Электротехнологические плазменные установки

Понятие плазмы и способы ее получения. Ионизация газов и ее виды. Плазмотроны со стабилизацией дуги вихревым потоком газа. Их энергетические характеристики и источники питания. Установки плазменной плавки, резки и сварки металлов, нанесения покрытий.

Рубрика Производство и технологии
Вид реферат
Язык русский
Дата добавления 13.06.2016
Размер файла 248,7 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

Размещено на http://www.allbest.ru/

Введение

Установки, в которых происходит превращение электрической энергии в другие виды с одновременным осуществлением технологических процессов, называют электротехнологическими. Эти установки имеют довольно сложное оборудование, включающее в себя рабочий орган - плазмотрон, плазменный реактор, электронную пушку, электродные системы дуговых и ионных агрегатов, специфические источники питания, автоматически поддерживающие заданный режим работы или управляемые с помощью микропроцессорной техники. В состав вспомогательного оборудования входят системы обеспечения водой, газом, создания и поддержания вакуума и др. Правильные монтаж, наладка и эксплуатация оборудования без знания выполняемого им технологического процесса затруднительны.

Производственная деятельность человека и его быт стремительно насыщаются электротехнологическими установками. Развитие электротехнологических процессов обеспечивается развивающейся энергетикой страны, строительством новых атомных и тепловых электростанций, сооружением мощных линий электропередач.

Совершенствование электротехнологии повлекло за собой создание материалов, обладающих новыми свойствами: более высокими прочностью, термостойкостью, устойчивостью к агрессивному действию химических реакций, и имеющих высокие электроизоляционные свойства и низкую теплопроводность. промышленности и науки достигнуты благодаря применению электротехнологических процессов.

Если бы эти системы монтировались из компонентов, выпускаемых по технологии, которая была 30-40 лет тому назад, то масса таких устройств достигла десятков тонн, объем - десятков кубометров, потребляемая мощность - сотен киловатт.

Входящие в микросхему элементы (транзисторы, диоды, конденсаторы, резисторы и др.) не имеют внешних выводов, а вся микросхема имеет общую герметизацию, защиту от механических повреждений, влияний окружающей среды и входит в состав комплексов. Поэтому стали привычными миниатюрные наручные часы, многофункциональные, снабженные микрокалькулятором, микротелевизором; малогабаритные цветные телевизоры и ЭВМ, обладающие огромным быстродействием и памятью.

Благодаря внедрению контактной сварки достигнут высокий уровень механизации сборочных работ в автомобильной промышленности и авиастроении, обеспечивающий высокую скорость изготовления транспортных средств. В получении высококачественных металлов исключительно важна роль электрошлакового переплава.

На основе явлений поляризации диэлектриков, электромагнитной индукции разработаны такие прогрессивные электротехнологические процессы, как высокочастотная сушка сыпучих и пористых неэлектропроводных материалов, индукционный нагрев и плавка металлов, превратившиеся в настоящее время в базовые технологические процессы.

Как известно, вещество может находиться в четырех агрегатных состояниях - твердом, жидком, газообразном и плазменном.

Твердое состояние - проводники, полупроводники и диэлектрики, металлы и неметаллы, кристаллические и аморфные вещества.

Жидкое состояние - проводники (расплавы металлов, солей, щелочей, оксидов), диэлектрики (минеральные и органические), особая разновидность - жидкие кристаллы.

Газообразное состояние - сложные активные вещества.

Плазменное состояние - электропроводная среда, позволяющая проводить обменные реакции и транспортные процессы на ионном уровне, быть источником лучистой энергии и средством нагрева веществ.

Посредством электрических и магнитных полей с веществом, находящимся в каждом из агрегатных состояний, можно совершать бесчисленное множество операций - изменение температуры, формы, структуры, состава, свойств в разных направлениях и т. д.

Их группируют по результирующему действию электрического тока и магнитного поля, проявляющемуся в различных условиях.

1.Установки, основанные на тепловом действии тока. К ним относят бытовые нагревательные приборы, печи сопротивления прямого и косвенного действия, установки для нагрева жидкостей и газов - электрические котлы разных типов и калориферы. Установки электрошлакового переплава металлов и электрошлаковой сварки используют явление выделения тепловой энергии преимущественно в шлаке, заполняющем пространство между электродами. В установках контактной сварки электрическая энергия преобразуется в тепловую в переходном сопротивлении в точке контакта двух деталей.

В установках индукционного нагрева используется преобразование энергии переменного тока промышленной или повышенной частоты в энергию переменного магнитного поля, которая преобразуется вновь в электрическую, а затем в тепловую в нагреваемом теле. Этот способ применим для нагрева проводящих тел.

Для нагрева диэлектриков применяются установки, использующие высокочастотное электрическое поле, где преобразование электрической энергии в тепловую идет через процессы поляризации веществ.

Установки, принцип действия которых основан на нагреве электрической дугой, включают в себя электродуговые и рудно-термические печи для выплавки металлов, огнеупоров, получения фосфора и других материалов, а также вакуумно-дуговые печи для переплава и рафинирования металла. Сюда же относятся установки плазменной и плазмодуговой обработки металлов и неметаллических материалов, которыми производят переплав металлов, нанесение защитных покрытий, наплавку и другие операции.

В установках электроэрозионной обработки тепловая энергия выделяется в канале разряда в жидкости при импульсном протекании тока большой силы.

2.Установки, основанные на электрохимическом действии тока. К ним относят электролизные ванны, заполняемые растворами или расплавами, установки для нанесения защитных и декоративных покрытий, а также установки для изготовления изделий методом гальванопластики, установки электрохимикомеханической обработки изделий в электролитах.

3.Электромеханические установки, где прохождение импульсного тока вызывает возникновение механических усилий в обрабатываемом материале. Особый класс составляют установки ультразвукового воздействия, осуществляющие технологический процесс путем создания в веществе механических колебаний высокой частоты, получаемых от ультразвуковых генераторов.

4.Электрокинетические установки, принцип действия которых основан на преобразовании энергии электрического поля в энергию движущихся частиц. К ним относят установки электронно-ионной технологии - электрофильтры, установки по разделению сыпучих материалов и эмульсий, очистке сточных вод, электроокраске.

плазма газ дуга металл

1. Ионизация газов. Понятие плазмы

В обычных условиях различные газы и их смеси (воздух, аргон, водород, гелий, углекислый газ и др.) не проводят электрический ток. Проводимость возникает тогда, когда в газовой среде помимо молекул и атомов появляются свободные заряженные частицы - электроны, положительные и отрицательные ионы и газ превращается в плазму.

Плазмой принято называть вещество, находящееся в четвертом состоянии (в дополнение к твердому, жидкому и газообразному), характеризующееся наличием нейтральных молекул и атомов, а также заряженных частиц - электронов и ионов, проводящее электрический ток и подчиняющееся законам магнитной газодинамики. Превращение газа в плазму проходит несколько стадий. Для молекулярных газов первым процессом является диссоциация - образование атомов. Возникновение в газе заряженных частиц - ионизация газа - может происходить в результате его нагрева, поглощения энергии рентгеновского или ультрафиолетового излучения, космических лучей, лучей оптического квантового генератора (лазера), действия электрического поля и др. Так как все виды ионизации: тепловое движение частиц, электрическое поле, световое излучение - повышают скорость взаимного перемещения частиц, то следует предположить, что и наложение высокочастотного напряжения должно приводить к ионизации пространства. Так это и происходит на самом деле. Приложение ВЧ-напряжения приводит к значительной ионизации - появлению ВЧ-короны даже при низких напряжениях.

2. Устройства для получения низкотемпературной плазмы и области их применения

Плазменная технология - молодая отрасль промышленности, интенсивное ее развитие началось в 50-х годах нашего столетия и бурно продолжается в разных странах. Свидетельством тому служит большой поток патентной и научной информации, а также расширяющиеся области промышленного использования.

Предпосылкой для развития плазменной технологии стало развитие космической техники, что потребовало создания различных типов двигателей, в том числе и плазменных, материалов и конструкций космических аппаратов, сохраняющих работоспособность при входе в плотные слои атмосферы, испытаний летательных аппаратов при больших скоростях полета, исследований в области термоядерного синтеза, газодинамики при высоких скоростях, физики газового разряда, химической технологии высоких режимных параметров. С использованием плазменной технологии созданы не только новые материалы, обладающие высокими технологическими свойствами (огнеупорностью, твердостью, прочностью), но и аппаратура эффективной обработки этих материалов.

Плазменная резка черных (нержавеющих) и цветных металлов впервые разработана в СССР в 1956-1957 гг. Она позволяет резать с высокими скоростями стали больших толщин, медь и ее сплавы, алюминий и другие металлы (например, плазмотрон мощностью 100 кВт режет сталь толщиной 30 мм со скоростью 4 м/мин). При этом сокращаются подгоночные работы в сварочных цехах, поскольку после плазменной резки заготовки имеют большую точность размеров. Плазменная резка широко применяется в судостроении, на предприятиях тяжелого и атомного машиностроения, химической и электротехнической промышленности.

Плазменная сварка обеспечивает соединение деталей из меди, латуни, бронзы, алюминия и его сплавов. Плазменная наплавка и напыление обеспечивают покрытие деталей износостойким, жаропрочным и антикоррозионным составом с минимальным перемешиванием наносимого и основного материала.

Важным направлением использования плазменных потоков является вакуумная плазменная технология с использованием электромагнитных ускорителей. В облако плазмы в вакууме помещают деталь, которой сообщают отрицательный потенциал. Тогда положительные ионы вытягиваются из объема плазмы, ускоряются электрическим полем и поступают к детали. В такой системе удается получить потоки частиц со скоростями до сотни километров в секунду и энергиями до десятков тысяч электрон-вольт. Это позволяет проводить технологические процессы, основанные на конденсации атомарных частиц на поверхности, испарение поверхности металлов, внедрение атомов в глубь кристаллической решетки, имплантацию ионов нужного вида.

В вакуумных плазменных установках может быть получена плазма всех известных металлов, сплавов, органических и неорганических веществ. При этом плазмы различных веществ могут вступать в интенсивное химическое взаимодействие, которое невозможно в других обстоятельствах.

Методом плазменной технологии в вакууме могут быть успешно решены следующие наиболее актуальные задачи:

получение особо чистых слоев материалов, обладающих специальными свойствами и выполняющих активные функции (магнитные, оптические, эмиссионные, сверхпроводящие и другие слои);

защита элементов конструкций барьерными слоями от воздействия агрессивных сред, больших скоростей газовых потоков, высоких температур;

изменение структурно-энергетического состояния поверхности материалов (упрочнение поверхности, ионное легирование полупроводников и др.);

получение материалов в виде многослойных структур, обладающих высокими механическими и эксплуатационными свойствами; получение пленочных монокристаллических структур.

Вакуумная плазменная технология, несмотря на некоторую сложность, позволяет существенно пополнить арсенал методов бесконтактной обработки материалов.

Плазменные технологические процессы в химии состоят из следующих основных стадий: 1) генерация плазмы необходимого состава и параметров по температуре и давлению; 2) ввод реагентов - веществ в твердом, жидком или газообразном состоянии и обеспечение необходимого времени их контакта; 3) вывод целевого продукта или нескольких продуктов из зоны реакции.

Для получения плазмы используются плазмотроны с различными принципиальными схемами. Плазмохимические реакции могут осуществляться двумя способами: подача всех компонентов плазмы в зону электрического разряда с прохождением тока его через реагирующую плазму и подача реагентов в струю плазмы вне зоны разряда. В первом случае плазмотрон совмещается с реакционным объемом - реактором, во втором применяются плазмоструйные реакторы, представляющие собой цилиндрический охлаждаемый сосуд, где происходит смешение плазменного потока с вводимым материалом.

Закалка и охлаждение продуктов реакции производятся путем введения в плазму вне зоны разряда дополнительного количества какого-либо газа или жидкости, а также охлаждаемых экранов-теплообменников.

Для получения оксидов азота, идущих в дальнейшем на производство азотных удобрений, используется воздушная плазма с температурой 3000-3500 К при давлении (20ч30) 104Па, охлаждаемая в процессе закалки со скоростью 108К/с до температуры 2000-1800 К и остывающая далее в теплообменниках.

Существующие способы получения плазмы можно классифицировать следующим образом: 1) взрыв проводника в электрической цепи; 2) электрическая искра; 3) высокочастотный факельный разряд; 4) коронирующий разряд; 5) дуговой разряд.

Для технологических целей наиболее приемлемыми оказались способы получения плазмы с помощью высокочастотного и дугового разрядов. В настоящее время последний способ имеет ряд преимуществ:

1) возможность получения плазмы в течение длительного времени с высоким коэффициентом полезного действия из твердых, жидких и газообразных сред любого химического состава;

2) возможность получения плазмы в вакууме и при высоких давлениях; 3) возможность использования стандартных источников электрического питания.

Для получения плазмы в плазмотронах используют газы, т. е. плазмообразующую среду. Она может быть одно- и многокомпонентной. В качестве однокомпонентной плазмообразующей среды применяют аргон, гелий, азот и водород.

Подбором состава многокомпонентной плазмообразующей среды в плазменно-технологическом реакторе можно получить любую атмосферу: окислительную, восстановительную или нейтральную.

Одним из наиболее важных тепловых параметров плазмы является ее энтальпия, т. е. количество теплоты, содержащееся в единице ее объема или массы.

3. Рассмотрим характеристики некоторых плазмообразующих газов

Аргон имеет низкое значение энтальпии, что делает его малопригодным для использования в качестве однокомпонентной плазмообразующей среды. Высокая электропроводность аргона при высоких температурах обусловливает низкую напряженность электрического поля в столбе дугового разряда. Аргон является одним из наиболее дефицитных и дорогостоящих газов и применяется в основном в тех случаях, где наибольшую роль играет его химическая инертность. Азот часто применяется в качестве однокомпонентной плазмообразующей среды. Его теплопроводность и теплоемкость при высоких температурах довольно высоки. По этой причине в атмосфере азота электрический разряд обеспечивает эффективное преобразование электрической энергии в тепловую.

Гелий имеет более высокие энергетические характеристики, чем аргон. Однако вследствие дефицитности и высокой стоимости применение его в плазменных установках ограничено. Он применяется в основном как добавка к аргону для улучшения эффективности нагрева в инертной атмосфере рабочего пространства плавильных печей.

Водород - самый высокоэнтальпийный плазмообразующий газ.

Напряженность электрического поля в водородной дуге в несколько раз выше, чем в аргоновой. Теплопроводность водорода также гораздо выше, чем у других газов. Он сравнительно дешев и недефицитен. Однако чистый водород при высоких температурах разрушающе действует на электроды плазмообразующего аппарата и поэтому он применяется в смеси с аргоном.

Важной характеристикой плазмы является зависимость коэффициента теплопередачи от температуры. При использовании сложных плазмообразующих смесей для обеспечения оптимальных параметров плазмы по энергетическим показателям, стабильности горения электрической дуги и устойчивости электродов подбирают соответствующие компоненты и их соотношения.

Генератор низкотемпературной плазмы или плазмотрон электротехнический аппарат, в котором происходит нагрев плазмо-образующей среды электрическим разрядом. Основными компонентами дуговых плазмотронов являются: электроды; вмещающая их или совмещенная с электродом разрядная камера, формирующая поток плазмы; система впуска плазмообразующего газа; система управления дуговым разрядом. Различные варианты конструктивного выполнения этих компонентов и различные их комбинации обусловили большое количество принципиальных схем плазмотронов.

Для обеспечения длительного ресурса работы электродных систем дуговых плазмотронов применяют электроды из тугоплавких материалов (С, Мо, W, Zr, Hf) либо перемещают опорные пятна дуги для распределения теплового потока на большую площадь электрода, выполненного из меди и охлаждаемого водой. Поэтому тугоплавкие электроды изготовляют в виде стержней или цилиндров малых размеров, запрессованных или вваренных в медный электрододержатель. Легкоплавкие электроды из меди (стали) выполняются в виде цилиндров или торов, по внутренней (или боковой для тора) поверхности которых перемещается опорный конец электрической дуги.В этом классе плазмотронов можно выделить два типа, отличающихся друг от друга методами стабилизации электрической дуги: водоохлаждаемои стенкой и вихревым потоком газа или жидкости.

В плазмотроне дуговой разряд горит между электродами (-) и (+), разделенными водоохлаждаемои стенкой, состоящей из ряда медных секций, разделенных изолятором. Из-за охлаждения около стенки образуется слой холодного газа с относительно низкой электропроводностью, поэтому дуга занимает лишь часть сечения канала, чем достигается принудительное увеличение плотности тока в столбе дуги и значительный рост температуры плазмы.

Если длинный канал не имеет секций, то проходящий через него газ нагревается и теряет диэлектрическую прочность. При этом происходит пробой слоя нагретого газа между столбом дуги и водоохлаждаемой стенкой. Это явление получило название «шунтирование дуги стенкой». Процесс шунтирования влияет на работу плазмотрона, в частности он формирует падающую ВАХ дуги, ограничивает температуру плазмы, мощность плазмотрона и снижает его КПД.

На рис. 1. показана принципиальная схема плазмотрона со стабилизацией дуги вихревым потоком газа. Газ, подаваемый через тангенциальные отверстия 6 в вихревую камеру 1, создает в канале плазмотрона вихревой поток, по оси которого между электродами 2 и 4 горит электрическая дуга 3. Вследствие интенсивных процессов теплообмена газ нагревается и плазма в виде струи истекает из сопла через электрод 4. В вихревой камере и канале электрода существует градиент плотности газа, поскольку основная часть его движется в пристеночной области.

Рис. 1. Плазмотрон с газовихревой стабилизацией дуги: 1 - вихревая камера; 2 - внутренний стержневой электрод; 3 - столб дуги; 4 - выходной трубчатый электрод; 5 - соленоид; 6 - тангенциальные каналы

В результате этого столб дуги «выталкивается» на ось электрода. Стабилизирующее действие газового вихря сохраняется до тех пор, пока не произойдет прогрев всего газа и появится его заметная проводимость, либо пока не произойдет угасание тангенциальной составляющей скорости газового потока. Под действием тангенциальной составляющей скорости газового потока опорное пятно дуги в выходном электроде перемещается по поверхности канала и сносится вниз по потоку осевой компонентной скорости. Этим обеспечивается долговечность трубчатых электродов. Среднемассовая температура плазмы при работе на азоте и воздухе в таких плазмотронах не превышает 5·103-6·103К. Коэффициент полезного действия

з = ДНG/Nэл

где ДН - разность энтальпий нагретого и холодного газа; G - секундный расход газа; Nэл= VI - электрическая мощность плазмотрона достигает 0,75-0,85. Более совершенным является плазмотрон с секционированным электродом и распределенной между секциями подачей плазмообразующего газа, что позволяет значительно поднять напряжение на дуге. Уменьшение эрозии электродов в плазмотронах с вихревой стабилизацией может быть осуществлено за счет наложения на радиальные участки дуги осевого магнитного поля. Конструктивная простота, достаточно высокий тепловой КПД и большой ресурс работы электродов определили широкое распространение рассмотренных типов плазмотронов.

Модификацией плазмотронов со стабилизацией дуги стенкой и вихревым потоком газа является плазмотрон с межэлектродными вставками. В плазмотроне с поперечно-обдуваемыми дугами и коаксиальным расположением электродов управление характеристиками дугового разряда производится осевым магнитным полем, в котором движется как проводник с током столб дугового разряда.

Рис. 2. Схема плазмотрона с магнитной стабилизацией дуги: 1 - центральный электрод; 2 - внешний электрод; 3 - соленоид; 4 - столб дуги; 5 - струя плазмы; 6 - подвод газа; 7 - изолятор

Схема плазмотрона с магнитной стабилизацией дуги показана на рис. 2. Между электродами 1 и 2 горит электрическая дуга 4. Магнитное поле создается соленоидом 3. Газ проходит между электродами, интенсивно нагревается в межэлектродном зазоре электрической дугой и выходит в виде высокотемпературной струи5через сопло.

Пространственное положение дуги в таких плазмотронах определяется тремя факторами: геометрическим положением центрального электрода, аэродинамическими силами и формой магнитного поля. Дуга удерживается вблизи середины оси магнитной катушки и под действием набегающего потока сносится в сторону его течения. Скорость вращения дуги пропорциональна току разряда и напряженности магнитного поля. При изготовлении центрального электрода из тугоплавкого материала КПД плазмотрона составляет 0,52-0,76 и преимущественно зависит от потерь в цилиндрический электрод.

Плазмотроны, работающие на переменном однофазном токе, конструктивно схожи с рассмотренными.

В плазменной технологии получили применение трехфазные плазмотроны, которые представляют собой комбинации из трех однофазных.

По конструктивным особенностям различают одно- и многокамерные трехфазные плазмотроны. В случае однокамерных плазмотронов все три дуги горят в одном объеме. Устойчивость дугового разряда обеспечивается применением тугоплавких электродов, сохраняющих высокую эмиссионную способность при перемене полярности тока.

Кроме рассмотренных в практике нашли применение плазмотроны, для питания которых одновременно используют постоянный и переменный токи, а также переменный ток промышленной и высокой частоты.

Мощность сопровождающей дуги в этом случае составляет 5-8 % от мощности силовой дуги.

Регулирование мощности в плазмотронах осуществляется изменением сопротивления в цепи питания (регулируемые дроссели), напряжением источника питания, мощностью дуги сопровождения.

Энергетические и вольт-амперные характеристики плазмотронов зависят от многих взаимосвязанных параметров. Кроме того, они являются нелинейными, поэтому теоретическое их исследование затруднено, а порой и невозможно.

Поэтому плазмотроны обычно разрабатываются по целевому назначению. Высокочастотные плазмотроны (рис. 3) подразделяют на индукционные, емкостные, факельные, сверхвысокочастотные (СВЧ).

Рис. 3. Схемы высокочастотных плазмотронов

Высокочастотные плазмотроны включают в себя электромагнитную катушку-индуктор 4 или электроды 6, 8, подключенные к источнику высокочастотной энергии 1, разрядную камеру.

В высокочастотном индукционном плазмотроне (рис. 4, а) газ нагревается вихревыми токами, как при индукционном нагреве проводящей среды в переменном электромагнитном поле индуктора при частоте от 6,3 кГц до 20 МГц.

В начале процесса для образования проводящей среды в зоне индуктора создается область высокотемпературного проводящего газа с помощью постороннего источника (например, дуговой разряд). Этот процесс называют зажиганием. После зажигания в камере возникает самоподдерживающийся стационарный безэлектродный разряд 2. Глубина проникновения (д, см) вихревых токов в плазму определяется по формуле

д = (1/2?с/(мf),

где с - удельное электрическое сопротивление плазмы; f - частота, Гц; м - магнитная проницаемость, для плазмы м = 1. Удельное сопротивление аргона, азота и водорода при 15 000 К равно соответственно 0,01, 0,025 и 0,1 Ом·см. Продувая газ через разрядную камеру, на выходе из нее получают струю плазмы5с температурой (7,5ч15,0) 103К со скоростью 10-60 м/с.

Высокочастотный емкостный плазмотрон (рис. 4, б) имеет высоковольтный6и заземленный8электроды, между которыми возникает высокочастотное электрическое поле. Электроны, находящиеся в газе, получают энергию от высокочастотного электрического поля и при столкновениях обмениваются ею с нейтральными частицами, повышая тем самым температуру газа. В высокочастотном факельном плазмотроне (рис. 4, в) при давлении, близком к атмосферному, факельный разряд имеет форму пламени свечи. Наиболее легко факельный разряд возникает на электродах с большой кривизной поверхности (на остриях и т. д.) при частотах электрического поля порядка 10 мГц и выше.

В сверхвысокочастотном плазмотроне (рис. 4, г) энергия от источника питания в зону разряда подается по волноводу 7.

Высокочастотные плазмотроны имеют широкие перспективы применения в химической и металлургической промышленности благодаря большому ресурсу работы (2-3 месяца без замены деталей), возможности получения чистой плазмы агрессивных газов, таких, как хлор, кислород и др., т. е. без засорения продуктами разрушения электродов. Однако пока они имеют более низкий, чем дуговые плазмотроны, энергетический КПД и сложные источники питания.

4. Энергетические характеристики плазмотронов и источники питания

К энергетическим характеристикам плазмотрона относятся зависимости параметров дуги от условий работы - рода плазмообразующего газа, давления, геометрических размеров электродов, напряженности управляющего магнитного поля, материала электродов, их температуры и эмиссионной способности, скорости разрушения. Одновременный учет всех этих факторов в настоящее время не представляется возможным, поэтому для расчета ВАХ разряда и определения некоторых размеров электродов пользуются эмпирическими формулами, получаемыми в результате критериального обобщения многочисленных экспериментальных данных.

В настоящее время уравнения ВАХ и КПД составлены для плазмотронов определенных схем и справедливы в строгих границах геометрического подобия, диапазонах изменений токов и расходов газа, для однокомпонентных или стандартных плазмообразующих сред, а также внутрикамерных давлений, напряженностей магнитных полей.

Мощность плазмотронов определяется соотношением тока дуги и напряжением: Р = IU = IЕl, которое, в свою очередь, определяется длиной дуги l и напряженностью электрического поля Е. Мощность, выделяющаяся в электродах, как было показано, зависит от тока дуги и материала электрода. Так как электроды плазмотронов должны иметь длительный срок работы, а скорость их разрушения прямо пропорциональна току дуги, то при определении параметров разряда следует ориентироваться на минимальные токи и максимальные напряжения, обеспечивающие заданную температуру плазмы и необходимую мощность дуги при заданных габаритных размерах электродов.

Как было показано, напряженность электрического поля Е дуги зависит от рода газа, давления и скорости обдува. Для плазмотронов в этой зависимости появляется дополнительный фактор - температура окружающего газа. В плазмотронах с продольным обдувом напряженность поля дуги имеет максимальное значение вблизи зоны подачи газа и постепенно уменьшается в направлении истечения плазмы. Значение Е для дуги, обдуваемой осевым потоком аргона при токах 100-300 А и расходе его 0,25- 1,23 г/с, составляет 4,5-14 В, уменьшаясь при росте тока и снижении расхода газа. Отсюда следует, что для получения необходимой мощности выходной электрод должен иметь необходимые длину и диаметр канала для размещения в нем электрической дуги длиной l. Как правило, длину электрода выбирают несколько большей, чем длина дуги, для предотвраще- ния выхода ее на торец электрода в неуправляемую зону. При конструировании плазменных технологических аппаратов следует учитывать, что напряженность электрического поля дуги растет с увеличением рабочего давления. Выбор схемы источников питания плазмотронов основан на анализе устойчивости дуги, находящейся в интенсивном потоке газа при наличии внешних магнитных полей. Из теории «малого возмущения» условие устойчивости дуги имеет вид

dUист/dI < dUд/dI,

здесь (Uист- статическое напряжение источника питания; Uд- статическое напряжение дуги.

Для устойчивой работы плазмотрона с падающей ВАХ необходимо иметь крутопадающую внешнюю характеристику источника питания. Это требование усиливается необходимостью строгого поддержания заданной мощности в технологическом процессе, что также требует жесткой стабилизации тока. Поэтому для питания плазмотронов используют следующие типы источников питания с крутопадающей внешней характеристикой: 1) источники на базе управляемого выпрямителя с автоматической стабилизацией тока; 2) установки с дросселями насыщения и магнитоуправляемыми трансформаторами; 3) параметрические источники тока, работающие на принципе резонанса напряжения в трехфазных электрических цепях.

Источник первого типа изготовляют индивидуально к каждой плазменной технологической установке, содержащей мощные высоковольтные плазмотроны; они включаются в общую схему автоматического управления технологическим процессом.

Источники второго и третьего типов стандартные и применяются для питания низковольтных плазмотронов, используемых в технологических процессах плазменного напыления, наплавки, резки, сварки, переплава металла и другие. Нелинейный характер ВАХ дуги приводит к возникновению высокочастотных колебаний, которые могут проникать в питающую сеть и отрицательно влиять на работу других потребителей. Поэтому для создания источников питания первого типа применяется схема со сглаживающим дросселем в цепи дуги (рис. 8.12). Сглаживающий дроссель в цепи дуги в значительной степени сужает частотный спектр возмущений, влияющих на электрическую систему в целом.

Зажигание дуги в плазмотронах производится путем пробоя межэлектродного промежутка осциллятором.

В плазмотронах с секционированным выходным электродом во время запуска анодную цепь питания подключают к первой, ближней к катоду секции, а затем по мере развития дуги последовательно переключают вниз по потоку плазмы и устанавливают на последнем аноде.

Рис. 5. Принципиальная схема ВЧИ-установки, работающей на частоте 1,76 МГц: 1 - анодный трансформатор; 2 - анодный выпрямитель

Высокочастотные плазменные установки питаются от ламповых преобразователей частоты. Принципиальная схема одного из них показана на рис. 5. Установка ВЧИ-63/1,76-ИГ-Л01 мощностью 103 кВт с частотой тока 1,76-2,5 МГц включает в себя анодный трансформатор с напряжением 0,38/1,4 кВ, анодный выпрямитель на тиратронах с напряжением 10,5 кВ и рассчитана на анодный ток 8 А и колебательную мощность 63 кВт. Колебательный контур, являющийся основной нагрузкой лампового генератора, образован эквивалентной индуктивностью плазмотрона L8и емкостью С7. Генераторная лампа является основным элементом источника питания, определяющим его КПД на уровне 0,6-0,7 и срок службы порядка 2000 ч.

5. Плазменные плавильные установки

Существует два основных направления использования плазмы в металлургии:

1) интенсификация известных процессов плавки с помощью плазменного подогрева или замены в металлургических агрегатах прежних источников теплоты плазменными;

2) создание принципиально новых металлургических агрегатов, а также плазмотехнологических процессов.

Существует несколько типов установок для обработки и получения металлов с помощью плазмотронов.

Наиболее перспективны те из них, в которых применяются плазмотроны прямого действия (анодом является ванна расплавленного металла). На этой схеме основаны плазменно-дуговые печи (ПДП) для выплавки и переплавки высококачественных металлов.

Плавка плазменной дугой в плазменных печах аналогична вакуумно-дугогой плавке с нерасходуемым вольфрамовым электродом, но плазменная дуга имеет существенные преимущества перед вакуумной: лучшая жесткость и стабильность дуги, большая длина дуги, предохранение металла от загрязнения вольфрамом электрода, более высокие напряжение и мощность.

Состав плазменной струи может задаваться по-разному, что позволяет поддерживать в печи практически любую атмосферу. Поскольку парциальные давления кислорода, водорода и азота в плазменной печи, работающей на инертном газе, невелики, то условия дегазации жидкого металла в ПДП приближаются к условиям дегазации в вакуумных печах, оборудованных сложными и дорогостоящими вакуумными системами. В отличие от вакуумной индукционной, дуговой и электронной плавки при плавке в ПДП наблюдается меньшее испарение ценных компонентов расплава, а применение плазмотронов позволяет получить высокие, легко регулируемые температуры и решить проблему стабильности и регулирования параметров процесса.

Плазменные и дуговые печи могут быть двух типов: плавильная печь с огнеупорной футеровкой и печь для переплава с водоохлаждаемым кристаллизатором (глухим или с вытягиванием слитка).

Рис. 6. Схема плазменной печи с керамическим тиглем: а - с одним плазмотроном в своде; б - с плазмотронами, установленными в стенках; 1 - кожух; 2 -- футеровка; 3 - свод; 4 - плазмотрон; 5 - подовый электрод

При выплавке металла в ПДП с огнеупорной футеровкой (рис. 8.14) форма печи и материал огнеупорной футеровки идентичны форме и материалу обычной дуговой печи. Водоохлаждаемый медный анод - подовый электрод5монтируется заподлицо с подиной и контактирует с переплавляемым металлом. Камера печи, из которой откачан воздух, заполняется вытекающим из плазмотрона4газом, и после достижения определенного давления начинается процесс плавки.

Плазменная дуга вначале проплавляет в шихте узкий канал, и стекающий вниз жидкий металл скапливается на подине ванны, после чего расплавляется весь металл. Дегазация и рафинирование металла особенно интенсивно происходят на поверхности ванны в месте контакта жидкого металла с высокотемпературной струей. Для плавки применяются плазмотроны постоянного и переменного токов различных мощностей. Промышленные печи СССР и ГДР емкостью 5, 10 и 30 т оснащены плазмотронами постоянного тока, работающими на прямой полярности. Наиболее ответственными и теплонапряженными деталями плазмотрона являются катод 2 и сопло 3, через кольцевой зазор между которыми вытекает плазмообразующий газ. При запуске печи первичная дуга зажигается осциллятором между катодом и соплом и затем сносится газом до соприкосновения с металлом печи. После этога пусковая дуга отключается и горит только рабочая дуга между катодом и расплавом в потоке плазмы. Длина дуги, а следовательно, напряжение на ней определяются размерами и конструкцией печи (а не плазмотрона), поэтому для плазмотрона существует один рабочий параметр - ток дуги. Некоторые данные по плавильным плазмотронам приведены в табл. 1.

Катоды изготовлены из торированного или лантанированного вольфрама. Прочие конструкции плавильных плазмотронов имеют дополнительные каналы для подачи в плавильное пространство других газов, необходимых для металлургического процесса. Напряжение на дуге 150-660 В, вводимая мощность в период расплава равна 12-15 МВт, удельный расход энергии составляет 625 кВт·ч/т.

Таблица 1

Параметры

Режим

Ток, А

800

2000

4000

5000

10000

Диаметр катода, мм

5-6

10-12

18-20

24-25

48-50

Расход аргона, л/с

1

2

3

4

6

При плазменно-дуговом переплаве с целью получения особо чистых металлов используются ПДП с кристаллизаторами (рис. 7).

Переплавляемый металл в виде штанги 6 с сечением любой формы подается с постоянной скоростью и оплавляется одной или несколькими плазменными дугами. Анодом в этом случае является поверхность ванны жидкого металла в кристаллизаторе. Стекающий со штанги металл прогревается плазменной струей и растекается по поверхности ванны. В контакте с газовой атмосферой металл рафинируется и затем затвердевает и вытягивается в виде слитка. Рабочее давление в этих печах может изменяться в широких пределах от избыточного (1ч3)105Па до пониженного 1- 10 Па.

Рис. 7. Схема печи для плавки в кристаллизаторе: 1 - слиток; 2 - кристаллизатор; 3 - корпус печи; 5 - плазмотрон; 4 - корпус печи; 5 - механизм подачи и вращения заготовки; 6 - переплавляемая заготовка; 7 - источник питания; 8 - механизм вытягивания слитка

По сравнению с печами других типов плазменные печи обладают рядом преимуществ: хорошая поверхность слитков; незначительная потеря металлом легирующих компонентов (Сr, Аl, Ti, Мn, Si и т. д.); возможность легирования металла газообразным азотом; гибкая связь между мощностью дуг и скоростью плавления слитка, позволяющая регулировать время пребывания металла в жидком состоянии.

Недостатками этих печей являются большая сложность и стоимость эксплуатации.

Для повышения экономичности плазменных печей разрабатываются плазмотроны с полыми катодами и схемы установок с комбинированным питанием постоянным и переменным током.

6. Установки плазменной резки и сварки металлов

Плазменная резка осуществляется путем выплавления и испарения металла в полости реза за счет энергии, выделяющейся в опорном пятне дуги и вносимой струей плазмы Энергетический баланс резки складывается из энергии дуги, химических реакций плазмы с металлом (если они возможны) и расхода энергии на расплавление, перегрев, испарение металла в полости реза, теплопередачу в твердый металл и унос с отработавшим потоком плазмы.

Отсюда следует, что процесс плазменной резки необходимо вести с максимальной мощностью и максимальной скоростью, обеспечиваемой вспомогательными операциями и применением ЭВМ. Это условие выполняется при выборе тока, напряжения, плазмообразующего газа и конструкции режущего плазмотрона. Ширина реза, определяющая экономичность процесса, связана с диаметром сопла плазмотрона, током дуги и скоростью перемещения плазмотрона.

При оптимальном соотношении между толщиной металла, мощностью дуги, диаметром сопла и скоростью резки струя плазмы погружается на всю толщину металла, а анодная область дуги располагается вблизи нижней кромки реза. Уменьшение мощности дуги, равно как и увеличение скорости продвижения плазмотрона, ведет к сужению полости реза.

Чрезмерное увеличение мощности и снижение скорости движения плазмотрона приводит к увеличению ширины реза, особенно в нижней его части, и перегреву всего разрезаемого металла. Коэффициент полезного действия плазменной резки возрастает с повышением мощности дуги и скорости движения плазмотрона, достигая 80-90 %, тепловой КПД принимают равным 40 %. Для увеличения мощности струи плазмы в пределах заданного тока дуги целесообразно принимать меры по повышению линейного градиента потенциала столба дуги применением высокоэнтальпийных плазмообразующих газов (азота, водорода, воздуха, углекислого газа, паров воды и др.) и интенсивным сжатием столба дуги соплом плазмотрона.

Рис. 8. Схема резки металла плазменной дугой (а) и плазменной струей (б): 1 - струя плазмы; 2 - дуга; 3 - катод; 4 - разрезаемый материал; 5 - источник питания; 6 - сопротивление, ограничивающее ток дежурной дуги

Режущий плазмотрон (рис. 8) с газовой стабилизацией дуги имеет стержневой вольфрамовый (или циркониевый) электрод 3, соосно расположенный в полости сопла 2. Стабилизирующий газ подается между ними и обеспечивает проникновение плазмы в глубину металла. При включении установки существует такая последовательность операций: включается подача воды, охлаждающей сопло и электрод, устанавливается необходимый расход газа; поджигается дежурная дуга, ток которой ограничивается сопротивлением 6, и возникает факел плазмы. При касании дежурным факелом кромки металла возникает цепь силовой плазменной дуги и начинается интенсивный процесс резки. При случайных погасаниях режущей дуги дежурная дуга восстанавливает процесс. При резке металла малых толщин применяется плазменная струй без включения металла в цепь тока (рис. 8, б).

Промышленные установки разных типов работают на токах до 1000 А при напряжении холостого хода до 350 В, обеспечивая скорость резки от 3-4 до 10 м/мин.

Наряду с мощными плазмотронами для автоматизированной машинной резки применяется плазморежущая аппаратура для переносных машин и ручной резки. Плазмотроны этих установок имеют низкое (до 180 В) напряжение холостого хода источника питания, ток - до 400 А.

Плазмотроны, выполняемые по схеме (рис. 8, а), являющейся основной при плазменной резке, рассчитывают на рабочий ток, а напряжение дуги формируется в полости реза. Вследствие этого вольт-амперные характеристики дуги здесь падающие, а источники питания имеют вертикальные или крутопадающие внешние ВАХ.

Высокая мощность плазмотрона и динамическое воздействие плазмы позволяют сваривать металлы разных толщин без подачи присадочной проволоки в сварочный шов, заваривать отогнутые кромки состыкованных деталей, сваривать детали без разделки кромок, осуществлять сварку металла большой толщины за один проход.

Применение вторичного фокусирующего газового потока, направленного под углом к оси плазмотрона, позволяет сконцентрировать нагрев на малой площади сварочной ванны. Применяемые газы обеспечивают защиту сварочного шва от воздействия атмосферы.

В зависимости от рода свариваемого металла применяют аргон, смеси аргона с гелием или водородом.

В состав установки входит источник питания, представляющий собой трехфазный двух полупериодный выпрямитель с регулируемым значением сварочного тока и крутопадающей ВАХ; высокочастотный генератор - осциллятор, служащий для возбуждения дежурной дуги между внутренним соплом и электродом в потоке аргона. Ток дежурной дуги ограничивается сопротивлением R, а емкость С служит для облегчения пробоя напряжением высокой частоты межэлектродного промежутка. Для начала процесса сварки необходимо коснуться свариваемого изделия светящейся частью струи плазмы. Тогда по цепи потечет сварочный ток, разогревающий металл в точке воздействия плазмы и образующий сварочную ванну, если бы в плазменную горелку подавался только один газ, как это делалось ранее то помимо чрезмерно большого расхода аргона технологические свойства плазменной дуги были бы недостаточны для выполнения качественной сварки. Столб дуги, окруженный потоками холодного газа, имеет возможность самопроизвольно перемещаться по поверхности сварочной ванны.

Для более четкого ориентирования плазмы в точку сварки и улучшения проникновения столба дуги в глубину сварочного шва с одновременным уменьшением расхода аргона применяются плазменные горелки. Здесь помимо аргона, подаваемого для зажигания дежурной дуги и образования плазмы, подается фокусирующий менее дефицитный газ2, производящий сжатие и фокусировку плазменной струи. При этом значительно повышается температура плазмы, что благоприятно влияет на процесс сварки. Защитный газ3предотвращает возможность попадания в зону сварки вредных компонентов из окружающей среды. Размеры электродов зависят от тока дуги и расхода газов, а расстояние между горелкой и деталью выбирают в пределах 80-15 мм из условия формирования качественного сварочного шва.

В цепях включения источника питания имеется блокировка, не позволяющая включить плазмотрон без подачи охлаждающей воды и газов.

Источники питания обеспечивают сварочный ток до 450-600 А при напряжении дуги 60-80 В и скорость сварки, например алюминиевого сплава толщиной 4 мм при токе 250 А и расходе плазмообразующего газа 5 л/мин, равную 70 м/ч.

В институте электросварки им. Е.О. Патона АН УССР разработан способ и создана аппаратура микроплазменной сварки на постоянном токе 0,5-10 А деталей из нержавеющей стали, меди, титана, никеля толщиной 0,2-0,6 мм.

7. Установки плазменного нанесения покрытий

Нанесение коррозионно-стойких, жаропрочных и других защитных покрытий осуществляется методами напыления и наплавки.

При напылении плазмой частицы наносимого материала расплавляются и разгоняются до высоких скоростей, а деталь, на которую наносится покрытие - подложка, разогревается до высоких температур. При доведении подложки до состояния плавления процесс напыления переходит в наплавку. Наносимый на подложку материал может представлять собой электропроводную проволоку или стержни, а также неэлектропроводный в холодном состоянии порошок.

Рис. 9. Схемы распыления нейтральной (а) и токоведущей (б) проволоки дуговой плазмой

При использовании проволоки или прутков процесс образования двухфазного напыляющего потока (плазма+наносимый материал в жидком состоянии) проходит по схемам, показанным на рис. 9.

На пути к подложке мелкие капли расплавленного материала несколько остывают, но предварительный перегрев позволяет донести их до подложки в жидком состоянии.

Напыление неэлектропроводных материалов производится путем ввода порошков в разрядный канал плазмотрона двумя способами: в дугу и в участок плазменной струи за дугой (рис. 10).

Рис. 10. Схема ввода напыляемого порошка в - столб плазменной дуги (а) и плазменную струю (б)

Различие в способах введения порошка определяется его теплофизическими свойствами. Тугоплавкие порошки вводятся в зону дуги, легко расплавляемые - в струю плазмы. При этом обеспечиваются разное время пребывания в зоне высоких температур и разный уровень теплового воздействия на частицу.

При плазменной наплавке изделие и наносимый материал включаются в цепь тока через токоограничивающие сопротивления (рис. 11). Скорость подачи материала и перемещения горелки по обрабатываемой поверхности согласуется с тепловой мощностью плазменной струи и контролируется технологом.

Совмещенные схемы плазменного напыления и наплавки позволяют получить прочно сплавленный с подложкой слой наплавленного материала. Размеры его можно регулировать в широких пределах (по ширине - от 8 до 45 мм, по глубине - от 0,5 до 6 мм), изменяя количество подаваемого присадочного материала и амплитуду движения плазмотрона перпендикулярно направлению его основного движения.

Рис. 11. Схема наплавки с присадочной проволокой: а - изделие под током: б - изделие обесточено; 1 - горелка; 2 - ввод плазмообразующего газа; 3 - канал для ввода защитного газа; 4 - ограничительное сопротивление; 5 - источник питания; 6 - балластное сопротивление; 7 - присадочная проволока

Компонентами установок плазменного нанесения покрытий являются дозаторы наносимого материала, источники электрического питания, система газоснабжения и охлаждения плазмотрона.

Кроме описанных имеется большое количество других плазменных процессов, в результате которых происходит модификация материала (сфероидизация частиц, травление и испарение поверхности). Описание этих процессов можно найти в специальной литературе.

Литература

1. Болотов А.В., Шепель Г.А. Электротехнологические установки. - АлмаАта: Мектеп, 1983.

2. Евтюкова И.П. и др. Электротехнологические промышленные установки. -- М.: Энергоиздат, 1982.

Размещено на Allbest.ru


Подобные документы

  • Превращение электрической энергии в другие виды с одновременным осуществлением технологических процессов. Электротермические установки и области их применения. Установки нагрева сопротивлением, контактной сварки, индукционного и диэлектрического нагрева.

    курс лекций [1,5 M], добавлен 03.10.2010

  • История разработки технологии лазерной сварки и резки металлов. Назначение и принцип работы широкоуниверсальных компактных лазерных машин серии МЛК4. Состав установки МЛК4-1. Технические параметры координатных столов. Габаритные размеры и масса машины.

    реферат [503,1 K], добавлен 05.01.2014

  • Обзор современного оборудования магнетронного распыления. Алгоритм технического обслуживания источника углеродной плазмы. Принцип работы установки УВНИПА-1-001. Основные неисправности в работе вакуумной системы. Расчет ключа на транзисторе VT2 КТ315Б.

    курсовая работа [135,3 K], добавлен 01.06.2012

  • Технологии, связанные с нанесением тонкопленочных покрытий. Расчет распределения толщины покрытия по поверхности. Технологический цикл нанесения покрытий. Принципы работы установки для нанесения покрытий магнетронным методом с ионным ассистированием.

    курсовая работа [1,4 M], добавлен 04.05.2011

  • Приминение бестигельной зонной плавки. Применение метода зонной плавки для глубокой очистки металлов, полупроводниковых материалов и других веществ. Оборудование для зонной плавки. Установки зонной плавки в контейнерах. Влияние электромагнитных полей.

    курсовая работа [831,7 K], добавлен 04.12.2008

  • История плазменной сварки, ее сущность и физические основы. Общая схема и технологические особенности плазменной сварки, Область применения, необходимое оборудование для производства сварочных швов. Преимущества и недостатки этого метода сварки.

    реферат [307,5 K], добавлен 14.09.2015

  • Возникновение и развитие сварки и резки металлов. Понятие, сущность и классификация способов дуговой резки. Рабочие инструменты, используемые при резке металлов. Организация рабочего места сварщика. Техника безопасности труда при дуговой сварке и резке.

    курсовая работа [508,4 K], добавлен 25.01.2016

  • Виды сварки с применением давления, механической и тепловой энергии. Основные параметры, используемые в процессах плазменной обработки. Физический принцип и технология плазменной резки металла. Ее основные преимущества. Схема режущего плазмотрона.

    реферат [1,1 M], добавлен 19.01.2015

  • Воздушно-плазменная резка металлов и сплавов, ее физическая основа, достоинства метода. Схемы плазмообразования, описание оборудования и отличительные особенности этого вида резки. Параметры, влияющие на скорость резки. Расчет экономической эффективности.

    доклад [713,0 K], добавлен 08.12.2010

  • Технологические возможности сварки. Характеристика свариваемого металла. Выбор режима сварки и электродов. Описание рабочего места сварщика. Источник питания сварочной дуги. Совершенствование сварочного производства, определение его себестоимости.

    курсовая работа [28,2 K], добавлен 15.05.2014

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.