определение эффективных показателей. Расчет на прочность.
курсовая работа [1,2 M], добавлен 12.10.2011