Техническая керамика

Классификация, свойства и структура керамических материалов. Технология традиционной керамики, применение и назначения. Виды технической керамики на основе силикатов, диоксида циркония, титанатов, цирконатов и других соединений с подобными свойствами.

Рубрика Производство и технологии
Вид учебное пособие
Язык русский
Дата добавления 06.06.2015
Размер файла 208,7 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Кроме BaTiO3 синтезирован целый ряд титанатов, у которых ион Ва2+ замещен ионом двухвалентного металла Ca, Рb, Сd и др. Эти титанаты используются чаще всего в виде твердых растворов, которые они образуют между собой, а также с титанатом бария. Из ряда титанатов наиболее высокой температурой Кюри (490°С) обладает титанат свинца РbTiO3. Его твердые растворы с другими титанатами и подобными соединениями в настоящее время его широко применяют в производстве пьезокерамики.

Пьезоэлектрические свойства были .обнаружены у ряда цирконатов, среди которых наибольшее практическое значение получил цирконат свинца РbZrО3. При температуре 230°С у РbZrО3 имеется фазовый переход из псевдомоноклинной структуры в кубическую, при котором резко выражен максимум диэлектрической проницаемости. Наиболее высокими значениями пьезоэлектрических свойств обладают твердые растворы цирконата - титаната свинца Рb(Zr,Ti)О3, так называемые материалы системы ЦТС. Пьезокерамика на основе твердых растворов Рb(Zr,Ti)О3 имеет значительные преимущества по сравнению с титанатом бария и твердыми растворами на его основе. ЦТС имеет более высокую температуру Кюри и, как следствие, повышенную температуру эксплуатации. Пьезосвойства материалов ЦТС более высокие и стабильные в широком температурном интервале. Благодаря этим качествам пьезокерамика на основе твердых растворов цирконата - титаната находит очень большое применение в технике и области ее применения постоянно расширяются.

Сравнительно невысокая температура Кюри у титаната бария и других известных сегнетокерамических материалов вызвала необходимость поиска новых материалов, способных работать при высоких температурах. Такими материалами оказались ниобаты и танталаты одно- и двухвалентных металлов как в виде отдельных соединений, так и в виде твердых растворов различных комбинаций этих соединений. Среди ниобатов наиболее высокой температурой Кюри обладает метаниобат свинца РbNb2О6 с точкой фазового перехода 570°С. Метаниобат свинца является основой пьезокерамических материалов в системе твердых растворов различных ниобатов. Для изготовления других видов сегнетокерамических материалов применяют танталаты калия и натрия (КTаО3 , NаТаО3 ), твердые растворы танталатов - ниобатов, станнаты, их твердые растворы и ряд других соединений.

4.2.5 Керамика на основе шпинелей

Шпинелями называются соединения, кристаллизующиеся в кубической системе и имеющие формулу Ме2+Ме23+О4 .Число шпинелей очень велико. Свойства и области применения шпинелей весьма разнообразны. Особую группу составляют шпинели с общей формулой Ме2+Fe33+О4, называемые феррошпинелями.

Чистые шпинели в природе встречаются крайне редко, обычно они содержат различные примеси. В технике шпинели синтезируют путем спекания тонкодисперсной смеси оксидов. Они также могут быть синтезированы при электроплавке смеси соответствующих оксидов. При синтезе шпинелей, содержащих оксиды переменной валентности, важно соблюдать соответствующую газовую среду, предохраняющую эти оксиды от окисления или восстановления.

Наиболее подробно изучена и применяется так называемая благородная магнезиальная шпинель MgAl2O3, которая используется как огнеупорный, конструкционный и электроизоляционный материал. Температура плавления MgAl2O3 составляет 2135°С, она является весьма химически стойким соединением, практически не реагирует с кислотами, слабо взаимодействует с щелочами. Температура спекания изделий из магнезиальной шпинели составляет около 1750°С. Спеченная шпинель обладает средним уровнем механических характеристик (?сж около 2000МПа, ?изг до 200МПа) и высокими значениями электрофизических свойств.

Керамика на основе феррошпинели Ме2+Fe33+О4 имеет очень важное значение в технике.В качестве Ме2+ могут быть Fе2+, Ni2+, Мn2+, Со2+ и др. Подавляющее большинство феррошпинелей является ферромагнитными веществами, т. е. они обнаруживают магнитные свойства в отсутствии магнитного поля или после его воздействия на них. Неметаллические ферромагнитные материалы называются ферритами. Ферритами, кроме феррошпинелей, являются также соединения Fе2О3 с другими оксидами, имеющими структуру, отличную от шпинелей. Называют ферриты по двухвалентному иону, например МnFе2О3 - марганцевый феррит.

Магнетизм вещества обусловлен движением электронов по орбитам вокруг ядра атома или вращением электрона вокруг своей оси, т.е. спином. Магнитные моменты возникают в системах, в которых имеется нечетное количество электронов и которые образуют нескомпенсированный магнитный момент. Нечетное число электронов содержат некоторые атомы и ионы с частично заполненными внутренними электронными оболочками. Поэтому магнитными свойствами обладают шпинели, у которых двухвалентный ион представлен главным образом переходными металлами, например, Мn2+. Магнитные свойства феррошпинелей самым тесным образом связаны со структурой шпинели и распределением ионов металлов внутри кристаллической решетки шпинели.

Магнитную керамику оценивают по ряду свойств. Важнейшими из них являются магнитная восприимчивость и магнитная проницаемость. Магнитная восприимчивость определяется по формуле

?m=Im/H (18)

где Im - намагниченность, H - напряженность внешнего магнитного поля.

Эта величина является мерой намагниченности вещества. Магнитная проницаемость связана с магнитной восприимчивостью следующей зависимостью:

?=1 + 4? ?m. (19)

Магнитная проницаемость показывает, во сколько раз усиливается магнитное поле в данной среде.

Для каждого ферромагнетика существует некая предельная температура - температура Кюри, при которой вещество теряет магнитные свойства в результате теплового движения ионов.

Ферриты получают из оксидов соответствующих металлов либо из их солей в виде карбонатов, нитратов и др. Исходные оксиды измельчают до среднего размера зерен 1-3 мкм в шаровых или в вибрационных мельницах. Затем смесь после сушки и растирания прессуют в брикеты, которые обжигают при температурах 500-1000°С в зависимости от состава шпинелей. При этом происходит синтез шпинели.

Брикеты синтезированной шпинели дробят до зерен размером 1-1,5мм, затем измельчают в шаровых мельницах до порошка требуемой дисперсности. Изделия из феррошпинели формуют прессования с пластификатором и литьем пластифицированных масс под давлением.

Температура спекания в зависимости от состава феррита колеблется в пределах 1000-1400°С. Общая длительность обжига 10-24ч с выдержкой при окончательной температуре 2-6ч. Ферриты спекают обычно в электрических печах с силитовыми нагревателями в слабоокислительной или нейтральной среде. Для сохранения заданного стехиометрического состава спекаемой феррошпинели крайне важно следить за стабильностью парциального давления кислорода в среде.

4.3. Безоксидная техническая керамика

Безоксидными керамиками называются поликристаллические материалы на основе соединений неметаллов III-VI групп периодической системы элементов, исключая кислород, друг с другом и так называемыми переходными металлами, обладающими недостроенными электронными слоями.

По своей кристаллической структуре безоксидные керамики весьма разнообразны и образуют два основных класса:

1. Металлокерамика. Данный класс образуют соединения указанных выше неметаллов с переходными металлами, имеющие структуру фаз внедрения.

2. Неметаллическая керамика. Этот класс объединяет соединения B, C, N, Si, халькогенов (кроме О) друг с другом, а также с некоторыми переходными металлами. Данные соединения обладают сложной кристаллической структурой с ковалентным типом межатомной связи.

4.3.1 Металлокерамика

Металлокерамика включает соединения, имеющие структуру фаз внедрения: карбиды и нитриды Ti, V, Cr, Zr, Nb, Mo, Hf, Ta, W.

Условие образования фазы внедрения определяется правилом Хэгга:

rX:rМе<0,59 (20)

где rX - радиус атома неметалла, rМе - радиус атома металла.

В этих структурах атомы металла образуют одну из типичных для металлов кристаллических решеток - кубическую (гранецентрированную или объемноцентрированную) или гексагональную. Атомы неметалла находятся в октаэдрических или тетраэдрических пустотах между металлическими атомами. Фазы внедрения обладают металлическими свойствами: высокой электропроводностью, которая уменьшается с ростом температуры, высокой теплопроводностью, имеют металлический блеск. Фазы внедрения занимают промежуточное место между твердыми растворами внедрения и химическими соединениями. Главное отличие фаз внедрения от твердых растворов состоит в том, что последние образуются при значительно меньших концентрациях углерода и азота, например, феррит и аустенит, и имеют кристаллическую решетку металла, тогда как фазы внедрения образуют решетку, отличную от решетки металла. В этом смысле фазы внедрения можно считать разновидностью химических соединений. В то же время фазы внедрения имеют широкие области гомогенности, например в TiC может содержаться от 20 до 50% мол. углерода, что нехарактерно для химических соединений.

Карбиды переходных металлов. Из всех карбидов переходных металлов наибольшее распространение в промышленности получили WC, TiC, TaC и ZrC. Интерес к этим материалам обусловлен их очень высокой твердостью (от 20 до 35ГПа), которую они сохраняют до температур свыше 1000°С. Причины высокой твердости карбидов заключаются в следующем: во-первых, сами металлы, образующие карбиды, имеют очень высокие температуры плавления и малопластичны, т.е. силы межатомных связей данных металлов очень велики. Второй, и основной причиной высокой твердости карбидов является «заклинивание» плоскостей скольжения в кристаллической решетке атомами углерода и вызываемое этим заклиниванием снижение пластичности. Например, в ГЦК-решетке TiC и TaC атомы углерода располагаются параллельно плоскостям скольжения (111), в ГПУ-решетке WC - параллельно (001). Обладая такой высокой твердостью, карбиды являются достаточно хрупкими материалами.

Карбиды переходных металлов в природе не существуют, поэтому первой стадией в их технологии является синтез соответствующего сырья. Порошки карбидов получают либо прямым синтезом углерода и металла по формуле

Me+C>MeC (21)

либо восстановлением металла из оксида с одновременной карбидизацией. Второй способ является предпочтительным, т.к. оксиды соответствующих металлов гораздо дешевле порошков чистых металлов.

В общем виде процесс получения получения порошков карбидов происходит по следующей схеме: порошок оксида соответствующего металла смешивается с сажей или измельченным коксом и нагревается до температуры, при которой происходит карбидизация. Например, для карбида титана процесс происходит по реакции:

t=2100-2300°С

TiO2+3C=TiC+2CO (22)

Полученные порошки измельчаются, просеиваются, смешиваются с необходимыми компонентами, прессуются в изделия, которые спекаются при соответствующих температурах.

Следует отметить, что в чистом виде рассматриваемые карбиды находят весьма ограниченное применение. Это обусловлено, в первую очередь, технологическими проблемами получения компактных изделий, например, чтобы спечь изделие из TiC, который имеет температуру плавления 3200°С, необходима температура спекания не менее 2500°С. Во-вторых, как уже отмечалось, чистые карбиды весьма хрупки.

Основное применение карбиды переходных металлов находят в инструментальном производстве, где на их основе изготавливают так называемые твердые сплавы, применяемые для обработки металлов резанием. Твердые сплавы содержат смесь зерен карбидов, реже нитридов и карбонитридов тугоплавких металлов в связующих материалах. Стандартные марки твердых сплавов выполнены на основе карбидов вольфрама, титана, тантала. В качестве связки используются кобальт, никель, молибден. Твердые сплавы производятся методами порошковой металлургии путем жидкофазного спекания. Состав и основные свойства некоторых марок твердых сплавов для режущих инструментов приведены в табл.3 и 4.

В зависимости от состава карбидной фазы и связки обозначение твердых сплавов включает буквы, характеризующие карбидообразующие элементы (В - вольфрам, Т - титан, вторая буква Т - тантал) и связку (буква К- кобальт).

Таблица 3. Физико-механические свойства одно-, двух- и трехкарбидных твердых сплавов

Марка

?, Вт/(м?ч?К)

ЛКТР,* 10-6 К-1

?изг, МПа

ВК4

38-80

3,4-4,7

1270-1370

ВК6

46-75

3,6-5,0

1320-1660

ВК8

54-71

4,8-5,5

1370-1810

ВК10

67-69

3,8-6,0

1470-1910

ВК15

41-66

4,7-6,0

1615-2155

ВК20

37,7

4,7-6,0

1860-2330

ВК25

13-24

3,8-6,7

1765-2255

Т30К4

13-38

6,6-7,0

882-931

Т15К6

17-34

5,6-6,0

1127-1180

Т14К8

21-63

6,0-6,2

1130-1370

Т5К10

21

5,5

1270-1370

Т5К12

-

5,9

1620-1760

ТТ8К6

-

-

1225

ТТ7К12

-

-

1372-1617

Таблица 4. Состав и физико-механические свойства безвольфрамовых твердых сплавов

Марка

TiC

%Ni

%Mo

?изг, МПа

ТН20

79

20

1

1080

ТН25

74

19

7

1180

ТН30

70

24

6

1270

ТН50

50

37

13

1225

Массовая доля карбидообразующих элементов в однокарбидных сплавах, содержащих только карбид вольфрама, определяется разностью между 100% и массовой долей связки (цифра после буквы К), например, сплав ВК4 содержит 4% кобальта и 96% WC. В двухкарбидных WC+TiC сплавах цифра после буквы карбидообразующего элемента определяет массовую долю карбидов этого элемента, следующая цифра - массовую долю связки, последняя - массовую долю карбида вольфрама (например, сплав Т5К10 содержит 5% TiC, 10% Co и 85% WC).

В трехкарбидных сплавах цифра после букв ТТ означает массовую долю карбидов титана и тантала, цифра за буквой К - массовая доля связки, остальное - массовая доля карбида вольфрама (например, сплав ТТ8К6 содержит 6% кобальта, 8% карбидов титана и тантала и 86% карбида вольфрама).

Твердые сплавы выпускаются в виде различных по форме и точности изготовления пластин: напайных (наклеиваемых), многогранных и др. Многогранные пластины выпускаются как из стандартных марок твердых сплавов, так и из этих же сплавов с однослойными или многослойными сверхтвердыми покрытиями из TiC, TiN, оксида алюминия и других химических соединений. Пластины с покрытиями обладают повышенной стойкостью. К обозначению пластин из стандартных марок твердых сплавов с покрытием нитридов титана добавляют маркировку букв КИБ (метод нанесения покрытий конденсацией ионной бомбардировкой).

Также рассматриваемые карбиды широко используются в качестве материала для нанесения коррозионно- и износостойких покрытий деталей. Например, покрытия из TiC используют для защиты поверхностей оборудования в химической промышленности, покрытия из WC наносят на валы гребных винтов судов.

Нитриды переходных металлов. Из всех нитридов переходных металлов наибольшее распространение в технике получили TiN и ZrN. Так же, как и карбиды, нитриды имеют очень высокие температуры плавления. Твердость нитридов несколько уступает твердости карбидов, например, ZrN имеет микротвердость около 25ГПа. Причина высокой твердости нитридов, так же, как и карбидов, обусловлена особенностями структуры фаз внедрения.

Нитриды являются синтетическими веществами. Порошки нитридов получают прямым синтезом металла с азотом путем азотирования металлических порошков при соответствующих температурах:

2Ме+N2>2MeN (23)

Нитриды получают также путем взаимодействия металлов с аммиаком и другими способами, включая осаждением из газовой фазы.

Основное применение нитриды переходных металлов находят в качестве добавок к специальным сплавам, а так же как материалы для нанесения износостойких покрытий. В инструментальном производстве очень широкое распространение получил способ ионно-плазменного напыления покрытий из TiN и (Zr,Hf)N на разнообразный режущий инструмент. ZrN применяется для нанесения покрытий на электроды свечей зажигания ДВС для повышения их эксплуатационных характеристик. Пластины из TiN и ZrN применяются в ракетной технике для защиты корпусов ракет и космических кораблей.

4.3.2. Неметаллическая безоксидная керамика

К неметаллическим безоксидным керамикам относятся материалы на основе боридов ZrB2, CrB2, TiB2, карбидов B4C, SiC и некоторых переходных металлов, нитридов BN, Si3N4, AlN, силицидов, фосфидов, арсенидов и халькогенидов (кроме оксидов). Керамики на основе карбидов переходных металлов, обладающих структурой химических соединений, например Fe3C, а также на основе фосфидов, арсенидов и халькогенидов в данном пособии не рассматриваются по причине ограниченного применения в современной технике.

В настоящее время наиболее перспективной для конструкционного применения считается керамика на основе SiC, Si3N4 и AlN - соединений с большой долей ковалентной связи, кристаллы которых характеризуются значительными напряжениями Пайерлса, вследствие присущего их кристаллической решетке сопротивления искажению связей. В таких кристаллах перемещение дислокаций затруднено, потому данные соединения сохраняют свою прочность до очень высоких температур. Наиболее целесообразным считается применение SiC, Si3N4 и AlN вместо металлов в двигателестроении. Это связано с тем, что изготовление проточной части газотурбинного двигателя (ГТД) из керамики и повышение его рабочей температуры до 1400°С и выше позволит увеличить КПД с 26 до 45%. При использовании керамики в дизельном двигателе его можно сделать неохлаждаемым, снизить массу и повысить экономичность.

Целесообразность применения керамики для двигателестроения объясняется не только ее высокой жаропрочностью, но и тем, что благодаря ее более высокой, по сравнению с металлами, коррозионной стойкости можно использовать низкосортное топливо. Например, согласно оценкам Института НАТО по изучению перспективных проблем, ежегодная экономия за счет применения в США керамических автомобильных ГТД составит 7млрд долларов только на импортируемой нефти, а в целом экономия может достичь 50млрд долларов. Применение керамики для изготовления деталей двигателей снижает их стоимость, что обусловлено сравнительно низкой стоимостью керамики и уменьшает расход никеля, кобальта, хрома и других остродефицитных дорогих металлов.

4.3.2.1. Керамика на основе SiC

Карбид кремния (карборунд) SiC является единственным соединением кремния и углерода. В природе этот материал встречается крайне редко. Карбид кремния существует в двух модификациях, из которых ?-модификация является политипной и представляет собой сложную структуру гексагональной формы. Установлено около 20 структур, относящихся к гексагональной форме карборунда. Переход ?-SiC>?-SiC происходит примерно при 2100°С. При температуре 2400°С это превращение происходит весьма быстро. До температур 1950-2000°С образуется кубическая модификация, при более высокой температуре образуются гексагональные модификации. При температурах свыше 2600-2700°С карбид кремния возгоняется. Кристаллы карбида кремния могут быть бесцветными, зелеными и черными. Чистый карбид кремния стехиометрического состава бесцветен. При превышении содержания кремния SiC становится зеленым, углерода - черным.

Карборунд имеет очень высокую твердость: H? до 45ГПа, достаточно высокую изгибную прочность: ?изг до 700МПа. Карбидокремниевая керамика сохраняет примерно постоянную прочность до высоких температур: температура перехода от хрупкого к хрупкопластическому разрушению для нее составляет 2000°С. В то же время для самосвязанного SiC наблюдается падение прочности при высоких температурах. При комнатной температуре разрушение самосвязанного SiC транскристаллитное и носит характер скола. При 1050°С характер разрушения становится межкристаллитным. Наблюдающееся при высоких температурах снижение прочности самосвязанного SiC вызвано его окислением. Прочность рекристаллизованного SiC с увеличением температуры не уменьшается и, более того, возможно ее увеличение, связанное с образованием слоя аморфного SiO2, который залечивает дефекты на поверхности и во внутренних слоях изделий.

Карборунд устойчив против воздействия всех кислот, за исключением фосфорной и смеси азотной и плавиковой. К действию щелочей SiC менее устойчив. Установлено, что карбид кремния смачивается металлами группы железа и марганцем. Самосвязанный карбид кремния, который содержит свободный кремний, хорошо взаимодействует со сталью.

При изготовлении абразивных и огнеупорных изделий из SiC, а также карбидокремниевых электронагревателей, исходными материалами служат кремнезем (кварцевый песок) и кокс. Их нагревают до высокой температуры в электрических печах, осуществляя синтез методом Ачесона:

SiO2+3C=SiC+2CO2 (24)

Вокруг нагревательного элемента (керна) получается зона синтезированного продукта, а за ней - зоны кристаллов низкой чистоты и непрореагировавших компонентов. Полученные в печи продукты разделяют по этим зонам, измельчают, обрабатывают и получают порошок карбида кремния общего назначения. Недостатком данных порошков карбида кремния являются высокая загрязненность примесями, большое содержание диоксида кремния, плохая спекаемость и др.

Для получения высококачественной конструкционной керамики необходимо использовать высокочистые, гомогенные, высокодисперсные порошки SiC, которые получают различными высокотехнологичными способами. При получении порошков методом синтеза исходный металлургический кремний подвергают дроблению и помолу в валковой мельнице. Измельченный порошок кремния отмывают от примесей в смеси неорганических кислот и направляют на тонкое измельчение в специальный вертикальный реактор. Синтез SiC осуществляется в реакторе подачей Si в специальные сопла, а вместо сжатого воздуха подается пропан:

t>1100°С

3Si+C3H8=3SiC+4H2 (25)

В результате получается высокодисперсный, гомогенный, активированный порошок карбида кремния монофракционного состава, имеющий высокую степень чистоты.

Изделия из SiC формуют прессованием, экструзией, литьем под давлением.

В технологии карбидокремниевой керамики обычно используют горячее прессование, реакционное и активированное спекание.

Метод горячего прессования позволяет получать материалы с плотностью близкой к теоретической и с высокими механическими свойствами. Прессование проводят обычно в прессформах из графита или нитрида бора при давлениях 10-50МПа и температурах 1700-2000°С. Высокая стабильность кристаллических решеток тугоплавких неметаллических соединений, связанная с наличием жестких направленных ковалентных связей, определяет низкую концентрацию и подвижность дефектов решетки, заторможенность в ней диффузионных процессов. Это затрудняет протекание процесса диффузионно-вязкого течения, ответственного за массоперенос и уплотнение при твердофазном спекании. Учитывая это, перед прессованием в керамику вводят активирующие спекание добавки или проводят физическое активирование (используют ультрадисперсные порошки, обрабатывают их взрывом для увеличения дефектности, удаляют с поверхности влагу и оксидные слои и т.д.).

Метод горячего прессования позволяет получать только изделия довольно простой формы и относительно небольших размеров. Получать изделия сложной формы с высокой плотностью можно методом горячего изостатического прессования. Материалы, полученные методами обычного и изостатического горячего прессования, близки по своим свойствам.

Путем проведения горячего изостатического прессования при высоких давлениях газовой среды (1000МПа), препятствующих диссоциации тугоплавких неметаллических соединений, удается повысить температуру процесса до уровня, при котором обеспечивается их пластическая деформация.

Используя метод активированного спекания удается спечь отформованные изделия из SiC до плотности свыше 90% без приложения давления. Так получают материалы на основе SiC с добавками бора, углерода и алюминия. Благодаря этим добавкам за счет образования диффузионного слоя на поверхности частиц, их консолидации и укрупнения при зернограничной диффузии происходит увеличение площади межчастичных контактов и усадка.

Для получения изделий из карбида кремния также широко используется метод реакционного спекания, который позволяет проводить процесс при более низких температурах и получать изделия сложной формы. Для получения так называемого "самосвязанного" карбида кремния проводят спекание прессовок из SiC и углерода в присутствии кремния. При этом происходит образование вторичного SiC и перекристаллизация SiC через кремниевый расплав. В итоге образуются беспористые материалы, содержащие 5-15% свободного кремния в карбидокремниевой матрице. Методом реакционного спекания получают также керамику из SiC, сформованную литьем под давлением. При этом шихту на основе кремния и других веществ смешивают с расплавленным легкоплавким органическим связующим ( парафином ) до получения шликерной массы, из которой затем отливают под давлением заготовку. Затем изделие помещают в науглероживающую среду, в которой сначала производят отгонку легкоплавкого связующего, а затем сквозное насыщение заготовки углеродом при температуре 1100°С. В результате реакционного спекания образуются частицы карбида кремния, которые постепенно заполняют исходные поры.

Затем следует спекание при температуре 1300°C. Реакционное спекание является экономичным процессом благодаря применению недорогого термического оборудования, температура спекания снижается с обычно применяемой 1600-2000°C до 1100-1300°C.

Метод реакционного спекания используется в производстве нагревательных элементов из карбида кремния. Электронагревательные сопротивления из карбида кремния представляют собой так называемые термисторы, т. е. материалы, меняющие свое сопротивление под влиянием нагрева или охлаждения. Черный карбид кремния имеет высокое сопротивление при комнатной температуре и отрицательный температурный коэффициент сопротивления. Зеленый карбид кремния имеет низкое начальное сопротивление и слабоотрицательный температурный коэффициент, переходящий в положительный при температурах 500-800°С. Карбидокремниевые нагревательные элёменты (КНЭ) обычно представляют собой стержень или трубку, имеющую среднюю рабочую часть с относительно высоким электрическим сопротивлением («горячая» зона) и выводные («холодные») концы с более низким электросопротивлением, которые не нагреваются в процессе эксплуатации печи. Такие выводные концы необходимы для надежного контакта с питающей электросетью, а также для предохранения от разрушения стенок печи, в которые укладывают нагревательные элементы.

Промышленность выпускает два типа нагревательных элементов из карбида кремния: составные нагреватели, получившие название карборундовые, имеющие рабочий стержень и два отдельных более коротких контактных вывода в виде пропитанных металлом карборундовых стержней, и стержни с утолщенными выводными концами (манжетами) - силитовые нагреватели. Составные карборундовые нагреватели формуют из полусухой массы, состоящей из крупнозернистого порошка зеленого SiC с добавками сажи (1,5%) и жидкого стекла. Изделия формуют в картонных чехлах способом порционного трамбования на станках. После отверждения заготовки при 70-80°С картонный чехол выжигается в трубчатой электропечи при температуре 800-850°С. Силитовые нагреватели формуют экструзией на горизонтальном гидравлическом прессе. Масса состоит из смеси мелкозернистого SiC, сажи (20%) и фенолформальдегидной смолы. Формуются раздельно рабочая часть и манжеты. Состав манжетной части рассчитан на большую проводимость и в него входит около 40%Si. Отпрессованные заготовки подвергают термическому отверждению, в результате которого смола полимеризуется. На отвержденные стержни насаживают манжетные трубки. Трамбованные заготовки обжигают в засыпке из углепесочной смеси при температуре около 2000°С. Нагреватель предварительно обмазывают токопроводящей пастой, состоящей из кокса, графита и кварцевого песка. Изделие спекают прямым электротермическим нагревом в специальных печах при пропускании через заготовку тока в 80-100А в течение 40-50 мин.

При спекании силитовых нагревателей имеющиеся в массе углерод и кремний превращаются во «вторичный» SiC по механизму реакционного спекания в условиях выделения парообразного кремния из засыпки, куда помещают обжигаемый нагреватель. В качестве засыпки используют смесь из молотого песка, нефтяного кокса и карбида кремния. Эта смесь при температуре 1800-2000°С выделяет парообразный кремний и СО, проникающие внутрь заготовки и реагирующие с твердыми Si и С. Одновременно происходит синтез вторичного карбида кремния путем взаимодействия кремния, содержащегося в шихте, с углеродом.

Следует отметить, что реакционное спекание впервые нашло свое практическое применение именно в производстве нагревателей и изделий из карбида кремния.

Для получения плотной керамики из SiC высокой чистоты используют также метод осаждения из газовой фазы, но из-за технологических трудностей и невозможности получать изделия толщиной более нескольких миллиметров он применяется для нанесения защитных покрытий. Для этого применяются методы газофазного синтеза SiC из летучих галогенидов кремния и углеводородов или метод термической диссоциации газообразных кремнийорганических соединений. Для восстановления Si из галогенидов необходимо участие в пиролизе газообразного водорода. В качестве углеродсодержащих соединений применяют толуол, бензол, гексан, метан и др. Для промышленного получения карбидокремниевых покрытий более удобен метод термической диссоциации метилхлорсиланов, имеющих стехиометрическое соотношение Si:C=1:1. Пиролиз СН3SiСl3 в водороде приводит к образованию осадка SiC, формирующего покрытие при температурах до 1400°С.

Очень важную роль при образовании пиролитического SiC играет водород. При диссоциации трихлорметилсилана в инертной атмосфере без участия водорода протекают реакции, приводящие к образованию кремния и углерода, а не SiC. Поэтому замена инертного газа-носителя на водород при термическом разложении метилхлорсиланов значительно повышает выход SiC и снижает или полностью прекращает сажеобразование. Процесс взаимодействия трихлорметилсилана с водородом протекает в две стадии. На первоначальной стадии процесса устанавливается нестабильное равновесие, при котором в качестве конденсированной фазы выступают кремний и углерод, а не карбид кремния. На второй стадии газообразные хлорсиланы и углеводороды, образовавшиеся на первой стадии в концентрациях, отвечающих метастабильному равновесию, реагируют друг с другом с образованием SiC. Регулируя параметры протекания процесса осаждения, можно варьировать свойствами полученных покрытий. Так, при низких температурах образуются мелкозернистые и метастабильные структуры. С повышением температуры размер кристаллов растет. При 1400°С и низких скоростях осаждения образуются монокристаллы и эпитаксиальные слои SiC. Средний размер кристаллов в слое SiC, осажденном из трихлорметилсилана при 1400°С, равен 1мкм, а при 1800°С - 15мкм.

При 1100-1200°С может образовываться неравновесный твердый раствор со сверхстехиометрическим содержанием атомов углерода, замещающих атомы кремния, что сказывается на уменьшении параметра решетки SiC. С повышением температуры отжига до 1300°С или в результате последующего отжига избыточный углерод выделяется в свободном состоянии. При повышенных температурах осаждения и низких давлениях газовой среды наблюдается ориентированный рост кристаллов и формирование столбчатой структуры. Пиролитические покрытия почти полностью состоят из ?-SiC. Доля гексагональных политипов составляет менее 5%. Скорость роста пиролитического карбида кремния не превышает 0,5мм/ч. В то же время сравнительно низкие температуры осаждения (1100-1550°С) позволяют совмещать карбидокремниевые покрытия с любыми конструкционными материалами.

Основным недостатком этих покрытий является возникновение остаточных напряжений, вызванное несоответствием температурных коэффициентов линейного расширения покрытия и подложки (кроме случая нанесения SiC на SiC) и анизотропией покрытия. Из-за сравнительно низкой температуры осаждения напряжения не релаксируются и покрытия растрескиваются. Одним из способов устранения этого недостатка является получение слоистых покрытий, т.е. покрытий с регулярным чередованием слоев равной толщины пироуглерода и SiC, осажденным из смеси хлорметилсилана с метаном.

Кроме описанных способов получения технической керамики из SiC, используются и другие. Методом испарения SiC и его последующей сублимации при 2100-2300°С без использования связок и активирующих добавок получают так называемый рекристаллизационный карбид кремния.

Материалы на основе карбида кремния начали применяться значительно раньше, чем материалы на основе Si3N4, АlN, В4С и ВN. Уже в 20-е годы использовались карбидокремниевые огнеупоры на связке из диоксида кремния (90%SiC+10%SiO2), а в 50-е годы из карбида кремния на нитридокремниевой связке (75%SiC+25%Si3N4) изготавливали сопла ракет. В настоящее время керамика на основе карбида кремния применяется для изготовления уплотнительных колец для насосов, компрессоров, смесителей, подшипников и гильз для валов, дозирующей и регулирующей арматуры для коррозионных и абразивных сред, деталей двигателей, металлопроводов для жидких металлов. Разработаны новые композиционные материалы с карбидокремниевой матрицей. Они используются в различных областях, например в самолетостроении и в космонавтике.

4.3.2.2. Керамика на основе Si3N4 и AlN

Керамика из Si3N4. Нитрид кремния Si3N4 является единственным соединением кремния и азота. Он существует в двух модификациях - ?- и ?-Si3N4, которые имеют гексагональную решетку. Нитрид кремния отличается исключительно высокой химической устойчивостью. Он устойчив к окислению не только на воздухе, но и в кислороде, даже при умеренно высоких температурах. Практически нитрид кремния устойчив против всех кислот, многих расплавленных металлов, паров воды.

Исходными материалами в технологии керамики из нитрида кремния служат порошки синтезированного различными методами Si3N4 либо порошки кремния, или SiO2.

Производство изделий сложной конфигурации из Si3N4 сопряжено со значительными трудностями. Наибольшее распространение для изготовления таких изделий получило литье из водных и термопластичных шликеров. В качестве жидкой фазы при шликерном литье порошков Si3N4 чаще используют водные растворы..Использование термопластичных шликеров обеспечивает механическую прочность, стабильность свойств изделий, в том числе высокую точность размеров из-за отсутствия усадки. Для массового производства изделий сложной формы из материалов на основе Si3N4 применяется метод инжекционного формования. Материалы инжекционного формования отличаются однородной тонкозернистой структурой, высокой плотностью после спекания.

Основными способами получения керамики на основе нитрида кремния являются реакционное связывание кремния, спекание или горячее прессование порошка нитрида кремния с использованием уплотняющих добавок.

Метод получения керамики на основе реакционно-связанного нитрида кремния (РСНК) заключается в азотировании тонкодисперсных отформованных различными способами порошков кремния газообразным азотом при температурах до 1450-1500°С, в процессе которого кремний превращается в нитрид кремния. Поскольку при реакционном спекании основную роль играет газовая фаза, отформованные заготовки должны обладать достаточной для протекания газотранспортных реакций пористостью. Поэтому керамика из РСНК имеет остаточную пористость 20-30%. Отсутствие усадки или увеличения размеров в процессе синтеза при такой технологии происходит из-за увеличения объема материала за счет образования нитрида кремния, который заполняет объем внутренних пор заготовки. Для уменьшения пористости РСНК в шихту вводят добавки MgO, Y2O3 и др. После окончания реакционного спекания часто проводят дополнительное спекание при более высоких температурах и при избыточном давлении азота, необходимом для подавления диссоциации Si3N4. Также возможно допрессовывание изделий из РСНК в газостатах. Изделия из РСНК получают непосредственно в виде готовой продукции. Изделия не требуют дополнительной механической обработки, в ряде случаев необходима лишь шлифовка поверхности или доведение ее до необходимого размера.

В последние годы получила распространение такая разновидность реакционного спекания нитрида кремния, как самораспространяющийся высокотемпературный синтез (СВС), при котором для поддержания процесса образования Si3N4 используется энергия, выделяющаяся в ходе азотирования кремния.

В технологии получения керамики на основе Si3N4 путем спекания заготовки, спрессованные или отлитые непосредственно из нитрида кремния, спекаются при температуре 1600-1700°С. Нитридкремниевая керамика, из-за жестких ковалентных связей и малой подвижности атомов плохо поддается спеканию. Для интенсификации спекания применяют добавки МgО, Y2О3, Аl2О3 и др. в количестве 5-10% мас., обеспечивающие образование жидкой фазы, с помощью которой происходит уплотнение материала. В некоторых случаях к порошку Si3N4 добавляют кремний. В этом случае проводится азотирование на промежуточной ступени спекания (1350°С). Спеченные нитрид кремния обладает высокой плотностью, твердостью, высокотемпературной прочностью, изностойкостью, высокой вязкостью разрушения.

Метод горячего прессования порошков нитрида кремния с уплотняющими добавками оксидов металлов позволяет получать практически беспористую керамику с высокой прочностью и повышенной стойкостью к окислению. Горячее прессование чистого Si3N4 не уплотняет его, в отличие от других материалов. Поэтому в шихту рекомендуется вводить флюсующие добавки в виде МgО и др.

Керамика из нитрида кремния устойчива в растворах серной, соляной, азотной, мета-, орто- и пирофосфорной кислот любой концентрации, а также в царской водке. При нагревании фосфорная и плавиковая кислоты разлагают его лишь частично. Горячепрессованные и реакционноспеченные материалы на основе нитрида кремния также достаточно устойчивы в растворах щелочей.

В восстановительной, инертной среде или в вакууме реакционноспеченный Si3N4 лучше сопротивляется ползучести, чем большинство горячепрессованных материалов.

Вопрос о стойкости нитридкремниевой керамики к коррозии под действием механических напряжений особенно остро встал при изготовлении из нее деталей двигателей и других высокотемпературных устройств. Такие способы защиты керамики от коррозии, как нанесение покрытий, пропитка и предварительное окисление, усложняют процесс изготовления керамических деталей, повышают их стоимость и не всегда приводят к желаемым результатам. Поэтому необходимо обеспечить коррозионную стойкость керамики оптимизацией технологии ее изготовления. Это возможно путем уменьшения открытой пористости и среднего размера пор, введения определенного количества необходимых добавок и уменьшения содержания примесей.

Так, повысить стойкость к окислению материалов на основе Si3N4 можно, добавляя в них, помимо оксида магния, диоксид циркония. Горячепрессованный материал, содержащий 1% МgО и 2% ZrO2, показал значительно большую стойкость к высокотемпературному окислению, чем тот же материал без диоксида циркония. Добавка ZrO2 замедляет диффузию кислорода через оксидную пленку и перенос ионов магния к поверхности образца. Добавка оксида иттрия позволяет получить кристаллическую межзеренную фазу, а не стекловидную, как в случае МgО, и повысить высокотемпературную прочность материалов.

Интерес к керамике на основе Si3N4 обусловлен ее высокой механической прочностью, твердостью, трещиностойкостью, термостойкостью, возможностью работы при температурах до 1400-1600°С на воздухе и выхлопных газах автомобилей. В таблице 5 представлены некоторые физико-механические свойства нитридкремниевых керамик.

Области применения керамики из нитрида кремния:

1. Двигателестроение: разработаны элементы и узлы горячей зоны газотурбинных двигателей для авиакосмической техники, наземного транспорта, сопловые и рабочие лопатки, диски турбины, кольцевые элементы соплового аппарата, надроторные уплотнения, форсунки камеры сгорания, стабилизаторы горения, камеры сгорания, каталитические воспламенители форсажной камеры. Для двигателей внутреннего сгорания: накладки на поршень, плита головки, вставки гильзы цилиндров, выхлопные каналы, толкатели клапанов.

Таблица 5. Свойства керамики на основе Si3N4

Материал

Плотность, г/см3

Пористость, %

Е, ГПа

?изг, МПа

Горячепрессованный

3,2-3,3

0

310-320

800-1200

Спеченный

3,15-3,2

<2

270

750

Реакционноспеченный

2,2-2,6

<30

170

195-390

2. Атомная, химическая промышленность, металлургия: производство тиглей объемом от 0,2 до 6 л, хлороводов для подачи газообразного хлора при производстве хлористого алюминия, термопарных чехлов, литников, пробок, труб, используемых в процессе производства металлов, футеровочных плит для изоляции печей и других теплонагруженных агрегатов, клапанов, сопел, уплотнительных колец, прокладок для насосов, трубопроводов, работающих, в том числе, в агрессивных средах

3. В машиностроении: износостойкие элементы оборудования текстильной промышленности: нитеводители - глазки, втулки, кольца, пластины, с ресурсом работы не менее 1 года, что в 3-5 раз выше ресурса аналогичных фарфоровых изделий; изностойкие элементы подшипников, рабочие пластины режущих инструментов. Разработана технология изготовления керамических деталей для газосварочных аппаратов, обладающих высокими изолирующими свойствами, не подверженных соединению с расплавленным металлом, легко очищающихся от застывших брызг при минимальном механическом воздействии, длительно не подверженных окислению при 1000-1300°С, не растрескивающихся при перепадах температур и случайном падении. При использовании деталей из керамики исчезает необходимость в изолирующей втулке, упрощается конструкция держателя, увеличивается ресурс работы оборудования, исключается использование большого количества традиционной медной трубки, используемой в качестве сопел.

4. Электро- и радиотехника: изготовление электроизоляторов, сопротивлений, термисторов.

Керамика из AlN. Нитрид алюминия хотя и наиболее перспективный, после Si3N4 и SiC материал для изготовления термонапряженных деталей различных высокотемпературных конструкций, изучен значительно меньше. Он является единственным соединением алюминия и азота. Кристаллизуется нитрид алюминия в гексагональной решетке типа вюрцита. AlN, так же как и SiC, характеризуется наличием нескольких политипов.

ПлотностьAlN 3,12-3,27 г/см3, температура плавления 2400°С. При температуре 1600-1700°С в отсутствие давления азота AlN разлагается. Нитрид алюминия обладает высоким электрическим сопротивлением, высокой теплопроводностью, химической устойчивостью в агрессивных средах.

Порошки нитрида алюминия получают синтезом путем азотирования алюминия при температурах 800-1200°С, либо восстановлением оксида алюминия с одновременным азотированием. Керамику из нитрида алюминия изготавливают путем спекания спрессованных или отлитых заготовок в среде азота при температуре 1900°С. К порошку AlN добавляется до 10% алюминиевой пудры, которая при азотировании образует AlN, являющийся связкой. В данном процессе имеет место частичное реакционное спекание.

Часто керамику из AlN получают методом реакционного спекания. В этом случае прессовки из чистого порошка металлического алюминия подвергаются спеканию в азоте. По этому способу изделия не достигают большой плотности, она составляет не более 0,5-0,6 от теоретической. Высокоплотную керамику из AlN получают горячим прессованием при температуре 2000-2100°С и давлении 30МПа.

Керамика из чистого нитрида алюминия имеет невысокий уровень механических характеристик: ?изг не выше 350МПа и находит применение в качестве огнеупорного материала, стойкого в расплавах никеля и меди. Перспективным является использование чистого AlN в оптоэлектронной технике для изготовления фоторезисторов.

В настоящее время разработаны керамические композиционные материалы системы Si-Al-O-N - сиалоны. Они обладают сочетанием уникальных свойств, таких как высокая твёрдость, прочность и трещиностойкость, устойчивость к действию агрессивных химических сред в условиях повышенных температур, большая ширина запрещенной щели, высокие тепло- и электроизоляционные характеристики и т.д. При этом температура синтеза сиалонов значительно ниже таковой для нитрида кремния. Наибольшее распространение получил ?-сиалон (?- Si6-xAlxN8-xOx), имеющий ?изг до 1200МПа, твёрдость по Виккерсу 13-17ГПа, который применяется для изготовления деталей газовых турбин, деталей двигателей внутреннего сгорания, режущего инструмента и т.д.

4.3.2.3 Керамика на основе BN и B4C

Керамика из BN. Нитрид бора BN является единственным соединением бора и азота с весьма высокой температурой плавления в 3000°С (под давлением азота). Плотность его 2,2-2,35 г/см3. Практическое значение имеют две модификационные формы нитрида бора - гексагональная ?-BN и кубическая ?-BN.

Структура гексагонального BN подобна структуре графита, благодаря чему нитрид бора иногда называют «белый графит» или «белая сажа». Структура ?-BN отличается чередованием графитоподобных сеток, в которых атомы бора и азота чередуются по оси х. Гексагональный нитрид бора представляет собой белый мелкозернистый порошок чешуйчатого строения. В химическом отношении нитрид бора очень устойчив в нейтральной и восстановительной средах. Он не смачивается многими расплавленными металлами, расплавом стекла и рядом солей. Особенности строения кристаллической решетки обуславливают высокие диэлектрические свойства ?-BN, которые в сочетании с высокой огнеупорностью, химической инертностью и термостойкостью делают его весьма перспективным материалом в ряде областей техники.

Порошок ?-BN получают синтезом из элементов при температуре выше 2000°С или при нагревании смеси B2O3 с восстановителями (углём, магнием) в атмосфере аммиака. Изделия из ?-BN получают путем спекания спрессованных порошков в среде аммиака или азота при температуре 1800°С, однако плотность таких изделий мала. Для изготовления плотных изделий применяют горячее прессование, которое обычно осуществляют в графитовых формах при давлении 30-50МПа и температуре 1800-1900°С.

Одним из видов материалов из нитрида бора в его гексагональной ?- форме является пиролитический нитрид бора. Получение пиронитрида бора основано на реакции в газовой фазе между бором, выделяющимся при разложении его летучих соединений, и азотом и осаждении образовавшегося BN на нагреваемой до 1500-2000°С графитовой подложке. Пиролитический нитрид бора - высокотемпературный поликристаллический диэлектрик. Относится к беспористым газонепроницаемым материалам, обладает анизотропией физико-механических характеристик. Пиронитрид бора имеет плотность 2,2г/см3, прочность на изгиб 190МПа. Материал отличается высокой термостабильностью - в инертной атмосфере или вакууме испаряется с диссоциацией при температуре выше 1800°С, под давлением азота плавится при температуре 3010°С.

При давлениях выше 6200МПа и температурах выше 1350°С в присутствии катализаторов (щелочных и щёлочно-земельных металлов) ?-BN превращается в кубический алмазоподобный ?-BN. Боразон кристаллизуется в структуре цинковой обманки (сфалерита). Кристаллы боразона имеют вид тетраэдров или октаэдров. Они прозрачны, а их цвет зависит от наличия тех или иных примесей. Плотность боразона составляет 3,45г/см3 , твёрдость приближается к твёрдости алмаза. В то же время боразон гораздо более устойчив при высоких температурах. Химическая стойкость боразона значительно выше ?-BN. При нагреве боразона до 2500?С под давлением в 4000МПа наблюдается его переход в гексагональный нитрид бора.

Гексагональный нитрид бора применяется в качестве сухой смазки в подшипниках. Пиролитический нитрид бора используется в качестве материала для тиглей, применяемых в синтезе и выращивании полупроводников, испарительных ячеек в установках молекулярно-пучковой эпитаксии, источников примеси бора в производстве интегральных микросхем, окон вывода СВЧ-энергии.

Кубический нитрид бора и материалы на его основе занимают заметное место в ряду важнейших инструментальных материалов. Разработана технология получения двухслойных пластин на основе кубического нитрида бора, обеспечивающая высокую твёрдость режущего слоя (28-30 ГПа), высокую термостойкость (более 1200?С) и стабильность качества. Режущие пластины на основе кубического нитрида бора рекомендуются для высокопроизводительного точения (гладкого и с ударом) закаленных сталей, серого, высокопрочного и отбеленного чугуна, для обработки стального и чугунного литья по литейной корке и других сверхтвёрдых материалов, а также фрезерования чугунов. Достоинством двухслойных пластин из кубического нитрида бора является их высокая износостойкость и большой размер пластин (15мм), позволяющий изготавливать резцы с большой режущей кромкой для обработки деталей из чугуна с глубиной резания, достигающей 6 мм на сторону при высоких скоростях резания 600м/мин. Это обеспечивает высокую производительность обработки, не достижимую для твёрдосплавных резцов.

Также боразон используется для изготовления изделий, применяемых в высокотемпературной технике (тигли, изоляторы, тигли для получения полупроводниковых кристаллов, детали электровакуумных приборов).

Керамика на основе В4С. B4C (правильнее B12C3) - единственное соединение бора с углеродом. Чёрные блестящие кристаллы, плотность 2,52 г/см3, температура плавления 2360°С. На воздухе карбид бора устойчив до 1000°С, не реагирует с кислотами, но разлагается щелочами. По твёрдости B4C (Н?=49ГПа) уступает лишь алмазу и боразону.

Порошок B4C получают прямым синтезом элементов либо восстановлением оксида бора B2O3 углеродом в электропечи при температуре свыше 2000°С. Изделия из B4C изготавливают методом горячего прессования в графитовых пресс-формах при температуре 2200°С, при этом выпрессовку изделий из пресс-форм проводят при температуре 700°С.

Керамика из B4C имеет следующий уровень механических характеристик: ?изг до 340ГПа, К1с до 4,5МПа?м1/2. Прочность керамики из B4C на воздухе при температурах выше 800°С постепенно снижается, а при 1200°С B4C практически полностью разупрочняется. В инертной среде прочность и трещиностойкость горячепрессованного карбида бора изменяется незначительно до 1200°С.

Горячим прессованием из B4C изготавливают волоки для волочения проволоки, режущие кромки резцов и т.д. Карбид бора не образует острых режущих ребер при износе и, следовательно, не может использоваться как абразив, кроме как в виде порошка для полирования. Абразивоструйные форсунки из B4C широко используются в судостроении для очищения поверхностей перед окрашиванием, в машиностроительной промышленности для обработки отливок и сварных соединений, в электронной промышленности для обработок поверхности кинескопов. B4C используется также в ядерной технике как нейтронопоглощающий материал.


Подобные документы

  • Технология различных видов корундовой керамики. Влияние внешнего давления и добавок на температуру спекания керамики. Физико-механические и физические свойства керамики на основе диоксида циркония. Состав полимерной глины Premo Sculpey, ее запекание.

    курсовая работа [2,1 M], добавлен 27.05.2015

  • Керамика на основе ZrO2: структура и механические свойства. Керамика на основе ультрадисперсных порошков. Технология получения керамических материалов. Метод акустической эмиссии. Структура, фазовый состав и механические свойства керамики ZrO2.

    дипломная работа [1,2 M], добавлен 04.08.2012

  • Высокопрочные керамики на основе оксидов - перспективные материалы конструкционного и инструментального назначения. Свойства оксидов цинка и меди. Допированные керамики. Основы порошковой металлургии. Технология спекания. Характеристика оборудования.

    курсовая работа [923,2 K], добавлен 19.09.2012

  • Исторические сведения о возникновении керамики, область ее применения. Современные технологии керамических материалов. Производство керамических материалов, изделий в Казахстане, СНГ и за рубежом. Производство и применение стеновых и облицовочных изделий.

    курсовая работа [134,7 K], добавлен 06.06.2014

  • Процессы изготовления керамических материалов. Методы получения порошков. Корундовые керамики модифицированные соединениями хрома. Содержание порошка в образцах керамики на основе глинозема, термограмма. Особенности измерения микротвердости образцов.

    курсовая работа [818,9 K], добавлен 30.05.2013

  • Получение керамики из промышленного глинозема с добавками ультрадисперсных порошков оксида алюминия и диоксида циркония методами холодного прессования и спекания в вакууме и терморазложения солей; исследование структуры и свойств корундовых керамик.

    дипломная работа [934,2 K], добавлен 03.10.2011

  • Основные виды керамики: майолика, фаянс, каменная масса и фарфор. Производство санитарно-технических и бытовых изделий из тонкой керамики. Технология производства технической керамики. Способы декорирования полуфарфора, фарфоровых и фаянсовых изделий.

    реферат [723,1 K], добавлен 18.01.2012

  • Исторические сведения о возникновении керамических материалов, область их применения. Основные физико-химические свойства керамики, применяемые сырьевые материалы. Общая схема технологических этапов производства керамических материалов, ее характеристика.

    курсовая работа [74,2 K], добавлен 02.03.2011

  • Классификация и производство керамических изделий и материалов, основные технологические виды: терракота, майолика, фаянс, каменная масса и фарфор. История развития и образование международной Академии гончарного искусства в Женеве. Биеннале керамики.

    реферат [22,6 K], добавлен 23.12.2010

  • История гончарной керамики. Технология производства керамических изделий. Сырьё для керамических масс. Прозрачные керамические материалы, особенности их структуры. Производство каменной керамической посуды в XVI в. Виды современных глиняных изделий.

    презентация [3,0 M], добавлен 11.02.2011

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.