Управляемость и наблюдаемость системы автоматизированного управления

Понятие, сущность и характеристика управляемости и наблюдаемости системы автоматизированного управления. Расчет поведения линейной системы в пространстве состояний собственных векторов матрицы. Условия управляемости в терминах исходной системы Калмана.

Рубрика Производство и технологии
Вид лекция
Язык русский
Дата добавления 22.07.2015
Размер файла 94,0 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

Управляемость и наблюдаемость системы автоматизированного управления

Рассмотрим случай, когда все переменные состояния могут быть измерены, а результаты этих действий могут быть использованы для управления системой. Однако такой случай не всегда технически реализуем. Поэтому для систем автоматического управления вводится понятие управляемости.

Рассмотрим :

,

где - матрицы с постоянными коэффициентами.

При этом управление полагается скалярным, т.е. управление объектом осуществляется по одной координате.

Заданы начальная и конечная точка , и . Задача состоит в том, чтобы перевести систему из заданного начального положения в некоторую точку, совпадающую с началом координат. При этом никаких ограничений на величину управляющего воздействия и время регулирования не накладывается. Если такая задача решается при любых начальных и конечных условиях, то такая система является управляемой.

Система называется управляемой, если существует такое управление, которое из любого начального состояния в любое конечное положение. При каких условиях система является управляемой. Попытаемся выяснить причины неуправляемости. Это удобно сделать с помощью геометрического представления движения системы. Как отмечалось выше решение линейного однородного уравнения имеет вид:

Если какой-нибудь из коэффициентов , а остальные отличны от нуля, то движение происходит в инвариантном подпространстве матрицы . С геометрической точки зрения все траектории лежат в плоскости S, т.е. вектор также направлен вдоль этой плоскости. Предположим, что вектор тоже лежит в плоскости . Очевидно, что добавка к вектору величины оставляет вектор в той же плоскости, хотя и деформирует траекторию движения вектора состояния. Следовательно, если начальная точка лежит в плоскости , а конечная -- нет, то попасть в точку с заданными координатами нельзя, так как не существует управления, которое переводит состояние системы с заданными параметрами из начальной точки в конечную. Такая система неуправляема по определению.

Условия управляемости в терминах исходной системы получены Калманом и имеют вид:

Для управляемости системы (1) необходимо и достаточно, чтобы выполнялось условие вида

.

Это условие выполняется, если матрица U вида

имеет ранг, равный N.

Рангом матрицы называется наибольший порядок ее определителя, отличный от нуля.

Рассмотрим поведение системы в пространстве состояний собственных векторов матрицы А (для простоты будем полагать, что собственные значения матрицы А -- действительные и различные). Как мы убедимся в дальнейшем, в этом пространстве условия управляемости становятся практически очевидными. Введем неособое преобразование вида

,

где .

Выше отмечалось, что и существует. Поэтому вектора X и Y связаны однозначной зависимостью. Следовательно, задачи об управляемости в пространствах этих переменных эквивалентны.

В пространстве новых переменных

поведение САУ описывается уравнением

.

Рассмотрим произведение

.

так как

,

То

,

Где

Следовательно, уравнение (4) приводится к виду

.

Или

.

-- вектор столбец с компонентами .

Так как матрица Р диагональная, то

,

где .

и если хотя бы одно , то координата -- неуправляема. Поэтому можно предположить, что, если все , то система управляема.

Рассмотрим n-мерное пространство состояния Х, в котором каждому состоянию системы соответствует некоторое положение изображающей точки, определяемое значениями фазовых координат .

Пусть в пространстве состояния заданы два множества и . Рассматриваемая система будет управляемой, если существует такое управление , определенное на конечном интервале времени , которое переводит изображающую точку в пространстве Х из подобласти в подобласть .

Можно сузить определение управляемости и понимать под ней возможность перевода изображающей точки из любой области пространства состояний Х в начало координат. Система будет управляемой, если каждое состояние управляемо в этом смысле.

От пространства состояний Х перейдем к другому пространству посредством неособого преобразования , причем , где -- матрица коэффициентов .

Тогда вместо уравнения вида

,

где j -- матрица возмущающих и задающих воздействий,

u -- матрица-столбец управляющий величин,

y -- матрица-столбец регулируемых величин,

x- матрица-столбец фазовых координат,

будем иметь

.

Здесь использованы преобразованные матрицы коэффициентов:

, , , и .

Введение новых фазовых координат посредством неособого преобразования

приводит к эквивалентным системам различной структуры. При некотором преобразовании может оказаться, что часть управляющих величин не входит в некоторые дифференциальные уравнения (7) или часть фазовых координат не участвует в формирование вектора выходного сигнала . В первом случае система не будет полностью управляемой, а во втором -- полностью наблюдаемой.

В случае не полностью управляемой системы ее исходное уравнение могут быть представлены в виде

Это иллюстрирует рис. 7. Набор фазовых координат соответствует управляемой части фазовых координат, а набор -- неуправляемой части.

Рис. 1. Пример не полностью управляемой системы

Калманом был доказан критерий управляемости, который гласит, что размерность управляющей части системы, то есть порядок первой группы уравнений (7) совпадает с рангом матрицы

,

где k -- размерность управляющего вектора.

При система полностью управляема, при -- система не полностью управляема, при -- система полностью не управляема.

Рис. 2. Структура исходной системы

На рис. 8 представлен простейший пример. Если рассматривать выходную величину при нулевых начальных условиях, то можно записать

,

где

определяются начальными условиям до приложения входного сигнала , а -- вынужденная составляющая. Система устойчива при .

Если начальные условия до приложения управляющего сигнала были нулевыми, то поведение системы может быть рассчитано по передаточной функции

В этом случае переходный процесс в системе определяется как

управляемость наблюдаемость автоматизированный калман

Как следует из последнего выражения, во втором случае система описывается дифференциальным уравнением не третьего, а второго порядка. Система будет устойчивой даже при .

Рассмотренная система будет не полностью управляемой. В ней оказывается , а .

При введении второй составляющей управления система оказывается полностью управляемой, и ей будет соответствовать матрица-строка передаточный функций по управлению

.

В случае не полностью наблюдаемой системы ее уравнения могут быть представлены в виде

.

Эти уравнения отличаются от (7) тем, что фазовые координаты группы не входят ни в выражения для и , ни в первое уравнение, куда входят фазовые координаты группы . Группа фазовых координат относится к ненаблюдаемым.

Калманом показано, что порядок первой группы уравнений совпадает с рангом матрицы V вида

.

При система полностью наблюдаема, при -- система не полностью наблюдаема, при -- система полностью ненаблюдаемая.

На рис. 9 изображен простейший пример. Для него легко показать, что в формировании выхода участвуют только две фазовые координаты из трех.

Рис. 3. Пример не полностью наблюдаемой системы

В общем случае система может содержать четыре группы фазовых координат:

управляемую, но ненаблюдаемую часть ,

управляемую и наблюдаемую часть ,

неуправляемую и ненаблюдаемую часть ,

неуправляемую но наблюдаемую част .

Исходные уравнения системы (7) можно для самого общего случая записать следующим образом:

Левая часть характеристического уравнения

,

где Е -- единичная матрица размера , системы в этом случае содержит четыре сомножителя:

Управляемость и наблюдаемость системы в изложенном смысле не всегда совпадает с практическими представлениями. Даже если какая-либо фазовая координата и может быть вычислена по доступным для измерения выходным величинам обработка измеренных величин может быть, во-первых, сложной и, во-вторых, она может быть затруднена наличием помех. Поэтому практически наблюдаемыми координатами обычно считаются те из них, которые могут быть измерены датчиками различных типов.

Размещено на Allbest.ru


Подобные документы

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.