Технологии переработки нефти

Подготовка нефти на промыслах и ее транспортировка. Рассмотрение схемы сбора. Исследование методов обезвоживания и обессоливания. Изучение принципов транспортировки. Каталитический крекинг высокооктанового бензина. Технология получения нефтяных масел.

Рубрика Производство и технологии
Вид контрольная работа
Язык русский
Дата добавления 12.10.2016
Размер файла 532,9 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

Содержание

1. Подготовка нефти на промыслах и ее транспортировка

2. Каталитический крекинг

3. Основы технологии производства нефтяных масел

4. Задача

Список литературы

1. Подготовка нефти на промыслах и ее транспортировка

Поступающая из нефтяных и газовых скважин продукция не представляет собой соответственно чистые нефть и газ. Из скважин вместе с нефтью поступают пластовая вода, попутный (нефтяной) газ, твердые частицы механических примесей (горных пород, затвердевшего цемента).

Пластовая вода - это сильно минерализованная среда с содержанием солей до 300г/л. Содержание пластовой воды в нефти может достигать 80%. Минеральная вода вызывает повышенное коррозионное разрушение труб, резервуаров; твердые частицы, поступающие с потоком нефти из скважины, вызывают износ трубопроводов и оборудования. Попутный (нефтяной) газ используется как сырье и топливо.

Технически и экономически целесообразно нефть перед подачей в магистральный нефтепровод подвергать специальной подготовке с целью ее обессоливания, обезвоживания, дегазации, удаления твердых частиц.

Принципиальная схема сбора и подготовки нефти представлена на рис. 1.

Рис. 1. Принципиальная схема сбора и подготовки нефти

На нефтяных промыслах чаще всего используют централизованную схему сбора и подготовки нефти (рис. 2). Сбор продукции производят от группы скважин на автоматизированные групповые замерные установки (АГЗУ). От каждой скважины по индивидуальному трубопроводу на АГЗУ поступает нефть вместе с газом и пластовой водой. На АГЗУ производят учет точного количества поступающей от каждой скважины нефти, а также первичную сепарацию для частичного отделения пластовой воды, нефтяного газа и механических примесей с направлением отделенного газа по газопроводу на ГПЗ (газоперерабатывающий завод). Частично обезвоженная и частично дегазированная нефть поступает по сборному коллектору на центральный пункт сбора (ЦПС). Обычно на одном нефтяном месторождении устраивают один ЦПС. Но в ряде случаев один ЦПС устраивают на несколько месторождений с размещением его на более крупном месторождении. В этом случае на отдельных месторождениях могут сооружаться комплексные сборные пункты (КСП), где частично производится обработка нефти. На ЦПС сосредоточены установки по подготовке нефти и воды. На установке по подготовке нефти осуществляют в комплексе все технологические операции по ее подготовке. Комплект этого оборудования называется УКПН - установка по комплексной подготовке нефти.

1 - нефтяная скважина; 2 - автоматизированные групповые замерные установки (АГЗУ); 3 - дожимная насосная станция (ДНС); 4 - установка очистки пластовой воды; 5 - установка подготовки нефти; 6 - газокомпрессорная станция; 7 - центральный пункт сбора нефти, газа и воды; 8 - резервуарный парк

Рис. 2. Схема сбора и подготовки продукции скважин на нефтяном промысле

Обезвоженная, обессоленная и дегазированная нефть после завершения окончательного контроля поступает в резервуары товарной нефти и затем на головную насосную станцию магистрального нефтепровода.

Обезвоживание нефти затруднено тем, что нефть и вода образуют стойкие эмульсии типа «вода в нефти». В этом случае вода диспергирует в нефтяной среде на мельчайшие капли, образуя стойкую эмульсию. Следовательно, для обезвоживания и обессоливания нефти необходимо отделить от нее эти мельчайшие капли воды и удалить воду из нефти. Для обезвоживания и обессоливания нефти используют следующие технологические процессы: гравитационный отстой нефти, горячий отстой нефти, термохимические методы, электрообессоливание и электрообезвоживание нефти. Наиболее прост по технологии процесс гравитационного отстоя. В этом случае нефтью заполняют резервуары и выдерживают определенное время (48 ч и более). Во время выдержки происходят процессы коагуляции капель воды, и более крупные и тяжелые капли воды под действием сил тяжести (гравитации) оседают на дно и скапливаются в виде слоя подтоварной воды.

Однако гравитационный процесс отстоя холодной нефти - малопроизводительный и недостаточно эффективный метод обезвоживания нефти. Более эффективен горячий отстой обводненной нефти, когда за счет предварительного нагрева нефти до температуры 50 -70°С значительно облегчаются процессы коагуляции капель воды и ускоряется обезвоживание нефти при отстое. Недостатком гравитационных методов обезвоживания является его малая эффективность.

Более эффективны методы химические, термохимические, а также электрообезвоживание и обессоливание. При химических методах в обводненную нефть вводят специальные вещества, называемые деэмульгаторами. В качестве деэмульгаторов используют ПАВ. Их вводят в состав нефти в небольших количествах от 5-10 до 50-60 г на 1 т нефти. Наилучшие результаты показывают так называемые неионогенные ПАВ, которые в нефти не распадаются на анионы и катионы. Это такие вещества, как дисолваны, сепаролы, дипроксилины и др. Деэмульгаторы адсорбируются на поверхности раздела фаз "нефть-вода" и вытесняют или заменяют менее поверхностно-активные природные эмульгаторы, содержащиеся в жидкости. Причем пленка, образующаяся на поверхности капель воды, непрочная, что отмечает слияние мелких капель в крупные, т.е. процесс коалесценции. Крупные капли влаги легко оседают на дно резервуара. Эффективность и скорость химического обезвоживания значительно повышается за счет нагрева нефти, т.е. при термохимических методах, за счет снижения вязкости нефти при нагреве и облегчения процесса коалесценции капель воды.

Наиболее низкое остаточное содержание воды достигается при использовании электрических методов обезвоживания и обессоливания. Электрообезвоживание и электрообессоливание нефти связаны с пропусканием нефти через специальные аппараты-электродегидраторы, где нефть проходит между электродами, создающими электрическое поле высокого напряжения (20-30 кВ). Для повышения скорости электрообезвоживания нефть предварительно подогревают до температуры 50-70°С. При хранении такой нефти в резервуарах, при транспортировке ее по трубопроводам, в цистернах по железной дороге или водным путем значительная часть этих углеводородов теряется за счет испарения. Легкие углеводороды являются инициаторами интенсивного испарения нефти, так как они увлекают за собой и более тяжелые углеводороды.

В то же время легкие углеводороды являются ценным сырьем и топливом (легкие бензины). Поэтому перед подачей нефти из нее извлекают легкие низкокипящие углеводороды. Эта технологическая операция и называется стабилизацией нефти. Для стабилизации нефти ее подвергают ректификации или горячей сепарации. Наиболее простой и более широко применяемой в промысловой подготовке нефти является горячая сепарация, выполняемая на специальной стабилизационной установке. При горячей сепарации нефть предварительно подогревают в специальных нагревателях и подают в сепаратор, обычно горизонтальный. В сепараторе из подогретой до 40-80°С нефти активно испаряются легкие углеводороды, которые отсасываются компрессором и через холодильную установку и бензосепаратор направляются в сборный газопровод. В бензосепараторе от легкой фракции дополнительно отделяют за счет конденсации тяжелые углеводороды.

Вода, отделенная от нефти на УКПН, поступает на УПВ, расположенную также на ЦПС. Особенно большое количество воды отделяют от нефти на завершающей стадии эксплуатации нефтяных месторождений, когда содержание воды в нефти может достигать до 80%, т.е. с каждым кубометром нефти извлекается 4 м3 воды. Пластовая вода, отделенная от нефти, содержит механические примеси, капли нефти, гидраты закиси и окиси железа и большое количество солей. Механические примеси забивают поры в продуктивных пластах и препятствуют проникновению воды в капиллярные каналы пластов, а следовательно, приводят к нарушению контакта «вода-нефть» в пласте и снижению эффективности поддержания пластового давления. Этому же способствуют и гидраты окиси железа, выпадающие в осадок. Соли, содержащиеся в воде, способствуют коррозии трубопроводов и оборудования. Поэтому сточные воды, отделенные от нефти на УКПН, необходимо очистить от механических примесей, капель нефти, гидратов окиси железа и солей, и только после этого закачивать в продуктивные пласты. Допустимые содержания в закачиваемой воде механических примесей, нефти, соединений железа устанавливают конкретно для каждого нефтяного месторождения. Для очистки сточных вод применяют закрытую (герметизированную) систему очистки.

В герметизированной системе в основном используют три метода: отстой, фильтрования и флотацию. Метод отстоя основан на гравитационном разделении твердых частиц механических примесей, капель нефти и воды. Процесс отстоя проводят в горизонтальных аппаратах - отстойниках или вертикальных резервуарах-отстойниках. Метод фильтрования основан на прохождении загрязненной пластовой воды через гидрофобный фильтрующий слой, например через гранулы полиэтилена. Гранулы полиэтилена «захватывают» капельки нефти и частицы механических примесей и свободно пропускают воду. Метод флотации основан на одноименном явлении, когда пузырьки воздуха или газа, проходя через слой загрязненной воды снизу вверх, осаждаются на поверхности твердых частиц, капель нефти и способствуют их всплытию на поверхность. Очистку сточных вод осуществляют на установках очистки вод типа УОВ-750, УОВ-1500, УОВ-3000 и УОВ-10000, имеющих пропускную способность соответственно 750, 1500, 3000 и 10000 м3/сут. Следует отметить, что установка УОВ-10000 состоит из трех установок УОВ-3000. Каждая такая установка состоит из четырех блоков: отстойника, флотации, сепарации и насосного.

Транспортировка нефти.

На заре нефтяной промышленности транспортировка нефти осуществлялась в деревянных бочках. Но вскоре нефтяные компании осознали, что гораздо выгоднее транспортировать нефть по трубопроводам.

Современная транспортировка нефти осуществляется различными видами транспорта: трубопроводным, железнодорожным, водным, автомобильным, воздушным.

Основным достоинством трубопроводного транспорта является низкая себестоимость перекачки. Но при этом есть и недостатки. Основной недостаток - это крупные единовременные капитальные вложения в строительство, т.к. прежде чем начать использовать нефтепровод, необходимо построить его от начальной точки и до конечного пункта.

В России транспортировка нефти в основном осуществляется именно трубопроводным транспортом - по нефтепроводам. Транспортировку нефти и нефтепродуктов осуществляют 2 компании: ОАО «АК «Транснефть» осуществляет транспортировку нефти; ОАО «АК «Транснефтепродукт» осуществляет транспортировку нефтепродуктов.

Водный транспорт нефти можно разделить на речной и морской. По рекам и озерам нефть перевозится в баржах и в речных танкерах. Морской транспорт нефти осуществляется морскими танкерами и супертанкерами. Грузоподъемность современных морских супертанкеров достигает миллиона тонн. Самый большой в мире нефтяной супретанкер Knock Nevis имеет длину 458,4 метра. Это больше, чем американская Эмпайр Стейт Билдинг, но поменьше, чем Останкинская телебашня, если их положить на бок. Ежедневно около 30 миллионов баррелей нефти находится в танкерах на пути следования к пункту назначения. Общий действующий флот нефтяных танкеров в мире составляет около 3,5 тысяч судов.

Часть нефти и особенно нефтепродукты перевозятся железнодорожным транспортом. Перевозка осуществляется в специальных стальных вагонах-цистернах грузоподъемностью 50, 60 и 120 тонн. Достоинством железнодорожного транспорта является его универсальность. В цистернах можно перевозить все виды нефти и нефтепродуктов. К недостаткам можно отнести довольно высокие эксплуатационные затраты и низкую эффективность использования подвижного состава, так как обратно цистерны идут порожними.

Автомобильный транспорт используют для перевозки нефти и нефтепродуктов только на небольшие расстояния. Для перевозки нефти его используют крайне редко (обычно в пределах нефтепромысла на период строительства трубопровода). Основное применение автотранспорт находит для доставки нефтепродуктов к местам их потребления (на АЗС, заводы, фабрики и т.п.)

Для транспортировки нефти воздушный транспорт из-за высокой себестоимости практически не применяют. Его используют лишь для снабжения нефтепродуктами отдельных пунктов на Крайнем Севере, дрейфующих станций и зимовок в Арктике. Как правило, доставка нефтепродуктов воздушным транспортом осуществляется в бочках.

2. Каталитический крекинг

Каталитический крекинг (КК) впервые появился в начале 40-х годов XX века в США, в настоящее время это самый массовый процесс получения высокооктанового бензина, газа для синтеза алкилбензина, компонента дизельного топлива и сырья для получения технического углерода. КК является базовым процессом в схемах глубокой переработки нефти.

С химической точки зрения КК - это процесс, где оптимально используются ресурсы водорода исходного сырья при частичном выводе углерода и получении преимущественно ароматических и изоалкановых углеводородов.

Сырье для этого процесса оценивается по фракционному составу, по групповому составу и по содержанию примесей.

По фракционному составу. Установки КК работают на трех видах сырья - прямогонном, смешанном и остаточном.

Пять типичных вариантов получения сырья для КК показаны на рис. 3.

ГВП - глубокая вакуумная перегонка; ГО - гидроочистка; КК - каталитический крекинг; ЗК - замедленное коксование; ДА - деасфальтизация; ГДС - гидродесульфаризация; потоки: М -- мазут; ВГ - вакуумный газойль; К - кокс; Асф - асфальтены; Гд - гудрон; Г - газ; Б - бензин; Д - дизельное топливо.

Рис. 3 Пять типичных вариантов получения сырья для каталитического крекинга

Вариант 1 - это типовая схема получения прямогонного вакуумного газойля (ВГ) с последующей его гидроочисткой и крекингом. В США по такой схеме работает около 80 установок крекинга.

Вариант 2 отличается тем, что гудрон после ГВП коксуют и фракцию коксования 350-500 °С смешивают с прямогонным вакуумным газойлем до гидроочистки.

Вариант 3 - аналог предыдущего, но вместо коксования гудрон подвергают деасфальтизации и полученный деасфальтизат (КК - 350 °С), минуя гидроочистку, подают на крекинг вместе с вакуумным газойлем.

Вариант 4 - это аналог варианта 1 по основному потоку, но часть мазута (10-20 % от ВГ), минуя ГВП и ГО, подается на крекинг, поэтому этот вариант применим для несернистых и малосернистых мазутов.

Вариант 5 - крекинг только мазута, прошедшего очистку от серы - гидродесульфаризацию.

На рис.3 возле каждого варианта указан выход бензина (в %) с 1 т нефти при работе по данной схеме. Видно, что минимальный выход - при ведении процесса по первой схеме, а максимальный - по последней, т.е. выгоднее перерабатывать остаточное или смешанное сырье, я это связано с большими трудностями в самом процессе крекинга (увеличение коксования катализатора, отравление его металлами и азотом, рост расхода и т.д.).

Сейчас многие установки, работающие по варианту 1, перешли на крекинг ВГ с концом кипения 550-560 °С, что несомненно увеличивает выход бензина. Много установок переведено на вариант 4 с вовлечением на крекинг до 30 % мазута или деасфальтизата (вариант 3).

Вариант 4 считается новым, быстро развивающимся направлением в технологии крекинга. Только в США таких установок работает около 50 и в Западной Европе - 30. Мазут (иногда гудрон) добавляют к вакуумному газойлю в количестве от 10 до 30 %, если мазут малосернистый; если же он сернистый, то до смешения с вакуумным газойлем его подвергают гидродесульфуризации.

За рубежом широко применяются процессы облагораживания остаточного сырья (мазута или гудрона), добавляемого в сырье крекинга, - процессы деасфальтизации растворителями, гидрооблагораживания и процесс адсорбционная термодеасфальтизация (АRТ).

По групповому составу сырье каталитического крекинга - предпочтительно парафино-нафтеновое, поскольку оно дает больший выход бензина и меньше кокса. Ароматика в сырье нежелательна, потому что она дает большой выход кокса. нефть крекинг бензин масло

Наиболее коксогенными факторами, характеризующими качество сырья, являются содержание смол и коксуемость. Поэтому содержание смол в сырье ограничивается величиной «не более 1,5 % », а коксуемость - величиной «не более 0,3 %». Но это - для вакуумного газойля; для остаточного сырья нормы на смолы и коксуемость значительно выше, но в этом случае используют специальные широкопористые катализаторы.

Олефины также дают много кокса, поэтому вторичное сырье (в частности, газойль замедленного коксования) добавляют в количестве не более 25 % от прямогонного сырья.

Установлено, что групповой углеводородный состав сырья оказывает существенное влияние на результаты крекинга. В большинстве вакуумных дистиллятов, используемых в промышленности, содержание парафиновых углеводородов находится в пределах 15-30 %, нафтеновых 20-30 %, ароматических 15-60 %.

Примеси в сырье оказывают негативное влияние на активные свойства катализаторов. К ним относятся: асфальтены (смолы), полициклическая ароматика, металлы и азот. Сера сама по себе вредной примесью в процессе не является, однако способствует коксообразованию (катализирует) этот процесс. Соответственно их делят на примеси, дезактивизирующие катализатор обратимо и необратимо.

Поэтому в настоящее время широко используется предварительная гидроочистка сырья крекинга (ВГ или мазута) до содержания серы 0,3-0,4 %. При этом смол остается 0,3 % и коксуемость снижается до 0,2 %, что в результате дает:

-в 1,5 раза уменьшается количество кокса на катализаторе;

-на 2-3 % увеличивается выход бензина;

-отпадает необходимость гидроочистки продуктов крекинга.

Катализаторы крекинга. В настоящее время используются только цеолитсодержащие катализаторы (ЦСКК), включающие в свой состав от 3 до 25 % цеолита типа «У» в РЗЭ-форме (размер входных окон 0,74 нм, а внутренних полостей 1,2 нм). Матрица ЦСКК - аморфный алюмосиликат или оксид алюминия.

Реакции крекинга. Механизм их до конца неясен, но на основании анализа образующихся продуктов качественно можно выделить следующие реакции. Основные реакции:

-крекинг парафинов (дает парафин и олефин);

-крекинг олефинов (дает олефин + олефин);

-деалкилирование АрУ (отрыв или крекинг алкильных цепей);

-крекинг нафтенов (дает циклогексан + олефин без разрыва кольца).

Вторичные реакции (определяют состав конечных продуктов крекинга):

-перенос водорода (нафтен + олефин дают ароматику + алкан);

-изомеризация (алкан дает изоалкан);

-перенос акл ильных групп (бензол + ксилол дают два толуола);

-конденсация бензольных колец;

-диспропорционирование олефинов низкой молекулярной массы.

Принципиальная схема каталитического креинга представлена на рис. 4.

Р-1 - реактор сквознопоточный; РГ-1 - регенератор с кипящим слоем; Сеп - сепарационная зона реактора; Ц-1, -2 - циклонные группы; КУ -котел-утилизатор; ЭФ - электрофильтр; БК - бункер для катализатора; ПВ - подогреватель воздуха; П-1 - трубчатая печь; РК -ректификационная колонна; ОК - отпарная колонна; ГБ - газовый блок; ОЗ - отпарная зона.

Рис. 4. Принципиальная схема установки каталитического крекинга:

Потоки:/- сырье; // - продукты реакции; /// - углеводородный газ; IV - бензин; V - керосиновая фракция; VI - сырье для технического углерода (фракция 350-420 °С); VII - остаточная фракция выше 420 °С; VIII - шлам; IX - водный конденсат; X - перегретый водяной пар; XI -воздушное дутье; XII- топливо на нагрев воздуха; XIII- дымовые газы; XIV- очищенные и охлажденные дымовые газы; XV- свежий катализатор на догрузку системы; XVI- уловленная катализаторная пыль; XVII- закоксованный катализатор; XVIII - регенерированный катализатор.

Рассмотрим современную установку каталитического крекинга типа «UOP» (или, в нашем наименовании, 43-107), показанную на рис. 4. «Сердцем» установки является реакторно-регенераторный блок, в котором происходит превращение (крекинг) сырья. Он состоит из сквознопоточного реактора Р-1 с расширенной сепарационной зоной (Сеп), где происходит разделение продуктов реакции и микросферического катализатора. Продукты реакции через циклоны Ц-1 далее идут на разделение в РК, а катализатор проходит отпарную зону (ОЗ) и по транспортной трубе ссыпается в регенератор РГ-1, в общий кипящий слой.

В регенераторе закоксованный в процессе конверсии сырья катализатор подвергается выжигу кокса за счет подачи горячего воздуха снизу кипящего слоя. Образующиеся при горении кокса дымовые газы (СО2+СО+К2) через группу циклонов Ц-2 уходят из РГ-1 в котел-утилизатор для генерации пара, а регенерированный (освобожденный от коксовых отложений) катализатор по другой транспортной трубе снизу кипящего слоя стекает в нижнюю часть реактора, где смешивается с сырьем и сквозным потоком поднимается по реактору.

Продукты реакции с высокой температурой (около 500 °С) поступают на ректификацию. Здесь они проходят вначале зону охлаждения до 320-350 °С и одновременного отделения унесенной катализаторной пыли, образующей шлам (возвращается в зону реакции). В верхней части колонны пары по общепринятой схеме разделяются на следующие фракции:

-жирный углеводородный газ С1-С4;

-бензин С5-190 °С;

-керосиновую фракцию 190-300 °С, используемую для получения топлива Т-6;

-фракция 300-420 °С (сырье для получения технического углерода);

-тяжелый остаток выше 420 °С (компонент котельного топлива).

Дымовые газы проходят котел-утилизатор (КУ), где остатки оксида углерода СО дожигаются до СО2, затем тонкую очистку от катализаторной пыли в электрофильтре (ЭФ) и выбрасываются в атмосферу.

Для восполнения потерь катализатора и частичной его замены имеется система догрузки катализатора из бункера БК в регенератор.

Имеются и нагревательные устройства: подогреватель воздуха (ПВ) перед регенератором и система теплообменников и трубчатая печь (на период пуска установки).

Основной параметр установки - температура в реакторе. Она обычно составляет от 470 до 520 °С в зависимости от сырья, качества катализатора и его кратности циркуляции.

Давление в реакторе - 0,2-0,3 МПа. Его обычно подбирают экспериментально, так как оно определяет энергозатраты.

Кратность циркуляции катализатора определяет его равновесную активность, тепловой баланс процесса, выход и качество продуктов. На современных установках с микросферическим катализатором кратность составляет 5-8 т катализатора на тонну сырья. Регулируется она заслонками на перетоках катализатора из сепаратора в регенератор и из регенератора в реактор. Объемная скорость подачи сырья на установках с кипящим слоем катализатора составляла 3-5 ч-1 . Для установок с лифт-реактором такая величина, как объемная скорость подачи сырья, бессмысленна и более характерно для этого случая время пребывания катализатора в реакторе в контакте с сырьем (время контакт а), которое на современных установках составляет от 2 до 10 с.

Показатели технологического режима установки:

Температура, °С:

сырья 80-300

в реакторе 495-510

в регенераторе 600-670

внизу колонны РК 300

Давление, МПа:

в реакторе 0,15-0,20

в регенераторе 0,25-0,27

Кратность циркуляции катализатора 6-8

Содержание кокса, % (мас.):

на катализаторе после реактора 0,8-1,0

после регенерации 0,05-0,10

Расход водяного пара, % от сырья:

в реактор 0,8-1,2

на десорбцию 2,5-3,5.

Продукты КК и их использование. При работе установки КК на прямогонном вакуумном газойле баланс переработки сырья имеет следующий вид:

Газ почти наполовину состоит из «сухой» фракции С1-С2 (7-9 %). Фракция С3-С4 почти вся состоит из олефинов, причем в ней соотношение изобутан: бутилены составляет примерно 1:1. Газ направляется на АГФУ для выделения из него бутан-бутиленовой фракции (ББФ) и пропан-пропиленовой фракции (ППФ), используемых для синтеза алкилбензина - высокооктанового компонента автомобильных и авиационных бензинов.

Бензин имеет ОЧм порядка 78-80; он содержит до 20 % олефинов и 20-40 % АрУ. Алканы являются в основном изомерами. Используется как базовый компонент авиационных бензинов и как компонент автомобильных бензинов.

Легкий газойль имеет ЦЧ = 39-41 и содержит 6-12 % олефинов (поэтому без гидроочистки использовать его как дизельное топливо не рекомендуется). Содержание АрУ достигает 50-60 %, что для топлив - нежелательный показатель. Используется как компонент дизельного топлива перед гидроочисткой или как компонент котельного топлива. Если температура конца кипения равна 310-315 °С, то после гидрирования ароматики из него можно получать топливо Т-6.

Тяжелый газойль - это концентрат АрУ: содержание АрУ в тяжелом газойле -60-80 %. Используется как сырье для получения технического углерода и дистиллятного игольчатого кокса. Применяется также как компонент котельного топлива.

Остаток выше 420 °С - это тяжелый высокоароматизированный продукт, используемый как компонент котельного топлива и как сырье для коксования.

3. Основы технологии производства нефтяных масел

Технология производства масел состоит из трех основных этапов: получение масляных фракций, выработка из них базовых масел-компонентов и смешение (компаундирование) базовых масляных компонентов с вводом присадок.

Начнем с первого из этих этапов - вакуумной перегонки мазута и получения масляных дистиллятов. Как известно, пригодность нефти для получения из нее масел определяется эй индексации нефти и установлении шифра нефти. Шифр нефти указывает:

1. к какому классу относится нефть (по содержанию в ней серы);

2. к какому типу относится нефть (по содержанию в ней светлых фракций, кипящих до 350 °С);

3. к какой группе относится нефть (по содержанию в ней масляных фракций):

1 - я группа - больше 25 % на нефть, 45 % на мазут, 2-я группа - от 25 до 15 % на нефть, 45 % на мазут, 3-я группа - от 25 до 15 % на нефть, 45-30 % на мазут, 4-я группа - менее 15 % на нефть, менее 30 % на мазут;

4. к какой подгруппе относится нефть (по индексу вязкости масляных фракций):

1 - я подгруппа - индекс вязкости более 95, 2-я подгруппа - индекс вязкости от 95 до 90, 3-я подгруппа - индекс вязкости от 90 до 85, 4-я подгруппа - индекс вязкости менее 85; 5. к какому виду относится нефть (по содержанию в ней парафина).

Третий и четвертый классификационные признаки шифра нефти определяют пригодность (или непригодность) нефти для выработки из нее масел. К нефтям, пригодным для получения масел, относят обычно нефти двух первых групп и двух первых подгрупп.

В этом случае в вакуумной колонне АВТ получают масляные дистилляты и остаток - гудрон, пригодные для получения дистиллятных и остаточного масел, масляных дистиллятов обычно получают два:

-масляный дистиллят маловязкий (МДм), фракция 350-420 °С;

-масляный дистиллят высоковязкий (МДв), фракция 420-500 °С; в остатке - гудрон, кипящий выше 500 °С.

В последнее время стали получать широкую фракцию (ШФ) масла, которую после серии очисток фракционируют на 2-3 узкие фракции.

Схема получения масел из мазута представлена на рис. 5.

МДм - масляный дистиллят маловязкий; МДв - масляный дистиллят высоковязкий; ШФ -широкая фракция; МВМ - маловязкое масло; СВМ - средневязкое масло; ВВМ - высоковязкое масло; ДА - деасфальтизат

Рис. 5 Схема получения масел из мазута

Второй этап производства масел - это выработка очищенных базовых масел-компонентов. Технология их выработки включает в себя ряд процессов, назначение которых следующие:

-удаление из гудрона твердых асфальтенов пропаном;

-удаление групп углеводородов и соединений, присутствие которых в масле нежелательно (асфальтосмолистых соединений, полициклических ароматических углеводородов с низким индексом вязкости и твердых парафиновых углеводородов);

-гидродоочистка или контактная доочистка масла

Последовательность очисток широкой фракции показана на рисунке пунктиром и в конце ее (перед компаундированием) стоит установка фракционирования масел на маловязкое, средневязкое и высоковязкое (МВМ, СВМ и ВВМ).

Очищенные от всех нежелательных примесей МДм и МДв (или МВМ, СВМ и ВВМ) называют базовыми дистиллятными маслами, а очищенный деасфальтизат (ДА) - базовым остаточным маслом.

4. Задача

Дана реакция vAA+vYY+vCC vBB+vZZ.

Найти основной реагент и определить конечные количества молей веществ NY, NC, NB, NZ, если:

Необходимые данные к расчету представлены в таблице 1.

Таблица 1 - Исходные данные к задаче.

Исходные данные

Значение

Стехиометрический коэффициент, vA

3

Стехиометрический коэффициент, vY

6

Стехиометрический коэффициент, vC

1

Стехиометрический коэффициент, vB

2

Стехиометрический коэффициент, vZ

3

Начальное количество молей вещества А, NА,0

10

Начальное количество молей вещества Y, NY,0

8

Начальное количество молей вещества C, NC,0

5

Начальное количество молей вещества B, NB,0

2

Начальное количество молей вещества Z, NZ,0

4

Конечное количество молей вещества А, NА

5

Решение.

1. Стехиометрическое соотношение для простой реакции:

3A + 6Y + 1C > 2B + 3Z

2. Определение основного реагента (A, Y, C):

Определяем, какой реагент (A, Y, C) взят в недостатке.

Для реагента А: 10/3 = 3,333

Для реагента Y: 8/6 = 1,333

Для реагента С: 5/1 = 5,000

Реагент Y - взят в недостатке.

3. Для реакции в периодических условиях справедливы следующие соотношения:

где NА,0, NY,0, NC,0, NB,0, NZ,0 - начальные количества молей веществ A, Y, B, C, Z;

n - химическая переменная или глубина реакции

4. Из соотношения определяем n:

По недостатку -

5. Определяем конечные количества молей компонентов Y, B, C, Z:

Список литературы

1. Бесков В.С., Сафронов В.С. Общая химическая технология и основы промышленной экологии: Учебник для вузов. М.: Химия, 1999. - 472с.

2. Вержичинская С.В., Дигуров Н.Г., Синицын С.А. Химия и технология нефти и газа: учебное пособие. - М.: ФОРУМ: ИНФРА-М, 2007. - 400с.

3. Козиенко А.И., Подгорбунская Т.А., Гендин Д.В. Технология производства нефтяных масел. Методическое пособие. - Иркутск: Изд-во ИрГТУ, 2007, - 62 с.

4. Кутепов А.М. и др. Общая химическая технология: Учебник для техн. вузов. / А.М. Кутепов, Т.И. Бондарева, М.Г. Беренгартен. - 2-е изд., испр. И доп. - М.: Высш. школа, 1990. - 520с.

5. Общая химическая технология. Под редакцией проф. Амелина А.Г. М., «Химия», 1977. - 400с.

6. Покровская С.В. Технология переработки нефти. Производство нефтяных масел - Учеб.-метод. комплекс. -- Новополоцк: ПГУ, 2008. -- 320 с.

7. Технология переработки нефти и газа. Процессы глубокой переработки нефти и нефтяных фракций: Учеб.-метод. комплекс для студ. спец. 1-48 01 03 в 2-х ч./Сост.: С.М. Ткачев - ч.1 Курс лекций. - Новополоцк: ПГУ, 2006. - 345 с.

Размещено на Allbest.ru


Подобные документы

  • Физико-химическая характеристика нефти. Первичные и вторичные процессы переработки нефти, их классификация. Риформинг и гидроочистка нефти. Каталитический крекинг и гидрокрекинг. Коксование и изомеризация нефти. Экстракция ароматики как переработка нефти.

    курсовая работа [71,9 K], добавлен 13.06.2012

  • Методика подготовки нефти к переработке на промыслах. Способы разрушения водонефтяных эмульсий. Конструкция и принцип действия горизонтального электродегидратора. Технология обезвоживания и обессоливания нефти на электрообессоливающих установках.

    курсовая работа [886,5 K], добавлен 23.11.2011

  • Переработка нефти и её фракций для получения моторных топлив, химического сырья. Общая характеристика процесса крекинга нефти и природного газа: история появления, оборудование. Виды нефтепеработки: каталитический и термический крекинг, катализаторы.

    курсовая работа [587,5 K], добавлен 05.01.2014

  • Кривая истинных температур кипения нефти и материальный баланс установки первичной переработки нефти. Потенциальное содержание фракций в Васильевской нефти. Характеристика бензина первичной переработки нефти, термического и каталитического крекинга.

    лабораторная работа [98,4 K], добавлен 14.11.2010

  • Подготовка нефти к транспортировке. Обзор различных систем внутрипромыслового сбора: самотечных и герметизированных высоконапорных. Типы танкеров для перевозки сжиженных газов. Техническая и экологическая безопасность в процессе транспортировки нефти.

    курсовая работа [488,8 K], добавлен 21.03.2015

  • Нефть как природная маслянистая горючая жидкость. Углеводороды как основные компоненты нефти и природного газа. Анализ технологии добычи и переработки нефти. Первичный и вторичный процесс. Термический крекинг, каталитический реформинг, гидроочистка.

    презентация [2,5 M], добавлен 29.09.2013

  • Характеристика современного состояния нефтегазовой промышленности России. Стадии процесса первичной переработки нефти и вторичная перегонка бензиновой и дизельной фракции. Термические процессы технологии переработки нефти и технология переработки газов.

    контрольная работа [25,1 K], добавлен 02.05.2011

  • Общие сведения о процессе обессоливания нефти. Подготовка нефти к переработке путем удаления из нее воды, минеральных солей и механических примесей. Анализ коррозирующего действия соляной кислоты. Применение магнитных полей в процессе обессоливания.

    реферат [494,4 K], добавлен 14.11.2012

  • Структура водонефтяной эмульсии. Методы разрушения нефтяных эмульсий, их сущностная характеристика. Промышленный метод обезвоживания и обессоливания нефти. Технические характеристики шарового и горизонтального электродегидраторов. Деэмульгаторы, их виды.

    презентация [2,8 M], добавлен 26.06.2014

  • Физико-химические свойства нефти, газа, воды исследуемых месторождений нефти. Технико-эксплуатационная характеристика установки подготовки нефти Черновского месторождения. Снижение себестоимости подготовки 1 т. нефти подбором более дешевого реагента.

    дипломная работа [1,5 M], добавлен 28.03.2017

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.