Титан и титановые сплавы

История открытия и изучения титана. Важнейшие преимущества титановых сплавов перед другими конструкционными материалами. Структуры титановых сплавов. Сферы применения титана и титановых сплавов, перспективы его использования в медицине и строительстве.

Рубрика Производство и технологии
Вид реферат
Язык русский
Дата добавления 12.10.2016
Размер файла 27,6 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

Введение

Важнейшими преимуществами титановых сплавов перед другими конструкционными материалами являются их высокие удельная прочность и жаропрочность в сочетании с высокой коррозионной стойкостью. Кроме того, титан и его сплавы хорошо свариваются, парамагнитны и обладают некоторыми другими свойствами, имеющими важное значение в ряде отраслей техники. Перечисленные качества титановых сплавов открывают большие перспективы их применения в тех областях машиностроения, где требуются высокая удельная прочность и жаропрочность в сочетании с высокой коррозионной стойкостью. Это относится, в первую очередь, к таким отраслям техники как авиастроение, ракетостроение, судостроение, химическое, пищевое и транспортное машиностроение.

Касаясь некоторых специфических свойств титана, можно отметить, что он представляет большой интерес как конструкционный материал для космических кораблей.

1. История титана

титан сплав конструкционный

Вряд ли можно найти еще один такой металл, история открытия и изучения которого была бы так полна драматических событий, ошибок и заблуждений, как история титана. Первооткрывателем титана считается 28-летний английский монах Уильям Грегор. В 1790 г., проводя минералогические изыскания в своем приходе, он обратил внимание на распространенность и необычные свойства черного песка в долине Менакэна на юго-западе Англии и принялся его исследовать. В песке священник обнаружил крупицы черного блестящего минерала, притягивающегося обыкновенным магнитом. Будучи минералогом-любителем и имея свою небольшую минералогическую лабораторию, Грегор произвел с этим магнитным минералом несколько опытов: растворил его сначала в соляной, затем в серной кислоте, упарил раствор и получил белый порошок, который при прокалке желтел, а при спекании с углем приобретал голубой цвет. Исследованное природное образование черного цвета Грегор принял за новый, неизвестный ранее минерал, а выделенный из него белый порошок - за новый элемент. Минералу и элементу дали название по местности, где они были найдены: минерал «менакэнит» и элемент «менакин». По сегодняшним представлениям «менакэнит» был смесью ильменита (FeTiO3) и магнетита (FeTiO3(nFe3O4), а белый порошок «менакин» - диоксидом титана.

В 1795 г. немецкий исследователь-химик Мартин Генрих Клапрот, изучая рутил, выделил из него диоксид нового металла - белый порошок, похожий на описанный ранее Грегором. И хотя до получения чистого металла было еще очень далеко - почти полтора столетия, Клапрот известил мир об открытии нового металла, которому дал название «титан». Но почему титан? Вопреки распространенному в те времена правилу французских химиков во главе с Лавуазье - присваивать новым элементам и соединениям имена, отражающие их свойства, у Клапрота был свой принцип.

Ни один конструкционный металл не знал такой длительной истории исследований, как титан. Первые попытки выделить чистый материал заканчивались неудачно. Исследователи получали металл с высоким содержанием примесей кислорода, азота, серы, фосфора, водорода и др., в результате чего, выделенный металл был весьма хрупким и признавался бесполезным для дальнейшего использования. Чистый титан (содержание примесей менее 0,1%) впервые был получен в 1875 году русским ученым Д.К. Кирилловым, но его работа осталась незамеченной. Полученный в 1925 г. Ван Аркелем и де Буром иодидным методом чистейший титан оказался пластичным и технологичным металлом со многими ценными свойствами, которые привлекли к нему внимание широкого круга конструкторов и инженеров. В 1940 г. Кролль предложил магниетермический способ извлечения титана из руд, который является основным и в настоящее время. В 1947 г. были выпущены первые 45 кг технически чистого титана. Стоимость его, конечно, была баснословно высокой - 10 долл. за 1 кг, т. е. этот новый конструкционный материал был во много раз дороже железа, алюминия, магния. (Интересно, что стоимость технически чистого титана сегодня приблизительна такая же: 11 долл. за 1 кг, а стоимость сплавов титана достигает 15 долл. за 1 кг). Тем не менее выпуск металлического титана осуществлялся такими гигантскими темпами, каких не знало никакое другое металлургическое производство. Первая промышленная партия титана массой 2 т была получена в 1948 г., и этот год считается началом практического применения титана. Мировое производство титана (без СССР) за период с 1953 г. по 1996 г. возросло более чем в 30 раз. Производство титана в нашей стране началось в 1950 г. И нарастало довольно быстро. В 1960-1990 гг. в СССР было создано крупнейшее в мире производство титана и его сплавов. В конце 80-х годов объем промышленного производства титана в СССР превышал объем его производства во всех остальных странах мира вместе взятых.

2. Структуры титановых сплавов

Титан подобно железу является полиморфным металлом и имеет фазовое превращение при температуре 882°С. Ниже этой температуры устойчива гексагональная плотноупакованная кристаллическая решетка б-титана, а выше - объемно центрированная кубическая (о. ц. к.) решетка в-титана.

Титан упрочняется легированием б- и в-стабилизирующими элементами, а также термической обработкой двухфазных (б+в)-сплавов. К элементам, стабилизирующим б-фазу титана, относятся алюминий, в меньшей степени олово и цирконий. б-стабилизаторы упрочняют титан, образуя твердый раствор с б-модификацией титана.

За последние годы было установлено, что, кроме алюминия, существуют и другие металлы, стабилизирующие б-модификацию титана, которые могут представлять интерес в качестве легирующих добавок к промышленным титановым сплавам. К таким металлам относятся галлий, индий, сурьма, висмут. Особый интерес представляет галлий для жаропрочных титановых сплавов благодаря высокой растворимости в б - титане. Как известно повышение жаропрочности сплавов системы Ti - Alограничено пределом 7 - 8% вследствие образования хрупкой фазы. Добавкой галлия можно дополнительно повысить жаропрочность предельнолегированных алюминием сплавов без образования б2-фазы.

Алюминий практически применяется почти во всех промышленных сплавах, так как является наиболее эффективным упрочнителем, улучшая прочностные и жаропрочные свойства титана. В последнее время наряду с алюминием в качестве легирующих элементов применяют цирконий и олово.

Цирконий положительно влияет на свойства сплавов при повышенных температурах, образует с титаном непрерывный ряд твердых растворов на основе б - титана и не участвует в упорядочении твердого раствора.

Олово, особенно в сочетании с алюминием и цирконием, повышает жаропрочные свойства сплавов, но в отличие от циркония образует в сплаве упорядоченную фазу. Преимущество титановых сплавов с б-структурой - в высокой термической стабильности, хорошей свариваемости и высоком сопротивлении окислению. Однако сплавы типа б чувствительны к водородной хрупкости ( вследствие малой растворимости водорода в б-титане) и не поддаются упрочнению термической обработкой. Высокая прочность, полученная за счет легирования, сопровождается низкой технологической пластичностью этих сплавов, что вызывает ряд трудностей в промышленном производстве.

Для повышения прочности, жаропрочности и технологической пластичности титановых сплавов типа б в качестве легирующих элементов наряду с б-стабилизаторами применяются элементы, стабилизирующие в-фазу. Элементы из группы в-стабилизаторов упрочняют титан, образуя б- и в-твердые растворы.

В зависимости от содержания указанных элементов можно получить сплавы с б+в- и в-структурой. Таким образом, по структуре титановые сплавы условно делятся на три группы: сплавы с б-, (б+в)- и в-структурой. В структуре каждой группы могут присутствовать интерметаллидные фазы.

Преимущество двухфазных (б+в)-сплавов - способность упрочняться термической обработкой (закалкой и старением), что позволяет получить существенный выигрыш в прочности и жаропрочности.

3. Особенности титановых сплавов

Одним из важных преимуществ титановых сплавов перед алюминиевыми и магниевыми сплавами является жаропрочность, которая в условиях практического применения с избытком компенсирует разницу в плотности (магний 1,8, алюминий 2,7, титан 4,5). Превосходство титановых сплавов над алюминиевыми и магниевыми сплавами особенно резко проявляется при температурах выше 300°С. Так как при повышении температуры прочность алюминиевых и магниевых сплавов сильно уменьшается, а прочность титановых сплавов остается высокой.

Титановые сплавы по удельной прочности (прочности, отнесенной к плотности) превосходят большинство нержавеющих и теплостойких сталей при температурах до 400°С - 500°С. Если учесть к тому же, что в большинстве случаев в реальных конструкциях не удается полностью использовать прочность сталей из-за необходимости сохранения жесткости или определенной аэродинамической формы изделия (например, профиль лопатки компрессора), то окажется, что при замене стальных деталей титановыми можно получить значительную экономию в массе.

Еще сравнительно недавно основным критерием при разработке жаропрочных сплавов была величина кратковременной и длительной прочности при определенной температуре. В настоящее время можно сформулировать целый комплекс требований к жаропрочным титановым сплавам, по крайней мере для деталей авиационных двигателей.

В зависимости от условий работы обращается внимание на то или иное определяющее свойство, величина которого должна быть максимальной, однако сплав должен обеспечивать необходимый минимум и других свойств, как указано ниже.

1 Высокая кратковременная и длительная прочность во всем интервале рабочих температур. Минимальные требования: предел прочности при комнатной температуре 100ЧПа; кратковременная и 100-ч прочность при 400° С - 75ЧПа. Максимальные требования: предел прочности при комнатной температуре 120· Па, 100-ч прочность при 500° С - 65ЧПа.

2 Удовлетворительные пластические свойства при комнатной температуре: относительное удлинение 10%, поперечное сужение 30%, ударная вязкость 3ЧПаЧм. Эти требования могут быть для некоторых деталей и ниже, например для лопаток направляющих аппаратов, корпусов подшипников и деталей, не подверженных динамическим нагрузкам.

3 Термическая стабильность. Сплав должен сохранять свои пластические свойства после длительного воздействия высоких температур и напряжений. Минимальные требования: сплав не должен охрупчиваться после 100-ч нагрева при любой температуре в интервале 20 - 500°С. Максимальные требования: сплав не должен охрупчиваться после воздействия температур и напряжений в условиях, заданных конструктором, в течение времени, соответствующего максимальному заданному ресурсу работы двигателя.

4 Высокое сопротивление усталости при комнатной и высоких температурах. Предел выносливости гладких образцов при комнатной температуре должен составлять не менее 45% предела прочности, а при 400° С - не менее 50% предела прочности при соответствующих температурах. Эта характеристика особенно важна для деталей, подверженных вибрациям в процессе работы, как, например, лопатки компрессоров.

5 Высокое сопротивление ползучести. Минимальные требования: при температуре 400° С и напряжении 50ЧПа остаточная деформация за 100 ч не должна превосходить 0,2%. Максимальным требованием можно считать тот же предел при температуре 500° С за 100 ч. Эта характеристика особенно важна для деталей, подверженных в процессе работы значительным растягивающим напряжениям, как, например, диски компрессоров.

Однако со значительным увеличение ресурса работы двигателей правильнее будет базироваться на продолжительности испытания не 100 ч, а значительно больше - примерно 2000 - 6000 ч.

Несмотря на высокую стоимость производства и обработки титановых деталей, применение их оказывается выгодным благодаря главным образом повышению коррозионной стойкости деталей, их ресурса и экономии массы.

Стоимость титанового компрессора значительно выше, чем стального. Но в связи с уменьшением массы стоимость одного тонно-километра в случае применения титана будет меньше, что позволяет очень быстро окупить стоимость титанового компрессора и получить большую экономию.

4. Сферы применения титана и титановых сплавов

Авиационная промышленность - основной потребитель титановой продукции. Именно развитие авиационной техники дало толчок титановому производству. По своим физико-механическим свойствам титановые сплавы являются универсальным конструкционным материалом. Вплоть до конца 60-х годов ХХ века титан применялся главным образом для изготовления газовых турбин двигателей самолетов (титан очень прочный металл). В 70-х - 80-х годах титановые сплавы начали широко применяться для изготовления различных деталей планерной части самолетов (титан еще и легкий). Сейчас из титана делают обшивку для самолета, наиболее нагревающиеся детали, силовые элементы, детали шасси. В авиационных двигателях жаропрочные титановые сплавы применяются для изготовления лопаток, дисков и других элементов вентилятора и компрессора двигателя. В конструкции современного самолета может быть более 20 тонн титана. Например, в самолете Боинг-787 устанавливают около 2,5 миллионов титановых заклепок, что облегчает вес самолета на несколько тонн (по сравнению со стальными деталями).

Широко используют титан в судостроении. Он незаменим для обшивки судов, производства деталей насосов и трубопроводов. Такое качество титана, как малая плотность позволяет снижать массу корабля, а значит, повышать его маневренность и дальность хода. Обшитые листами титана корпуса судов никогда не потребуют покраски, ведь они десятилетиями не ржавеют и не разрушаются в морской воде (высокая коррозионная стойкость титана). А эрозионная и кавитационная стойкость позволяет не бояться больших скоростей в морской воде: взвешенные в ней мириады песчинок не повредят титановым рулям, винтам и корпусу.Слабые магнитные свойства титана и его сплавов используют при изготовлении навигационных приборов. В будущем планируется создание из титановых сплавов так называемых немагнитных кораблей, необходимых для геологогеофизических исследований в открытых океанах (устранится влияние металлических частей корабля на высокоточные навигационные приборы). Наиболее перспективное направление использования титана в судостроении - производство конденсаторных труб, турбинных двигателей и паровых котлов.Кроме этого, титан, обладающий высокой коррозионной стойкостью и способностью выдерживать огромные давления и нагрузки, - наилучший материал для создания глубоководных аппаратов.

С использованием титана и титановых сплавов успешно выпускается теплообменное оборудование для энергетической промышленности, а также для предприятий химической и нефтехимической отраслей. Оборудование изготавливаются из сплавов на основе титана: трубы для теплообменной аппаратуры различного назначения, конденсаторы турбин и в качестве внутренней поверхности дымовых труб. Использование титана позволяет увеличить долговечность, надежность и, следовательно, снизить расходы на капитальный ремонт и обслуживание этого оборудования. Титановые сплавы по стойкости к коррозии превосходят самые стойкие из имеющихся медных, медно-никелевых сплавов и нержавеющую сталь в 10-20 раз. Благодаря этому свойству можно уменьшить толщину стенки трубы для более быстрой передачи тепла в теплообменных аппаратах. Титановые сплавы применяются на объектах мировой тепловой и атомной энергетики с 1959 года.

Перспективной областью применения сплавов титана является глубокое и сверхглубокое бурение. Для добычи подземных богатств и для изучения глубоких слоев земной коры нужно проникнуть на очень большие глубины - до 15-20 тысяч метров. Обычные буровые трубы будут рваться под собственной тяжестью уже на глубине нескольких тысяч метров. И только благодаря трубам из высокопрочных сплавов на основе титана можно достичь прохождения действительно глубоких скважин.

В настоящее время титан успешно используется при разработке оборудования для освоения нефтегазовых месторождений на морских шельфах: глубоководные бурильные и добывающие установки; насосы; трубопроводы; теплообменное оборудование различного назначения; сосуды высокого давления и многое другое. По мнению специалистов, в глубоководной нефтедобыче титан и его сплавы должны стать одним из основных конструкционных материалов, поскольку имеют высокую коррозионную стойкость в морской воде. Из нашего титана производят трубы, отводы, фланцы, тройники, переходы для систем забортной, балластной и пластовой воды.

Строители тоже любят титан за его свойства. Отличная устойчивость к коррозии, прочность, легкий вес и долговечность обеспечивают самый длительный срок службы архитектурным деталям при любых условиях и с минимальной необходимостью проведения ремонта. Уникальная и неповторимая отражательная способность титана не сравнима с любым другим металлом. Он устойчив к загрязнениям городской атмосферы и морской среды, кислотным дождям, осадкам вулканической золы, промышленным выбросам и другим неблагоприятным атмосферным условиям. Титан не подвергается атмосферным влияниям и не обесцвечивается от ультрафиолетовых лучей. Также он обладает отличной устойчивостью к коррозии, которая может появиться в результате кислотных дождей и действия агрессивных газов (газ сернистой кислоты, газ сероводорода и т.д.). Все это является большим плюсом при использовании титана для строительства в крупных городах и промышленных областях. Титан используется для наружной обшивки зданий, кровельных материалов, облицовки колонн, софитов, карнизов, навесов, внутренней обшивки, легких крепежных приспособлений. Кроме того, титан используется в скульптуре и для изготовления памятников.

Титан необыкновенно популярен в медицине: любят титан ортопеды, кардиологи, стоматологи и даже нейрохирурги (врачи, которые лечат нервную систему). Из титановых сплавов делают превосходные хирургические инструменты, легкие и долговечные. У титана есть очень ценное для медиков свойство - он достаточно легко «вживляется» в организм человека. Ученые называют это свойство - «настоящее родство». Титановые конструкции (имплантанты, внутрикостные фиксаторы, наружные и внутренние протезы) абсолютно безопасны для костей и мышц. Они не вызывают аллергию, не разрушаются при взаимодействии с жидкостями и тканями организма и, конечно, с медицинскими препаратами. Кроме этого, протезы, изготовленные из титановых сплавов, очень прочны и износостойки, хотя все время выдерживают большие нагрузки. Вспомните, титан в 2-4 раза прочнее железа и в 6-12 раз прочнее алюминия (смотри раздел «Титан»). В стоматологии врачи широко используют самую передовую технологию для изготовления зубных протезов - титановые имплантаты. Титановый корень вживляется в челюсть, после чего на него наращивают верхнюю часть зуба. Из титана изготавливают протезы маленьких косточек внутри уха - и к людям возвращается слух! У титана есть еще одно положительное качество, которое тоже ценится в медицине. Титан - немагнитный металл. Поэтому больных, у которых есть титановые протезы, можно лечить с помощью физиотерапии (не таблетками, а при помощи приборов, в основе работы которых заложены физические явления - электротоки и магнит).

Заключение

Значение металлов в человеческом обществе всё более возрастает. Переворот в технике происходит с интенсивным развитием алюминиевой и магниевой промышленности. В последние десятилетия человечество получило в своё распоряжение группы редких металлов. И вот уже в наши дни, в самые последние годы на авансцену истории «поднимается» новый промышленный металл - титан.

Титан с большим правом, чем алюминий, можно назвать металлом нашего века, точнее - второй его половины, так как этот новый конструкционный материал впервые стали производить и использовать только в пятидесятые годы. Впрочем, титан так и называют: «металл 20 века». И как много значений у слова «титан», так много эпитетов и наименований у самого металла. «Вечный», «парадоксальный», «металл сверхзвуковых скоростей, «металл будущего», «дитя войны» - вот только некоторые из них.

Титан называют металлом будущего. Это, конечно, правильно. В будущем появятся новые области применения замечательного материала, люди создадут сплавы с ещё более удивительными свойствами. Но ведь будущее начинается сегодня, будущее и настоящее не отдельны непроходимой границей.

Титан уже давно стал материалом современности - ценным, важным и необходимым. Больше того, широкое, повсеместное его применение как раз позволит скорее приблизить то светлое и прекрасное будущее, о котором мы все мечтаем.

Список используемой литературы

1 О. П. Солонина, С. Г. Глазунов. «Жаропрочные титановые сплавы». Москва «Металлургия» 1976 г.

2 http://libmetal.ru/titan/titan%20osnprop.htm

3 http://www.metotech.ru/titan-opisanie.htm

Размещено на Allbest.ru


Подобные документы

  • Рассмотрение основных факторов, влияющих на технологические свойства титана и его сплавов. Определение свойств титановых сплавов. Оценка свойств материала для добычи нефти и газа на шельфе. Изучение практики использования в нефтегазовой промышленности.

    реферат [146,1 K], добавлен 02.04.2018

  • Титановые сплавы - материалы, плохо поддающиеся обработке резанием. Общие сведения о существующих титановых сплавах. Уровни механических свойств. Выбор инструментальных материалов для токарной обработки титановых сплавов. Нанесение износостойких покрытий.

    автореферат [1,3 M], добавлен 27.06.2013

  • Общая характеристика и механические свойства титана как металла. Оценка главных преимуществ и недостатков титановых сплавов, сферы их практического применения и значение в кораблестроении. Батискаф "Алвин": история проектирования и построения, проблемы.

    реферат [161,2 K], добавлен 19.05.2015

  • Обоснование применения новых полуфабрикатов из титановых сплавов, как наиболее перспективных конструкционных материалов в области стационарной атомной энергетики. Опыт применения титана и его сплавов для конденсаторов отечественных и зарубежных АЭС.

    дипломная работа [11,7 M], добавлен 08.01.2011

  • Содержание титана в земной коре. Состав титановых концентратов, полученных из титановых руд, находящихся на территории Казахстана. Современная технология получения титанового шлака и металлического титана. Особенности очистки четырёххлористого титана.

    реферат [4,8 M], добавлен 11.03.2015

  • Титан и его распространенность в земной коре. История происхождения титана и его нахождение в природе. Сплавы на основе титана. Влияние легирующих элементов на температуру полиморфного превращения титана. Классификация титана и его основных сплавов.

    реферат [46,4 K], добавлен 29.09.2011

  • Физические особенности лазерной сварки титановых сплавов. Моделирование процесса воздействия лазерного излучения на металл. Исследование влияния энергетических и временных характеристик и импульсного лазерного излучения на плавление титановых сплавов.

    курсовая работа [1,4 M], добавлен 11.01.2014

  • Общие положения, классификация и области применения сплавов на основе интерметаллидов. Материалы с эффектом памяти формы. Сплавы на основе алюминидов титана. Сплавы на основе алюминидов никеля. Области использования сплавов на основе интерметаллидов.

    курсовая работа [1,1 M], добавлен 02.06.2014

  • Процесс получения титана из руды. Свойства титана и область его применения. Несовершенства кристаллического строения реальных металлов, как это отражается на их свойствах. Термическая обработка металлов и сплавов - основной упрочняющий вид обработки.

    контрольная работа [2,3 M], добавлен 19.01.2011

  • Характеристика и механические свойства титана. Исследование влияния вспомогательных компонентов на свойства титанового сплава. Технологические аспекты плавки, определение типа плавильного агрегата. Термическая обработка: отжиг, закалка, старение.

    реферат [1,6 M], добавлен 17.01.2014

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.