Газоперекачивающий агрегат

Назначение и описание компрессорной станции. Система подготовки транспортируемого газа на станции. Назначение и технические данные газоперекачивающего агрегата, устройство и работа. Охлаждение транспортируемого газа, пожаротушение и водоснабжение.

Рубрика Производство и технологии
Вид отчет по практике
Язык русский
Дата добавления 27.03.2016
Размер файла 3,6 M

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ

Федеральное государственное бюджетное образовательное учреждение высшего образования

"ТЮМЕНСКИЙ ГОСУДАРСТВЕННЫЙ НЕФТЕГАЗОВЫЙ УНИВЕРСИТЕТ"

ИНСТИТУТ ГЕОЛОГИИ И НЕФТЕГАЗОДОБЫЧИ

Кафедра Техносферная безопасность

направление: 20.04.01 Техносферная безопасность

профиль: Безопасность технологических процессов и производств

квалификация: магистр

РАБОЧАЯ ПРОГРАММА

дисциплина: Производственная практика

Газоперекачивающий агрегат

Тюмень

2016

Содержание

Введение

1. Назначение и описание компрессорной станции

1.1 Система подготовки транспортируемого газа на КС

1.2 Газоперекачивающий агрегат ГПА-10

1.2.1 Назначение и технические данные газоперекачивающего агрегата

1.2.2 Устройство и работа агрегата

2. Техническое обслуживание и ремонт ГПА

3. Система охлаждения транспортируемого газа на КС

4. Система пожаротушения и водоснабжения

Список использованной литературы

Введение

Одной из составляющих энергетики промышленно развитых стран, в том числе и России, - является газовая промышленность. Базу данной отрасли представляют месторождения природного газа, которые, как правило удалены от основных потребителей их продукции энергетических и химических производств, предприятий черный металлургии и крупных коммунальных хозяйств - на многие сотни километров. Это создает проблему доставки газа от мест его добычи к объектам потребления газового сырья и топлива.

На существующем этапе технического прогресса основным средством доставки газа в больших объемах на длительные расстояния является трубопроводный транспорт.

Протяжение современных газопроводов достигает несколько тысяч километров, а всей газотранспортный системы страны (ГТС) - порядка 150 тыс.км.

Все основные месторождения газа в России расположены на значительном расстоянии от крупных потребителей. Подача газа к ним осуществляется по магистральным газопроводам различного диаметра. При движении газа из-за разного рода гидравлических сопротивлений по длине трубопровода происходит падение его давления, что приводит к снижению пропускной способности газопровода. Поэтому транспортировать газ в достаточном количестве и на большие расстояния только за счет естественного пластового давления нельзя. Для этой цели необходимо сооружать компрессорные станции (КС), устанавливаемые по трассе газопровода через каждые 100-150 км.

Компрессорные станции является сложным комплексом инженерных сооружений, служащим не только для транспорта газа по трубопроводам но и обеспечивающим данному виду транспорта достаточно высокую степень надежности и безопасности.

Цель прохождения практики - закрепление знаний, полученных в процессе обучения в институте, их углубление, путем всестороннего изучения работы компрессорной станции, а также овладение производственными навыками.

Задачи производственной практики: ознакомление с технологическими процессами подготовки, компримирования и охлаждения газа; изучение систем маслоснабжения, водоснабжения и пожаротушения; знакомство с организацией ремонта, монтажа и обслуживания оборудования.

1. Назначение и описание компрессорной станции

Компрессорная станция - неотъемлемая и составная часть магистрального газопровода, обеспечивающая основные технологические процессы по подготовке и транспорту газа.

Как известно, все основные месторождения газа расположены на значительном расстоянии от крупных потребителей. Подача газа к ним осуществляется по магистралям газопроводам различного диаметра. При движении газа из-за разного рода гидравлических сопротивлений по длине трубопровода происходит падение его давления, что приводит к снижению пропускной способности газопровода. Поэтому транспортировать газ в достаточном количестве и на большие расстояния только за счет естественного пластового давления нельзя.

Рис. 1.1 - Схема газопровода и изменения давления и температуры газа вдоль трассы

Для поддержания заданного расхода транспортируемого газа и обеспечения его оптимального давления в трубопроводе по трассе газопровода устанавливаются компрессорные станции (КС). Современная компрессорная станция это сложное инженерное сооружение, обеспечивающее основные технологические процессы по подготовке и транспорту природного газа. Принципиальная схема расположения КС вдоль трассы магистрального газопровода приведена на рис.1.1, где одновременно схематично показаны изменения давления и температуры газа между компрессорными станциями.

Как показывает схема рис.1.1, компрессорная станция неотъемлемая и составная часть магистрального газопровода обеспечивающая транспорт газа с помощью энергетического оборудования, установленного на КС. Она служит управляющим элементом в комплексе сооружений, входящих в магистральный газопровод. Именно параметрами работы КС определяется режим работы газопровода. Наличие КС позволяет регулировать режим работы газопровода при колебаниях потребления газа, максимально используя при этом аккумулирующую способность газопровода. На магистральных газопроводах различают три основных типа КС: головные, линейные и дожимные.

Головные компрессорные станции (ГКС) устанавливаются непосредственно после газового месторождения и предназначены они для поддержания необходимого давления технологического газа для его дальнейшего транспорта по магистральным газопроводам, когда в результате разработки газового месторождения пластовое давление в нём снижается.

Характерной особенностью ГКС является высокая степень сжатия на станции, обеспечиваемая последовательной работой нескольких газоперекачиваемых агрегатов (ГПА). На ГКС предъявляются повышенные требования к качеству подготовки технологического газа - очистке от механических примесей, осушке от газового конденсата и влаги, а так же удаления, при их наличии, побочных продуктов: сероводорода, углекислоты и т.д.

Линейные компрессорные станции устанавливаются на магистральных газопроводах, как правило, через 100-150 км. Назначением КС является компримирование поступающего на станцию природного газа, с давления входа до давления выхода, обусловленных проектными данными, для обеспечения постоянного и заданного расхода газа по магистральному газопроводу. Крупные магистральные газопроводы строятся в основном на давления Р=5.5 и 7.5 МПа.

Дожимные компрессорные станции (ДКС) устанавливаются на подземных хранилищах газа (ПХГ).

Назначением ДКС является подача газа в подземное хранилище газа от магистрального газопровода и отбор природного газа из подземного хранилища (как правило, в зимний период времени) для последующей подачи его в магистральный газопровод или непосредственно потребителям газа. ДКС строятся также и на газовом месторождении при падении пластового давления ниже давления в магистральном трубопроводе.

Отличительной особенностью ДКС от линейных КС является высокая степень сжатия 24, улучшенная подготовка технологического газа (осушители, сепараторы, пылеуловители), поступающего из подземного хранилища, с целью его очистки от механических примесей и влаги, выносимой с газом.

Около потребителей газа строятся также газораспределительные станции (ГРС), где газ редуцируется до необходимого давления (Р = 1,2; 0,6; 0,3 МПа) перед подачей его в сети газового хозяйства. На рис. 1.2 показана принципиальная схема компоновки основного оборудования компрессорной станции, состоящей из 3х ГПА.

Рис. 1.2 - Принципиальная схема компоновки основного оборудования компрессорной станции

В соответствии с рис. 1.2, в состав основного оборудования входят: 1 узел подключения КС к магистральному газопроводу; 2 камеры запуска и приема очистного устройства магистрального газопровода; 3 - установка очистки технологического газа, состоящая из пылеуловителей и фильтр сепараторов; 4 - установка охлаждения технологического газа; 5 - газоперекачивающие агрегаты; 6 - технологические трубопроводы обвязки компрессорной станции; 7 - запорная арматура технологических трубопроводов обвязки агрегатов, 8 - установка подготовки пускового и топливного газа, 9 - установка подготовки импульсного газа; 10 - различное вспомогательное оборудование; 11 - энергетическое оборудование; 12 - главный щит управления и система телемеханики, 13 - оборудование электрохимической защиты трубопроводов обвязки КС.

Оборудование и обвязка компрессорных станций (см. рис 1.2) приспособлены к переменному режиму работы газопровода. количество газа, перекачиваемого через КС, регулируется включением и отключением работающих газоперекачивающих агрегатов, изменением частоты вращения силовой турбины ГПА с газотурбинным приводом и т.п. Однако во всех случаях стремятся к тому, чтобы необходимое количество газа перекачать меньшим числом агрегатов, что приводит, естественно, к меньшему расходу топливного газа на нужды перекачки и, как следствие к увеличению подачи товарного газа по газопроводу.

Регулирование пропускной способности газопровода отключением работы отдельных КС при расчетной производительности газопровода обычно не практикуется из-за перерасхода энергозатрат на компримирование газа при такой схеме работы. И только в тех случаях, когда подача газа по газопроводу заметно снижается, сравнительно с плановой (например, летом), отдельные КС могут быть временно остановлены. Все ранее сказанное свидетельствует о том, что транспорт газа на большие расстояния представляет собой весьма сложную техническую задачу, от решения которой во многом зависит развитие газовой промышленности и экономики страны в целом.

2 Технологическая схема компрессорной станции

Компрессорная станция в зависимости от числа ниток магистральных газопроводов может состоять из одного, двух и более компрессорных цехов, оборудованных одним или несколькими типами ГПА. Как правило, каждый цех КС работает на свой газопровод. Из-за технологических соображений транспорта газов, компрессорные цеха могут быть соединены специальными перемычками, на входе и выходе станции.

Типовая технологическая обвязка компрессорного цеха предназначена для обеспечения приема на станцию транспортируемого по газопроводу технологического газа, его очистки от механических примесей и капельной жидкости в специальных пылеуловителях и фильтр-сепараторах, распределения потоков газа по газоперекачивающим агрегатам с обеспечением их оптимальной загрузки, возможности охлаждения газа после его компримирования перед подачей в газопровод, вывода цеха для работы на "стационарное кольцо" при пуске и остановке, а так же транзитного прохода транспортируемого газа по магистральному газопроводу, минуя КС. Кроме того, технологическая обвязка компрессорного цеха должна обеспечивать возможность сброса газа в атмосферу из всех его технологических газопроводов через специальные свечные краны.

Газ высокого давления из магистральных газопроводов через входные шаровые краны узла подключения по всасывающим газопроводам-шлейфам поступает через входные коллекторы на батареи циклонных пылеуловителей (6 пылеуловителей производительностью 20 млн. м3/сут каждый), где очищается от механических и жидких примесей. Далее газ проходит вторую ступень очистки, в качестве которой используют фильтры-сепараторы. После очистки газ попадает во всасывающий коллектор газоперекачивающих агрегатов, где сжимается до проектного избыточного давления. Компримированный газ по трубопроводам направляется к батарее из 11 аппаратов воздушного охлаждения газа. Охлажденный до 18 °С газ по выходным шлейфам направляется к узлу подключения, попадая через краны в магистральный газопровод.

К основным объектам КС относят:

площадки приема и пуска очистных устройств;

установки очистки газа от механических примесей и влаги;

компрессорный цех;

коллекторы газа высокого давления;

узел охлаждения газа.

Объектами вспомогательного назначения являются:

узел редуцирования давления пускового, топливного газа и газа для собственных нужд;

трансформаторная подстанция;

котельная;

склад горюче-смазочных материалов;

ремонтно-эксплуатационный блок;

служебно-эксплуатационный блок;

служба связи;

объекты водоснабжения, канализации;

очистные сооружения.

1.1 Система подготовки транспортируемого газа на КС

Система подготовки газа служит для очистки его от механических примесей и жидкости перед подачей потребителю в соответствии с ГОСТ 5542-87.

На КС для очистки газа применяют циклонные пылеуловители (Рис. 3.1), работающие на принципе использования инерционных сил для улавливания взвешенных частиц. Циклонный пылеуловитель представляет собой сосуд цилиндрической формы, рассчитанный на рабочее давление в газопроводе, со встроенными в него циклонами. Он состоит из 2х секций: нижней отбойной и верхней осадительной, где происходит окончательная очистка газа от примесей.

Рис. 3.1. Циклонный пылеуловитель

Аппарат работает следующим образом: Газ через входной кран 2 поступает к распределителю и к циклонам, которые неподвижно закреплены в решетке. В цилиндрической части циклонных труб газ совершает вращательное движение вокруг внутренней оси труб циклона. Под действием центробежной силы твердые частицы и капли жидкости отбрасываются от центра к периферии и по стенке стекают в коническую часть циклонов и далее в нижнюю секцию пылеуловителя. Газ после циклонных трубок поступает в верхнюю осадительную секцию, а затем через кран 3 выходит из аппарата.

1.2 Газоперекачивающий агрегат ГПА-10

1.2.1 Назначение и технические данные газоперекачивающего агрегата

Газоперекачивающий агрегат ГПА-10 предназначен для сжатия природного газа на компрессорных станциях магистральных газопроводов до заданной величины.

Таблица 4.1.1 - Технические данные ГПА-10

Наименование

Технические данные

1

Индекс газоперекачивающего агрегата

ГПА-10

2

Номинальная мощность при температуре наружного воздуха +15°С, барометрическом давлении 760 мм.рт.ст., сопротивлении всасывающего тракта 400 мм.вод.ст.

10000 кВт

3

Индекс двигателя

ДР59Л

4

Компрессор низкого давления (КНД)

-тип

-число ступеней

осевой

7

5

Компрессор высокого давления (КВД)

-тип

-число ступеней

осевой

9

6

Камера сгорания

-тип

-количество жаровых труб

трубчато-секционный

10

7

Турбина высокого давления (ТВД)

-тип

-число ступеней

осевая, реактивная

2

8

Турбина низкого давления (ТНД)

-тип

-число ступеней

осевая, реактивная

2

9

Турбина силовая (нагнетателя)

-тип

-число ступеней

осевая, реактивная

2

10

Индекс нагнетателя

370-18-1

11

Номинальная частота вращения ротора нагнетателя

4800 об/мин

12

Номинальная производительность нагнетателя, отнесенная к 20°С 760 мм.рт.ст.

36*106 м3/сут

13

Максимальное рабочее давление газа на выходе из нагнетателя

76 атм

14

Коэффициент полезного действия, отнесенный к номинальной мощности на валу силовой турбины двигателя (без учета сопротивления всасывающего и газоотводящего трактов)

28 %

15

Диапазон регулирования частоты вращения турбины нагнетателя

3300-5000 об/мин

16

ГПА может эксплуатироваться при температуре наружного воздуха от (+40 до -55)°С и относительной влажности до 98%

17

Расход масла газотурбинным двигателем

3 кг/ч

18

Ресурс до капитального ремонта газотурбинного двигателя

20000 ч

19

Срок службы газоперекачивающего агрегата

10 лет

20

Время непрерывной работы газотурбинного двигателя

500-750 ч

21

Периодичность наружного осмотра двигателя не более одного раза

24 ч

1.2.2 Устройство и работа агрегата

Газоперекачивающий агрегат ГПА-10 состоит из газотурбинного двигателя 6 (рис. 4.2.1), нагнетателя 3, блока секции радиатора 1, коробки приводов выносной 7 и газоотвода 2.

Двигатель, блок секции радиатора, блок агрегатов и газоотвод крепятся на общей раме 5. Нагнетатель крепится на отдельном фундаменте. Камера сгорания, турбины и газоотвод двигателя закрыты кожухом 4.

Рис. 4.2.1 Газоперекачивающий агрегат ГПА-10

Газотурбинный двигатель выполнен по схеме простого открытого цикла без регенерации тепла выхлопных продуктов сгорания и состоит из осевых компрессоров низкого и высокого давления, трубчато-кольцевой камеры сгорания, турбин высокого и низкого давления и силовой турбины.

Компрессор низкого давления и приводящая его во вращение турбина низкого давления образуют каскад низкого давления, компрессор высокого давления и проводящая его во вращение турбина высокого давления образуют каскад высокого давления. Каскады кинематически не связаны между собой и вращаются с различной частотой.

Семиступенчатый КНД включает в себя входное устройство, передний корпус, корпус и ротор.

Передний корпус КНД предназначен для размещения передней опоры ротора, входного направляющего аппарата, установки цапф крепления двигателя на пластинчатых опорах, десяти форсунок для промывки проточной части. компрессорный газоперекачивающий агрегат назначение

Ротор КНД барабанно-дисковой конструкции состоит из семи дисков с лопатками, двух цапф - передней и задней, лабиринтных втулок и трубы, предназначенной для изоляции внутренней полости ротора от возможности попадания масла. Соединение ротора КНД с ротором ТНД осуществляется при помощи внутреннего вала.

Компрессор высокого давления девятиступенчатый и включает в себя переходник для подвода воздуха от КНД, корпус с направляющим аппаратом, ротор и задний корпус. Ротор барабанно-дисковой конструкции состоит из девяти дисков с лопатками, передней и задней цапф и трубы. Задний корпус имеет кольцевой диффузор перед камерой сгорания и служит для размещения задней опоры ротора.

Камера сгорания прямоточная, трубчато-кольцевого типа, состоит из следующих узлов: кожуха с горизонтальным разъемом, десяти жаровых труб с пламя-перебрасывающими трубками, диффузора и кожуха вала турбины. Топливный газ подводится через коллектор и десять рабочих форсунок.

Все турбины - осевые, реактивного типа, двухступенчатые. Сопловой аппарат первой ступени ТВД выполнен охлаждаемым.

Рабочий процесс осуществляется следующим образом: атмосферный воздух после прохождения системы фильтров и сжатия в компрессорах поступает в камеру сгорания, куда одновременно извне подводится топливный газ. В результате сжигания топлива температура образовавшихся продуктов сгорания перед газовой турбиной высокого давления доводится до величины, обусловленной жаростойкостью дисков и лопаток турбины. После расширения в газовой турбине продукты сгорания через дымовую трубу выбрасываются в атмосферу.

2. Техническое обслуживание и ремонт ГПА

Под понятием техническое обслуживание агрегата следует понимать всю совокупность мероприятий, которые служат для поддержания, восстановления рабочих характеристик газоперекачивающего агрегата и включающего техническое обслуживание ГПА, контроль за его работоспособностью и диагностикой отказов, а также проведение ремонтно-восстановительных работ.

На компрессорной станции действует регламент технического обслуживания, предусматривающий проведение комплекса работ по поддержанию газотурбинного газоперекачивающего агрегата в работоспособном состоянии в течение установленного заводом-изготовителем моторесурса.

Регламент предусматривает следующие виды работ:

техническое обслуживание работающего (ТО 1-3) или находящегося в резерве (ТО 1-5) агрегата, включающего технические осмотры, проверки состояния, контроль и измерение рабочих параметров и другие виды работ в зависимости от времени наработки или нахождения ГПА в резерве;

ревизию камеры сгорания и нагнетателя (ТО-4);

средний и капитальный ремонты.

Средний ремонт - комплекс профилактических мероприятий на отдельных узлах ГПА, выполняемых для восстановления эксплуатационных характеристик агрегата при падении номинальной мощности агрегата не более чем на 15% и обеспечение его надежной эксплуатации до ближайшего капитального ремонта.

При среднем ремонте обязательна дефектоскопия отработавших эксплуатационных узлов и деталей ГПА с заменой или ремонтом изношенных или поврежденных.

Средний ремонт проводят между капитальными ремонтами для устранения утечек масла и газа, причин повышенной вибрации и других, явно выраженных неисправностей. Кроме того, необходимость в среднем ремонте возникает для предупреждения скрытых отказов, вызванных износом и усталостью, возникновение которых может привести к разрушению многих деталей и узлов, т.е. к длительным аварийным ремонтам. Объем работ при среднем ремонте окончательно определяется только после вскрытия и проведения дефектоскопии.

Капитальный ремонт - комплекс ремонтных работ, включающий в себя полную разборку и дефектоскопию основного и вспомогательного оборудования ГПА, замену отработавших заводской ресурс или ремонт отработавших по техническим условиям составных частей, в том числе и базовых, регулировку и испытание систем, выполнение работ по восстановлению эксплуатационных характеристик агрегата при падении номинальной мощности более 25%.

При промежуточных значениях потерь мощности вид ремонта определяют по фактическим трудозатратам в соответствии с нормами времени.

До вывода агрегата на планово-предупредительный осмотр (ППО) и на планово-предупредительный ремонт (ППР) должны быть проведены следующие мероприятия:

составлен технологический план-график выполнения ППО и ППР;

согласно предварительной дефектной ведомости заготовлены необходимые изделия, материалы, инструменты и приспособления;

укомплектованы, приведены в исправность и проверены такелажное оборудование и подъемно-транспортные механизмы;

подготовлены рабочие места;

выполнены противопожарные мероприятия и мероприятия по технике безопасности;

укомплектован и проинструктирован персонал.

3. Система охлаждения транспортируемого газа на КС

Природный газ последовательно охлаждается в аппарате воздушного охлаждения, в рекуперативном теплообменнике, а затем в энергоразделительном устройстве, выполненном в виде кожухотрубного теплообменника, имеющего газоходы выхода холодного и нагретого газа, сверхзвуковые каналы с профилированными соплами и диффузорами, где газовый поток делится на два потока, один из которых проходит через сверхзвуковые каналы, разгоняется до числа Маха М = 2-5 и после этого с помощью дожимного компрессора поступает на компрессорную станцию, а другой - охлажденный поток из межтрубного пространства энергоразделительного аппарата поступает в газопровод. При этом отношение полной температуры на входе в сверхзвуковые каналы к полной температуре на выходе из сверхзвуковых каналов находится в интервале 0,85-1,2. Использование изобретения позволит снизить температуру в выходном коллекторе по сравнению с другими методами охлаждения. 1 ил.

Изобретение относится к транспортировке и использованию природного газа, в частности к последней стадии охлаждения газа после компрессорной станции (КС) для работы в летнее время в условиях Крайнего Севера при прохождении газопровода в зоне многолетнемерзлых пород.

Известен способ глубокого охлаждения природного газа после КС с помощью пропановых или пропан-бутановых парокомпрессионных холодильных установок, работающих по замкнутому циклу (А.В. Язик "Системы и средства охлаждения природного газа".- М.: Недра, 1986, с. 119-123).

Главные недостатки известного способа - сложность эксплуатации и управления, высокая стоимость оборудования.

Наиболее близким по технической сущности и достигаемому результату с заявленным изобретением является известный способ охлаждения природного газа, согласно которому транспортируемый газ после КС поступает сначала в рекуперативный теплообменник прямого потока (РТО), где за счет теплообмена с газом обратного потока нагревается и подается в нагнетатель, в котором он нагревается при сжатии. Далее нагретый газ поступает в аппарат воздушного охлаждения (АВО), где охлаждается за счет теплообмена с атмосферным воздухом, и предварительно охлажденный в АВО газ далее доохлаждается в РТО за счет теплообмена с газом прямого потока, после чего газ направляется в детандер (расширительную машину) или через дроссельное устройство, где он охлаждается, далее поступает в газопровод, по которому движется до следующей КС. (см. Справочное пособие под ред. Н.И. Рябцева "Газовое оборудование, приборы и арматура" М.: Недра, 1985, с. 358-362).

Известный способ позволяет существенно улучшить процесс охлаждения и соответственно повысить технико-экономические показатели охлажденного газа, однако также сложен в эксплуатации, недостаточно эффективен в условиях многолетнемерзлых пород и требует значительных увеличений капитальных и эксплуатационных затрат и не позволяет получить необходимую температуру природного газа на выходе из коллектора системы охлаждения.

Техническим результатом предлагаемого способа по изобретению является большее снижение температуры газа в выходном коллекторе по сравнению с дроссельными методами, что достигается более простым способом по сравнению с использованием парокомпрессионных, детандерных и других холодильных машин.

Для достижения технического результата в способе охлаждения природного газа после КС, включающем последовательное воздушное охлаждение природного газа в АВО, охлаждение прямым потоком газа в РТО, заключительное глубокое охлаждение осуществляют в устройстве в виде кожухотрубного теплообменника, в котором часть газового потока в сверхзвуковых каналах разгоняется до числа Маха М=2-5 и, пройдя диффузоры, поступает через дожимной компрессор на вход КС, а другая часть газового потока из межтрубного пространства - (дозвукового канала) подается в газопровод.

При этом температура торможения на выходе сверхзвуковых каналов T1 относится к температуре торможения на входе в сверхзвуковые каналы Т0 Т1/T0= 0,85-1,2 для реального газа, что обусловлено нагревом сверхзвукового потока газа за счет подвода тепла от дозвукового потока газа и охлаждением за счет падения давления в потоке (см. чертеж ).

В качестве аппарата воздушного охлаждения (АВО) в способе используют известные АВО - АВЗ-75, 2АВГ-75С и др.

Используемое в данном способе энергоразделительное устройство отличается от известного устройства (RU 210 6581, 1998) тем, что в нем сверхзвуковое течение осуществляется не в одном канале, расположенном коаксиально внешней трубе, а в пучке с двумя трубными досками для профилированных сопел и диффузоров. Это позволяет резко увеличить поверхность теплообмена, практически не ухудшая теплообмен в межтрубном пространстве.

Не известны другие такие же изобретения, имеющие признаки, совпадающие со всеми признаками заявляемого способа по изобретению.

Сущность изобретения поясняется следующим.

Число Маха в сверхзвуковых каналах энергоразделительного устройства лежит в пределах М=2-5. При М < 2 эффект снижения температуры в дозвуковом потоке за счет восстановления температуры в сверхзвуковом потоке будет слишком мал. При М > 5 потребуются слишком большие перепады давлений на сверхзвуковых каналах, а это неоправданно увеличит мощность дожимного компрессора.

Отношение полных температур (температур торможения) на выходе сверхзвуковых каналов T1 (после диффузоров) и входе в сверхзвуковые каналы Т0 лежит в интервале T1/T0=0,85-1,2.

При T1/T0 < 0,85 слишком сильно будет падать давление газа в сверхзвуковом канале или слишком велика массовая доля сверхзвукового потока газа, что приведет к неоправданному увеличению мощности не только дожимного компрессора, но и возможно основного газоперекачивающего агрегата.

При T1/T0 > 1,2 эффективность теплопередачи в энергоразделяющем устройстве будет очень невысокой, что потребует искусственного развития поверхности, и, следовательно, значительного увеличения падения давления, что приведет к росту мощности дожимного компрессора и низкой эффективности работы энергоразделяющего устройства.

В нижеследующем примере представлено конкретное описание способа по изобретению.

Пример КС, расположенная в северном районе - городе Надым, имеет производительность газа 4103 нм3/ч, диаметр трубы в линейной части газопровода Дн = 1420 17 мм. Средняя температура воздуха в июле (самом теплом месяце) 287.9К, давление и температура природного газа во входном коллекторе P= 5,22МПа; Т= 283,5К, давление и температура в выходном коллекторе КС P= 7,46МПа, Т=314,7К.

После КС газ поступает в АВО, где его температура снижается до 302,9К, затем в РТО, где его температура снижается до 292К.

После этого газ поступает в энергоразделяющее устройство, где происходит его разделение на дозвуковой и сверхзвуковой потоки. В сверхзвуковых каналах газ разгоняется до числа Маха М=4,0 и имеет температуру торможения на выходе из диффузоров за счет нагрева от дозвукового газового потока и охлаждения за счет эффекта Джоуля-Томсона 276К (T1/T0=0,945, где Т0 и T1 соответственно начальная и конечная температуры (входная и выходная)).

Затем поток, вышедший из диффузоров сверхзвуковых каналов, с помощью дожимного компрессора подается на вход КС.

Газ на выходе из дозвукового канала (межтрубного пространства) энергоразделяющего устройства имеет температуру 283К и затем подается в газопровод.

В результате мы получаем на выходе КС температуру газа такую же, какой она была на входе КС, и при этом предотвращается опасность растепления многолетнемерзлых пород, расположенных под первой после КС опорой газопровода.

Формула изобретения

Способ охлаждения природного газа после компрессорных станций, включающий охлаждение его атмосферным воздухом в аппаратах воздушного охлаждения, охлаждение прямым потоком в рекуперативном теплообменнике и глубокое охлаждение в холодильных аппаратах, отличающийся тем, что глубокое охлаждение осуществляют в энергоразделительном устройстве в виде кожухотрубного теплообменника, имеющего газоходы холодного и нагретого газа, пучок сверхзвуковых каналов с профилированными сверхзвуковыми соплами и диффузорами, при этом в энергоразделительном устройстве газ делится на два потока, один из которых в сверхзвуковых каналах разгоняется до числа Маха М = 2 - 5 и после этого газовый поток с помощью дожимного компрессора подают на вход компрессорной станции, а другой охлажденный поток газа из межтрубного пространства - дозвукового канала энергоразделительного устройства подают в газопровод, при этом отношение полной температуры на входе в сверхзвуковые каналы к полной температуре на выходе из сверхзвуковых каналов находится в интервале 0,85 - 1,2.

Рис. 5.1 Система охлаждения газа на КС.

4. Система пожаротушения и водоснабжения

Пожар на компрессорной станции - самая серьезная и опасная ситуация. Предупреждение пожара - ответственная работа - это как соблюдение эксплуатационных требований, так и личная осторожность сотрудников. На территорию допускаются лица, которые прошли инструктаж техники безопасности, программу правил поведения на территории и в компрессорном цехе. Газ - без цвета и запаха, обнаружить его можно только с помощью газоанализаторов. В зале нагнетателя установлены специальные приборы, которые в случае обнаружения опасного содержания газа в воздухе, дают сигнал на диспетчерский пункт, открываются на крыше зала дефлекторы.. Самым защищаемым от пожара объектом является компрессорный цех, поскольку там установлено оборудование, имеющее непосредственную работу с газом: в одном зале газ горит, а в другом нагнетается под большим давлением.

Ряд сооружений компрессорной станции относится по степени пожарной опасности к высшей категории А. Среди этих сооружений прежде всего компрессорный цех, который является основным источником пожароопасности на КС. Это связано с тем, что при аварии могут возникнуть взрывоопасные смеси горючих газов.

Для предотвращения возгораний и тушения пожаров цеха оборудуют системами пожаротушения. В состав системы входят:

Система водотушения:

пожарные рукава 50 мм;

пожарные колодцы;

трубопровод Ду108х4;

трубопровод Ду50х4;

задвижка Ду100 Ру16;

задвижка Ду50 Ру16;

пожарные гидранты;

краны Ду50;

Система газотушения:

трубопроводы цеха (коллектор) Ду38х4;

установка газового тушения БАГЭ-8;

трубопроводы на ГПА Ду38х4;

распределительные устройства РУ-25А;

Система пенотушения:

трубопровод (общий коллектор) Ду159х4,5;

трубопроводы в блоке ППТ Ду108х4;

трубопроводы в укрытиях ГПА Ду108х4;

задвижка Ду100 Ру16;

задвижка Ду50 Ру16;

задвижка с электроприводом КР-М-60,

эл. двигатель 4ААМ56В4У3;

кран шаровый Ду25 Ру16;

генератор пены ГПВ-600;

центробежные насосы -4К6 (эл. двигатель А2-81-2);

емкость 50 куб.м. для воды;

емкость 4 куб.м. для пенообразователя;

Первичные средства пожаротушения:

ОП-50-14 шт.; ОПП-35-3 шт.; ОП-10-18 шт.;

ОП-5-5 шт.; ОУ-5-3 шт.; ОУ-8-2 шт.

Установка автоматического пожаротушения включает в себя блок установки автоматического пожаротушения (блок УАП) и резервуары для противопожарного запаса воды. Установка автоматического пожаротушения предназначена для подачи огнетушащего вещества при возникновении пожара к газоперекачивающим агрегатам.

Блок УАП оснащен технологическим оборудованием для пенного и газового (химического) пожаротушения.

Пенное пожаротушение осуществляется подачей пены от блока установки автоматического пожаротушения в индивидуальные укрытия ГПА-10 на пенал блока двигателя.

Забор воды производится насосом из резервуаров емкостью 50 м3, установленных снаружи здания.

Для газового пожаротушения в блоке УАП установлена шестибаллонная батарея типа К-333. Пожаротушение осуществляется методом "объемного заполнения". Газовое тушение осуществляется подачей углекислого газа под кожух агрегата.

Установка автоматического пожаротушения представляет собой сооружение полного заводского изготовления. После установки блока УАП и резервуаров на строительной площадке производится сварка монтажных узлов технологических трубопроводов.

Список использованной литературы

Газовое оборудование, приборы и арматура: Справочное пособие. /под ред. Н.И. Рябцева - 3-е изд., перераб. и доп. - М.: Недра, 1985. - 527 с.

Козаченко А.Н. Эксплуатация компрессорных станций магистральных газопроводов. - М.: Нефть и газ, 1999. - 463 с.

Машины и оборудование газонефтепроводов: Учеб. пособие для вузов./Ф.М. Мустафин, Н.И. Коновалов, Р.Ф. Гильметдинов и др. - 2-е изд., перераб. и доп. - Уфа: Монография, 2002. - 384 с.

Проектирование и эксплуатация насосных и компрессорных станций: Учебник для вузов. /А.М. Шаммазов, В.Н. Александров, А.И. Гольянов и др. - М.: ООО "Недра-Бизнесцентр", 2003. - 404 с.

Энергетика трубопроводного транспорта газа / под редакцией Казаченко А.Н.; Никишин В.Н., Коршаков Б.П. - М: изд. РГУ Нефти и газа им. Е.М. Губкина; 2001.

Эксплуатация компрессорных станций магистральных газопроводов. М: изд. РГУ Нефти и газа им. Е.М. Губкина;

Размещено на Allbest.ru


Подобные документы

  • Назначение и описание компрессорной станции. Система подготовки транспортируемого газа на КС. Назначение и технические данные газоперекачивающего агрегата. Техническое обслуживание и ремонт ГПА. Устройство и работа агрегата, система пожаротушения.

    отчет по практике [582,0 K], добавлен 11.11.2014

  • Общая характеристика компрессорной станции: климатология, технологическая схема. Подготовка газоперекачивающего агрегата к монтажу, техника монтажа блоков, вспомогательного оборудования. Энергосберегающая технология охлаждения компримированного газа.

    курсовая работа [1,1 M], добавлен 24.02.2013

  • Характеристика природного газа, турбинных масел и гидравлических жидкостей. Технологическая схема компрессорной станции. Работа двигателя и нагнетателя газоперекачивающего агрегата. Компримирование, охлаждение, осушка, очистка и регулирование газа.

    отчет по практике [191,5 K], добавлен 30.05.2015

  • Краткая характеристика структуры организации газового промысла ООО "Газпром добыча Уренгой". Разработка программы управления технологическим процессом. Внедрение многозадачной системы контроля и управления Series-4 на газоперекачивающий агрегат ГПА-Ц-16.

    дипломная работа [1,9 M], добавлен 22.04.2015

  • Технические характеристики и режим работы циклонных пылеуловителей и сепараторов, устанавливаемых для очистки газа от твердых и жидких примесей. Принцип действия газоперекачивающего агрегата. Эксплуатация системы снабжения горюче-смазочными материалами.

    курсовая работа [46,6 K], добавлен 26.06.2011

  • Затраты на газ и расчет себестоимости его транспортировки. Газоперекачивающий агрегат ГПА-Ц-16, его внутреннее устройство и компоненты, система автоматического управления. Расчет капитальных и эксплуатационных затрат, экономического эффекта от внедрения.

    курсовая работа [47,3 K], добавлен 26.03.2017

  • Определение исходных расчетных данных компрессорной станции (расчётной температуры газа, вязкости и плотности газа, газовой постоянной, расчётной производительности). Подбор основного оборудования компрессорного цеха, разработка технологической схемы.

    курсовая работа [273,2 K], добавлен 26.02.2012

  • Общая характеристика работы компрессорной станции. Данные о топографии и расположении объекта. Описание работы газоперекачивающих агрегатов компрессорных цехов. Гидравлический расчет газопровода, системы очистки газа; обслуживание и ремонт роторов.

    дипломная работа [486,1 K], добавлен 19.07.2015

  • Газотурбинная установка ГТН-25, краткая техническая характеристика устройства ГТУ и нагнетателя. Последовательность пуска агрегата ГТК-25 ИР. Система технического обслуживания и ремонта, организация ремонтов. Расчет свойств транспортируемого газа.

    курсовая работа [97,0 K], добавлен 02.02.2012

  • Краткая характеристика газопровода "Макат-Атырау-Северный Кавказ". Технологическая схема компрессорного цеха и компоновка оборудования газоперекачивающего агрегата. Аппараты воздушного охлаждения газа. Расчет производительности центробежного нагнетателя.

    дипломная работа [487,9 K], добавлен 13.11.2015

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.