Измерительные приборы технологических агрегатов металлургической промышленности

Характеристика и основные разновидности жидкостных стеклянных термометров. Особенности и классификация манометрических термометров. Приборы для бесконтактного измерения температуры тел. Термометры сопротивления, основные области применения и преимущества.

Рубрика Производство и технологии
Вид реферат
Язык русский
Дата добавления 23.05.2016
Размер файла 27,8 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

Содержание

Введение

1. Методы и технические средства измерения температуры

1.1 Термометры расширения

1.2 Манометрические термометры

1.3 Пирометры

1.4 Термометры сопротивления

Вывод

Список литературы

Введение

Высокопроизводительная, экономичная и безопасная работа технологических агрегатов металлургической промышленности требует применения современных методов и средств измерения величин, характеризующих ход производственного процесса и состояние оборудования. Автоматический контроль является логически первой ступенью автоматизации, без успешного функционирования которых невозможно создание эффективных АСУ ТП.

В истории развития мировой техники можно выделить три основных направления: создание машин-двигателей (водяных, ветряных, паровых, внутреннего сгорания, электрических), которые освободили человека от тяжелого физического труда; создание машин-орудий, т.е. станков и технологического оборудования различного назначения; создание устройств для контроля и управления машинами-двигателями, машинами-орудиями и технологическими процессами.

В современной техники для решения задач автоматического контроля все шире применяют полупроводники, лазеры, радиоактивные материалы, ЭВМ. Металлургическая промышленность является одной из основных отраслей народного хозяйства, в ней занято большое количество трудящихся, обслуживающих мощные и сложные агрегаты. При высоких производительностях даже самые небольшие ошибки управления агрегатом приводят к большим абсолютным потерям металла, топлива, электроэнергии. Поэтому возрастает роль автоматического контроля и управления производственными процессами. Все основные металлургические агрегаты (доменные и мартеновские печи, прокатные станы) оснащены различными системами автоматического контроля и управления и в значительной степени механизированы.

Основными параметрами (величинами), которые необходимо контролировать при работе металлургических агрегатов, является температура различных сред; расход, давление, состав газов и жидкостей; состав металлов; геометрические размеры проката. Автоматическими приборами измеряется температура: в рабочих пространствах металлургических печей, выплавляемого и нагреваемого металла, элементов огнеупорной кладки, конструкции регенераторов и рекуператоров, а так же продуктов сгорания топлива.

1. Методы и технические средства измерения температуры

1.1 Термометры расширения

Жидкостные стеклянные термометры - самые старые устройства для измерения температуры. Жидкостные стеклянные термометры - используют термометрическое свойство теплового расширения тел. Действие термометров основано на различии коэффициентов теплового расширения термометрического вещества и оболочки, в которой она находится (термометрического стекла или реже кварца).

Жидкостный термометр состоит из стеклянных баллона, капиллярной трубки и запасного резервуара Термометрическое вещество заполняет баллон и частично капиллярную трубку. Свободное пространство в капиллярной трубке и в запасном резервуаре заполняется инертным газом или может находиться под вакуумом. Запасной резервуар или выступающая за верхним делением шкалы часть капиллярной трубки служит для предохранения термометра о порчи при чрезмерном перегреве.

В качестве термометрического вещества чаще всего применяют химически чистую ртуть. Она не смачивает стекла и остается жидкой в широком интервале температур. Кроме ртути в качестве термометрического вещества в стеклянных термометрах применяются и другие жидкости, преимущественно органического происхождения. Например: метиловый и этиловый спирт, керосин, пентан, толуол, галлий, амальгама таллия.

Основные достоинства стеклянных жидкостных термометров - простота употребления и достаточно высокая точность измерения даже для термометров серийного изготовления. К недостаткам стеклянных термометров можно отнести: плохую видимость шкалы (если не применять специальной увеличительной оптики) и невозможность автоматической записи показаний, передачи показаний на расстояние и ремонта.

Стеклянные жидкостные термометры имеют весьма широкое применение и выпускаются следующих основных разновидностей:

- технические ртутные, с вложенной шкалой, с погружаемой в измеряемую среду нижней частью, прямые и угловые;

- лабораторные ртутные, палочные или с вложенной шкалой, погружаемые в измеряемую среду до отсчитываемой температурной отметки, прямые, небольшого наружного диаметра;

- жидкостные термометры (не ртутные);

- повышенной точности и образцовые ртутные термометры;

- электроконтактные ртутные термометры с вложенной шкалой, с впаянными в капиллярную трубку контактами для разрывания (или замыкания) столбиком ртути электрической цепи;

- специальные термометры, в том числе максимальные (медицинские и другие), минимальные, метеорологические и другого назначения.

У лабораторных и других термометров, градуируемых и предназначенных для измерения при погружении в измеряемую среду до отсчитываемого деления, могут возникать систематические погрешности за счет выступающего столбика термометра. Если капиллярная трубка будет погружена в измеряемую среду не полностью, то температура выступающей части капиллярной трубки будет отличаться от температуры измеряемой среды, в результате возникнет погрешность измерения.

1.2 Манометрические термометры

Действие манометрических термометров основано на использовании зависимости давления вещества при постоянном объеме от температуры. Замкнутая измерительная система манометрического термометра состоит из чувствительного элемента, воспринимающего температуру измеряемой среды, металлического термобаллона, рабочего элемента манометра, измеряющего давление в системе, длинного соединительного металлического капилляра. При изменении температуры измеряемой среды давление в системе изменяется, в результате чего чувствительный элемент перемещает стрелку или перо по шкале манометра, отградуированного в градусах температуры. Манометрические термометры часто используют в системах автоматического регулирования температуры, как бесшкальные устройства информации (датчики).

Манометрические термометры подразделяют на три основных разновидности: - жидкостные, в которых вся измерительная система (термобаллон, манометр и соединительный капилляр) заполнены жидкостью;

- конденсационные, в которых термобаллон заполнен частично жидкостью с низкой температурой кипения и частично - ее насыщенными парами, а соединительный капилляр и манометр - насыщенными парами жидкости или, чаще, специальной передаточной жидкостью; - газовые, в которых вся измерительная система заполнена инертным газом.

Достоинствами манометрических термометров являются сравнительная простота конструкции и применения, возможность дистанционного измерения температуры и возможность автоматической записи показаний. К недостаткам манометрических термометров относятся: относительно невысокая точность измерения (класс точности 1.6; 2.5; 4.0 и реже 1.0); небольшое расстояние дистанционной передачи показаний (не более 60 метров) и трудность ремонта при разгерметизации измерительной системы.

Манометрические термометры не имеют большого применения на тепловых электрических станциях. В промышленной теплоэнергетике они встречаются чаще, особенно в случаях, когда по условиям взрыво - или пожаробезопасности нельзя использовать электрические методы дистанционного измерения температуры.

Поверка показаний манометрических термометров производится теми же методами и средствами, что и стеклянных жидкостных.

1.3 Пирометры

Пирометр -- прибор для бесконтактного измерения температуры тел. Принцип действия основан на измерении мощности теплового излучения объекта измерения преимущественно в диапазонах инфракрасного излучения и видимого света. Один из первых пирометров изобрёл Питер ван Мушенбрук. Изначально термин использовался применительно к приборам, предназначенным для измерения температуры визуально, по яркости и цвету сильно нагретого (раскаленного) объекта. В настоящее время смысл несколько расширен, в частности, некоторые типы пирометров (такие приборы правильнее называть инфракрасные радиометры) измеряют достаточно низкие температуры (0 °C и даже ниже). Развитие современной пирометрии и портативных пирометров началось с середины 60-х годов прошлого столетия и продолжается до сих пор. Именно в это время были сделаны важнейшие физические открытия, позволившие начать производство промышленных пирометров с высокими потребительскими характеристиками и малыми габаритными размерами. Первый портативный пирометр был разработан и произведен американской компанией Wahl в 1967 году. Новый принцип построения сравнительных параллелей, когда вывод о температуре тела производился на основе данных инфракрасного приемника, определяющего количество излучаемой телом тепловой энергии, позволил существенно расширить границы измерения температур твердых и жидких тел. Пирометры можно разделить по нескольким основным признакам: - Оптические. Позволяют визуально определять, как правило, без использования специальных устройств, температуру нагретого тела, путём сравнения его цвета с цветом эталонной нити. - Радиационные. Оценивают температуру посредством пересчитанного показателя мощности теплового излучения. Если пирометр измеряет в широкой полосе спектрального излучения, то такой пирометр называют пирометром полного излучения. - Цветовые (другие названия: мультиспектральные, спектрального отношения) - позволяют делать вывод о температуре объекта, основываясь на результатах сравнения его теплового излучения в различных спектрах. Пирометры применяют: для дистанционного определения температуры объектов в промышленности, быту, сфере ЖКХ, на предприятиях, где большое значение приобретает контроль температур на различных технологических этапах производства (сталелитейная промышленность, нефтеперерабатывающая отрасль). Пирометры могут выступать в роли средства безопасного дистанционного измерения температур раскаленных объектов, что делает их незаменимыми для обеспечения должного контроля в случаях, когда физическое взаимодействие с контролируемым объектом невозможно из-за высоких температур. Их можно применять в качестве теплолокаторов (усовершенствованные модели), для определения областей критических температур в различных производственных сферах - Теплоэнергетика - для быстрого и точного контроля температуры на участках не доступных или мало доступных для другого вида измерения. - Электроэнергетика - контроль и пожарная безопасность, эксплуатация объектов (железнодорожный транспорт -- контроль температуры букс и ответственных узлов грузовых и пассажирских вагонов). - Лабораторные исследования - при проведении исследований активных веществ в активных средах, а также в тех случаях, при которых контактный метод нарушает чистоту эксперимента (например, тело настолько мало что при измерении контактным методом потеряет существенную часть теплоты, или просто слишком хрупкое для такого типа измерения). Применяется в космонавтике (контроль, опыты) - Строительство - пирометры применяют для определения теплопотерь в зданиях жилого и промышленного назначения, на теплотрассах, для эффективного нахождения прорывов теплоизоляционной оболочки. - Бытовое применение - измерение температуры тела, пищи при приготовлении, и многое другое. - Отдельная большая область применения пиросенсоров - датчики движения в системах охраны зданий. Датчики реагируют на изменение инфракрасного излучения в помещении.

1.4 Термометры сопротивления

В 1821 г. немецкий физик Томас И. Зеебек (1770-1831) открыл термоэлектрический эффект (названный его именем) и положил начало использованию термопар для измерения температуры. Он же обнаружил, что разные участки солнечного спектра имеют разную температуру. В том же году английский химик и физик, основатель электрохимии Гемфри Дэви (1778-1829) обнаружил, что металлы имеют положительный температурный эффект электрического сопротивления, а платина более других подходит для измерения температуры. Французский физик, автор многих книг и 529 научных публикаций Антуан Сезар Беккерель (1788-1878), известный своими трудами по термоэлектричеству, создал термопары для измерения температуры почвы, воздуха, животных и растений. В 1826 г. Беккерель впервые использовал термопару платина-палладий и с ее помощью в 1835 г. вместе с сотрудником Бреше измерил температуру различных частей человеческого тела.

Термометр сопротивления - электронный прибор, предназначенный для измерения температуры. Принцип действия основан на зависимости электрического сопротивления металлов, сплавов и полупроводниковых материалов от температуры. При применении полупроводниковых материалов его обычно называют термосопротивлением, терморезистором или термистором.

Металлический термометр сопротивления - Представляет собой резистор, выполненный из металлической проволоки или плёнки и имеющий известную зависимость электрического сопротивления от температуры. Наиболее распространённый тип термометров сопротивления - платиновые термометры. Это объясняется тем, что платина имеет стабильную и хорошо изученную зависимость сопротивления от температуры и высокую стойкость к окислению, что обеспечивает их высокую воспроизводимость. Эталонные термометры изготавливаются из платины высокой чистоты с температурным коэффициентом 0,003925. В качестве рабочих средств измерений применяются также медные и никелевые термометры. Действующий стандарт на технические требования к рабочим термометрам сопротивления: ГОСТ 6651-2009 (Государственная система обеспечения единства измерений. Термопреобразователи сопротивления из платины, меди и никеля. Общие технические требования и методы испытаний). В стандарте приведены диапазоны, классы допуска, таблицы НСХ и стандартные зависимости сопротивление-температура. Стандарт соответствует международному стандарту МЭК 60751 (2008). В стандарте отказались от нормирования номинальных сопротивлений при нормальных условиях. Начальное сопротивление изготовленного терморезистора может быть любым. Промышленные платиновые термометры сопротивления в большинстве случаев считаются имеющими стандартную зависимость сопротивление-температура (НСХ), что обусловливает погрешность не более 0,1 °C (класс АА при 0 °C). Термометры сопротивления, изготовленные в виде напыленной на подложку плёнки, отличаются повышенной вибропрочностью, но меньшим диапазоном рабочих температур. Максимальный диапазон, в котором установлены классы допуска платиновых термометров для проволочных чувствительных элементов, составляет 660 °C (класс С), для плёночных -- 600 °C (класс С).

Термистор - полупроводниковый резистор, электрическое сопротивление которого зависит от температуры. Для термисторов характерны большой температурный коэффициент сопротивления, простота устройства, способность работать в различных климатических условиях при значительных механических нагрузках, стабильность характеристик во времени. Они могут иметь весьма малые размеры, что существенно для измерений температуры малых объектов. Обычно термисторы имеют отрицательный температурный коэффициент сопротивления, в отличие от металлов.

Применение термометров сопротивления:

Термометры сопротивления используются, как правило, для измерения температуры в среде в диапазоне от -263 °C до +1000 °C. Важно, чтобы конструкция такого термистора была чувствительной и стабильной, чего будет достаточно для проведения замеров необходимой точности в определенном диапазоне температур при определенных условиях использования термометра (к примеру, благоприятные условия или неблагоприятные, такие как вибрации, агрессивные среды и т.п.).

Как правило, терморезисторы работают вместе с логометрами, потенциометрами и измерительными мостами. От точности работы этих вспомогательных приборов зависит точность показаний термометра сопротивления. Существуют также и различные виды таких термометров: поверхностные, ввинчивающиеся, вставные, с присоединительными проводами и байонетными соединениями.

Преимущества термометров сопротивления:

- Высокая точность измерений (обычно лучше ±1 °C), может доходить до 0,13 тысячных °C (0,00013).

- Возможность исключения влияния изменения сопротивления линий связи на результат измерения при использовании 3- или 4-проводной схемы измерений.

- Практически линейная характеристика.

Недостатки термометров сопротивления:

- Относительно малый диапазон измерений (по сравнению с термопарами)

- Дороговизна (в сравнении с термопарами из неблагородных металлов, для платиновых термометров сопротивления типа ТСП).

- Требуется дополнительный источник питания для задания тока через датчик.

В металлургической практике для измерения температур до 6500С применяются термометры сопротивления (ТС), принцип действия которых основан на использовании зависимости электрического сопротивления вещества от температуры. Зная данную зависимость, по изменению величины сопротивления термометра судят о температуре среды, в которую он погружен. Выходным параметром устройства является электрическая величина, которая может быть измерена с весьма высокой точностью (до 0.020С), передана на большие расстояния и непосредственно использована в системах автоматического контроля и регулирования.

В качестве материалов для изготовления чувствительных элементов ТС используются чистые металлы: платина, медь, никель, железо и полупроводники.

Изменение электросопротивления данного материала при изменении температуры характеризуется температурным коэффициентом сопротивления , который вычисляется по формуле:

термометр стеклянный сопротивление температура

б=

где t - температура материала,?;

и - электросопротивление соответственно при 0 ? и температуре t, Ом.

Сопротивление полупроводников с увеличением температуры резко уменьшается, т. е. они имеют отрицательный температурный коэффициент сопротивления практически на порядок больше, чем у металлов. Полупроводниковые термометры сопротивления (ТСПП) в основном применяются для измерения низких температур (1.5 400 К).

Достоинствами ТСПП являются небольшие габариты, малая инерционность, высокий коэффициент б. Однако они имеют и существенные недостатки:

- нелинейный характер зависимости сопротивления от температуры; - отсутствие воспроизводимости состава и градуировочной характеристики, что исключает взаимозаменяемость отдельных ТС данного типа. Это приводит к выпуску ТСПП с индивидуальной градуировкой.

Вывод

Практический опыт построения систем регулирования промышленных объектов показывает, что главное значение здесь приобретает не задача выбора алгоритмов функционирования регуляторов, а задачи построения оптимальной схемы получения регулятором текущей информации о состоянии объекта регулирования, которое отражает характер взаимодействий между двумя функциональными основными элементами системы регулирования - объектом и регулятором. Высокопроизводительная, экономичная и безопасная работа технологических агрегатов металлургической промышленности требует применения современных методов и средств измерения величин, характеризующих ход производственного процесса и состояние оборудования. Температура является одним из основных параметров, подлежащих контролю со стороны систем автоматического управления металлургическими процессами. В условиях агрессивных сред и высоких температур, наиболее подходящими для использования являются фотоэлектрические пирометры. Они позволяют контролировать температуру от 100 до 6000 0С и выше. Одним из главных достоинств данных устройств является отсутствие влияния температурного поля нагретого тела на измеритель, так как в процессе измерения они не вступают в непосредственный контакт друг с другом. Так же фотоэлектрические пирометры обеспечивают непрерывное автоматическое измерение и регистрацию температуры, что позволяет использовать их в системах автоматического управления процессами без дополнительных затрат на приобретение и обслуживание устройств сопряжения.

Список литературы

1. Преображенский В.П. Теплотехнические измерения и приборы. М.: Энергия, 1978, - 704 с.

2. Чистяков С. Ф., Радун Д.В. Теплотехнические измерения и приборы. М.: Высшая школа, 1972, - 392 с.

3. ГОСТ Р 8.625-2006 «Термометры сопротивления из платины, меди и никеля». М.:, Стандартинформ, 2006

Размещено на Allbest.ru


Подобные документы

  • Контроль температуры различных сред. Описание принципа бесконтактного метода измерения температуры. Термометры расширения и электрического сопротивления. Манометрические и термоэлектрические термометры. Люминесцентный метод измерения температуры.

    курсовая работа [93,1 K], добавлен 14.01.2015

  • Решение задач контроля и регулирования нефтяных месторождений с помощью глубинных манометров. Требования к глубинным манометрам. Необходимость и особенности измерения температуры. Недостатки скважинных термометров. Необходимость измерения расхода.

    контрольная работа [327,0 K], добавлен 15.01.2014

  • Характеристика металлического термометра сопротивления, его преимущества и недостатки. Области применения современных датчиков температуры. Определение интегрального показателя качества термометра сопротивления, сравнение его старого и нового видов.

    контрольная работа [30,4 K], добавлен 20.09.2011

  • Предпосылки для развития отрасли, выпускающей контрольно-измерительные приборы. Изобретения известных учёных в области измерительных приборов. Вольтметры и осциллографы, их назначение и области применения, классификация, принцип действия, конструкции.

    практическая работа [229,6 K], добавлен 05.10.2009

  • История компании "Роснефть", ее основные виды деятельности, конкурентные преимущества. Общая характеристика компрессорной станции. Контрольно-измерительные приборы и аппаратура, схема их работы и основные технические характеристики, модернизация датчика.

    контрольная работа [41,3 K], добавлен 04.12.2012

  • Исследование методических печей с подвижными балками. Классификация средств измерения температуры контактным методом. Электрические контактные термометры. Выбор термоэлектрических термометров. Контроль температуры рабочего пространства методической печи.

    курсовая работа [1,3 M], добавлен 22.01.2015

  • Классификация контрольно-измерительных приборов. Основные понятия техники измерений. Основные виды автоматической сигнализации. Требование к приборам контроля и регулирования, их обслуживание. Приборы контроля температуры, частоты вращения, давления.

    презентация [238,0 K], добавлен 24.10.2014

  • Источники теплового излучения. Классификация пирометров, сфера их применения и технические характеристики. Показатель визирования. Схема яркостного пирометра с исчезающей нитью накала. Принцип действия болометра. Сферы применения и действие тепловизоров.

    курсовая работа [297,9 K], добавлен 05.05.2016

  • Основные понятия и характеристики величин: угол, градус, минута, секунда, угловая минута, их применение для решения логистических задач в астрономии, физике, картографии, метрологии, в технической литературе. Приборы и способы измерения угловых размеров.

    контрольная работа [331,5 K], добавлен 30.09.2013

  • Области применения абсорбционных процессов в химической и смежных отраслях промышленности. Виды установок осушки газа с применением гликолей. Контрольно-измерительные приборы и автоматизация процесса. Расчет освещения и общего сопротивления заземления.

    дипломная работа [181,7 K], добавлен 04.05.2013

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.