Высокоскоростной транспорт на магнитной подушке
Поезда MAGLEV как поезд, удерживаемый над полотном дороги, движимый и управляемый силой электромагнитного поля. Основные характеристики и перспективы эксплуатации техники. Российский проект открытия движения поездов на магнитной подушке из Москвы.
Рубрика | Производство и технологии |
Вид | реферат |
Язык | русский |
Дата добавления | 19.05.2015 |
Размер файла | 403,4 K |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
Размещено на http://www.allbest.ru/
Министерство высшего и профессионального образования
Научно-исследовательский Иркутский государственный технический университет
Кафедра Электропривода и Электрического Транспорта
Реферат
Высокоскоростной транспорт на магнитной подушке
Выполнил
студент группы ЭТм-14-1
Гончаров П.Н.
Проверил преподаватель
Аршинов С.А.
Иркутск 2015г.
Оглавление
- Введение
- 1. Поезда MAGLEV: основные характеристики и перспективы эксплуатации
- 2. Летающие экспрессы. Отечественные и зарубежные разработки
- 2.1 Разработки новых видов транспорта
- 2.2 Высокоскоростной транспорт на магнитном подвесе
- Заключение
- Список литературы
Введение
Еще полвека назад магнитная подушка была чем-то из области фантастики. Однако сейчас ученые многих стран работают по созданию транспорта на магнитной подушке. Поезда будущего будут «парить» над землей, они как бы «подвешиваются» к рельсам, или отталкиваются от них, в зависимости от того, какая будет применена система, то есть электромагнитный или электродинамический подвес.
В первом случае путь представляет собой стальные рельсы с «подвешенным» к ним экипажем. Во втором случае состав пойдет по металлическому полотну, в котором возникают электрические токи. В качестве тягового механизма в таких поездах будут использованы линейные двигатели. поезд maglev магнитный
Следует отметить, что поезд на магнитной подвеске начали эксплуатировать восьмидесятых годах прошлого века в Бирмингеме. Правда, после одиннадцати лет работы этот поезд был снят с линии из-за технических проблем.
В настоящее время транспортная система на магнитной подушке действует в Китае, соединяя центр Шанхая с международным аэропортом Пудон. А в Японии экспериментальный поезд на магнитной подушке MLX01 в 2003 году установил абсолютный для данного вида транспорта рекорд скорости, разогнавшись до 581км/ч.
Цель данной контрольной работы - описать основные характеристики транспорта на магнитной подушке и дальнейшие перспективы использования транспорта будущего.
Реализация достижения цели достигается посредством решения следующих задач:
- дать описание теоретических предпосылок к созданию транспорта на магнитной подушке;
- дать описание технических характеристик и перспектив эксплуатации поездов на магнитной подушке;
- дать описание новейших отечественных и зарубежных разработок транспортных средств, функционирующих на основе эффекта левитации.
1. Поезда MAGLEV: основные характеристики и перспективы эксплуатации
Необходимость поездов на магнитной подушке (MAGLEV) [Magnetic Levitation] обсуждается уже долгие годы, однако результаты попыток их реального применения оказались обескураживающими. Важнейший недостаток поездов MAGLEV заключается в особенности работы электромагнитов, которые и обеспечивают левитацию вагонов над полотном. Электромагниты, не охлаждаемые до состояния сверхпроводимости, потребляют гигантские объемы энергии. При использовании же сверхпроводников в полотне стоимость их охлаждения сведет на нет все экономические преимущества и возможность осуществления проекта.
Альтернатива предложена физиком Ричардом Постом из Lawrence Livermore National Laboratory, Калифорния. Ее суть заключается в использовании не электромагнитов, а постоянных магнитов. Ранее применяемые постоянные магниты были слишком слабы, что бы поднять поезд, и Пост применяет метод частичной акселерации, разработанный отставным физиком Клаусом Хальбахом из Lawrence Berkley National Laboratory.
Хальбах предложил метод расположения постоянных магнитов таким образом, что бы сконцентрировать их суммарные поля в одном направлении. Inductrack - так Пост назвал эту систему - использует установки Хальбаха, вмонтированные в днище вагона. Полотно, само по себе, - это упорядоченная укладка витков изолированного медного кабеля.
Установка Хальбаха концентрирует магнитное поле в определенной точке, снижая ее в других. Будучи вмонтированной в днище вагона, она генерирует магнитное поле, которое индуцирует достаточные токи в обмотках полотна под движущимся вагоном, чтобы поднять вагон на несколько сантиметров и стабилизировать его [рис. 1].
Когда поезд останавливается, эффект левитации исчезает, вагоны опускаются на дополнительные шасси.
Рис. 1 Установка Хальбаха
На рисунке представлено 20 метровое опытное полотно для испытания MAGLEV поездов типа Inductrack, которое содержит около 1000 прямоугольных индуктивных обмоток, каждая шириной 15 см. На переднем плане испытательная тележка и электрический контур. Алюминиевые рельсы вдоль полотна поддерживают тележку до момента достижения устойчивой левитации. Установки Хальбаха обеспечивают: под днищем - левитацию, по бокам - устойчивость.
Когда поезд достигает скорости 1-2 км/ч, магниты производят достаточные для левитации поезда токи в индуктивных обмотках. Сила, движущая поезд, генерируется электромагнитами, установленными с интервалами вдоль пути. Поля электромагнитов пульсируют таким образом, что отталкивают от себя установки Хальбаха, смонтированные в поезде, и двигают его вперед.
Согласно Посту, при правильном расположении установок Хальбаха, вагоны не потеряют равновесия ни при каких обстоятельствах, вплоть до землетрясения. В настоящее время, исходя из успехов демонстрационной работы Поста в масштабе 1/20, NASA подписало 3-х годичный контракт с его коллективом в Ливерморе для дальнейшего исследования данной концепции для более эффективного запуска спутников на орбиту. Предполагается, что эта система будет использоваться в качестве многоразового разгонного носителя, который разгонял бы ракету до скорости около 1 Маха, перед включением на ней основных двигателей.
Однако, несмотря на все сложности перспективы использования транспорта на магнитной подушке остаются весьма заманчивыми. Так, японское правительство готовится возобновить работу над принципиально новым видом наземного транспорта -- поездами на магнитной подушке. По заверениям инженеров, вагоны «маглева» способны покрывать расстояние между двумя крупнейшими населенными центрами Японии -- Токио и Осакой -- всего за 1 час. Нынешним скоростным железнодорожным экспрессам для этого требуется времени в 2,5 раза больше.
Секрет скорости «маглева» состоит в том, что вагоны, подвешенные в воздух силой электромагнитного отталкивания, двигаются не по колее, а над ней. Это напрочь исключает потери, неизбежные при трении колес о рельсы. Многолетние испытания, проводившиеся в префектуре Яманаси на пробном участке длиной 18,4 км, подтвердили надежность и безопасность этой транспортной системы. Вагоны, двигавшиеся в автоматическом режиме, без пассажирской нагрузки развивали скорость в 550 км/час. Пока что рекорд скоростного передвижения по рельсам принадлежит французам, чей поезд TGV в 1990 году на испытаниях разогнался до 515 км/час.
Японцев также тревожат экономические проблемы, и в первую очередь вопрос рентабельности сверхскоростной линии «маглева». Ныне ежегодно между Токио и Осакой совершают путешествие около 24 млн. человек, 70% пассажиров пользуются при этом скоростной железнодорожной линией. Сможет ли «маглев» выдержать конкуренцию с «синкансэном»? Ведь, по подсчетам футурологов, революционное развитие сети компьютерной связи неминуемо приведет к снижению пассажиропотока между двумя крупнейшими центрами страны. На загруженности транспортных линий может сказаться и наметившееся падение численности активного населения страны.
Транспортом на магнитной подушке занимаются не только японцы. В ФРГ в течение ряда лет шли собственные изыскания по этой тематике, и в прошлом году немцы отказались от идеи прокладки линии «маглева» между Берлином и Гамбургом из-за непомерной дороговизны проекта. А вот в Китае, наоборот, ныне серьезно рассматривается возможность включения строительства линии «маглева» между Пекином и Шанхаем в 10-летний план развития национального хозяйства.
Власти Шанхая намерены продлить единственную в мире коммерческую железнодорожную ветку на магнитной подушке с тем, чтобы скоростные поезда курсировали между двумя международными аэропортами города. В настоящее время поезда, развивающие максимальную скорость 430 км/час, ходят от аэропорта Пудун до банковского центра. Теперь планируется соединить оба международных аэропорта на противоположных окраинах города, что позволит пассажирам добираться из одного в другой всего за 15 минут.
Шанхай выбран местом проведения Всемирной выставки в 2010 году. В борьбе за это право город потратил свыше $1 млрд на запуск поезда на магнитной подушке. Пока что проект имеет ограниченный успех: поезда ходят полупустыми, поскольку билеты на них дороги для китайцев, а остановки не соединены с какими-либо другими видами общественного транспорта. В этой стране уже построено 30 километров линий для поездов на магнитной подушке, а к Олимпиаде 2008 года планируется построить линию длиной 800 километров от Пекина от Шанхая. Время в пути составит 2 часа.
Российский проект открытия движения поездов на магнитной подушке из Москвы в Санкт-Петербург в ближайшее время не будет реализован, сообщил на пресс-конференции в Москве в конце февраля 2006 года руководитель Федерального агентства железнодорожного транспорта Михаил Акулов. С этим проектом могут быть проблемы, поскольку нет опыта эксплуатации поездов на магнитной подушке в условиях зимы, сказал Акулов, сообщив, что такой проект предложен группой российских разработчиков, которые взяли на вооружение опыт Китая. Вместе с тем Акулов отметил, что идея создания высокоскоростной магистрали Москва - Санкт-Петербург сегодня вновь актуальна. В частности, предложено совместить создание высокоскоростной магистрали с параллельным строительством автомобильного шоссе. Глава агентства добавил, что мощные бизнес-структуры из Азии готовы участвовать в этом проекте, не уточнив, о каких именно структурах идет речь.
2. Летающие экспрессы. Отечественные и зарубежные разработки
2.1 Разработки новых видов транспорта
Работы по созданию скоростных бесколесных поездов на магнитной подушке ведутся достаточно давно, в частности в Советском Союзе с 1974 года. Однако и в 2006 году проблема наиболее перспективного транспорта будущего остается открытой и является широким полем деятельности для современных ученых. В данном разделе речь идет о достоинствах и недостатках новейших разработок совершенно нового вида транспорта.
Рис. 2 Модель поезда на магнитной подушке
На рисунке 2 представлена модель поезда на магнитной подушке, где разработчики решили перевернуть всю механическую систему с ног на голову. Железнодорожная трасса представляет собой совокупность расставленных через определенные равные расстояния железобетонных опор со специальными проемами (окнами) для поездов. Рельсов нет. Почему? Дело в том, что модель перевернута, и в качестве рельса служит сам поезд, а в окнах опор установлены колеса с электромоторами, скоростью вращения которых дистанционно управляет машинист поезда.
Таким образом, поезд как бы летит по воздуху. Расстояния между опорами подобраны таким образом, чтобы в каждый момент своего движения поезд находился, как минимум, в двух-трех из них, а один вагон имеет длину большую, чем один пролет. Это позволяет не только удерживать железнодорожный состав на весу, но и, вместе с тем, при отказе одного из колес в какой-либо опоре движение будет продолжаться.
Преимуществ использования именно этой модели достаточно. Во-первых, это экономия на материалах, во-вторых, вес поезда значительно уменьшается (не нужно ни двигателей, ни колес), в-третьих, такая модель чрезвычайно экологична, а в-четвертых, проложить такую трассу в условиях густонаселенного города либо местности с неровным ландшафтом гораздо проще, чем в стандартных видах транспорта.
Но нельзя не сказать и о недостатках. Например, если в рамках трассы одна из опор сильно отклонится, это приведет к катастрофе. Хотя, катастрофы возможны и в рамках обычных железных дорог. Другой вопрос, который ведет к сильному удорожанию технологии, это физические нагрузки на опоры. Например, хвост поезда, только выехавший из какого-либо конкретного проема, если говорить простыми словами, как бы "повисает" и оказывает большую нагрузку на следующую опору, при этом смещается и центр тяжести самого поезда, что влияет на все опоры, в целом. Примерно такая же ситуация возникает, когда голова поезда выезжает из проема и так же "повисает", пока не достигнет следующей опоры.
Получаются своего рода качели. Как эту проблему намерены решать конструкторы (с помощью несущего крыла, огромной скорости, уменьшением расстояния между опорами...), пока неясно. Но решения есть. И третья проблема - повороты. Поскольку разработчики решили, что длина вагона больше, чем один пролет, стоит вопрос поворотов.
Рис. 3 Т-образный монорельс
Американский проект Airtrain предполагает использование перевернутого вверх ногами Т-образного монорельса, к которому подвешено некое подобие самолета. Во время движения он не касается самого рельса, за исключением подпружиненного контакта, питающего Airtrain электроэнергией. С поворотами, торможением и т.п. проблем нет. Например, при торможении на высокой скорости изменяется угол пропеллеров, а на низкой - Airtrain ведет себя точно так же, как и монорельсовые поезда.
Средняя скорость - 320 км/ч, объем пассажиров в одном вагоне - около 92 человек. На самом деле это одна из самых реальных перспектив развития транспорта будущего. Это объяснимо, поскольку над созданием этого проекта трудились два очень авторитетных специалиста - Элвест Лель (Elvest L. Lehl), имеющий 30-летний стаж работы инженером в компании Being, и профессор аэрокосмической инженерии Глен Зумволт (Glen W. Zumwalt), работавший в проектах NASA, FAA и USAF.
Первые испытания Airtrain пока только на модельном уровне не выявили каких-либо существенных недостатков. Но интересно другое - судя по расчетам, вся система, включая рельсы, транспортные средства и т.п. на протяженность 450 км, стоит $2,06 миллиарда, где один самолет Airtrain имеет цену от 11 до 16 миллионов долларов, а полтора километра трассы - $7.3 млн.
Рис. 3 Высокоскоростной Струнный Транспорт Юницкого
Как альтернатива этому существует чисто российская разработка, именуемая Высокоскоростным Струнным Транспортом Юницкого (СТЮ). В ее рамках предлагается использовать поднятые на опорах на высоту 5-25 метров предварительно напряженные рельсы-струны, по которым движутся четырехколесные транспортные модули. Себестоимость у СТЮ оказывается гораздо меньшей - $600-800 тысяч за один километр, а с инфраструктурой и подвижным составом - $900-1200 тысяч за км.
Рис. 4 Пример монорельсового транспорта
Но ближайшее будущее видится все-таки за обычным монорельсовым представлением. Причем в рамках монорельсовых систем сейчас откатываются новейшие технологии по автоматизированию транспорта. Например, американская корпорация Taxi 2000 создает монорельсовую систему автоматических такси SkyWeb Express, которые могут ездить как в рамках города, так и за его пределами. Водитель в таких такси не нужен (прямо как в фантастических книгах и фильмах). Вы указываете точку назначения, и такси само вас туда отвозит, самостоятельно выстраивая оптимальный маршрут. Тут получается все - и безопасность, и точность. Taxi 2000 на данный момент - наиболее реальный и осуществимый проект
Немцы из проекта Modular Automated Individual Transport предлагают применять для перевозки людей и грузов некие контейнеры. Идея на самом деле проста. Вы заходите в контейнер, указываете точку назначения. Система рассчитывает оптимальный маршрут с учетом всех транспортных магистралей. При этом в рамках MEIT разработаны специальные системы для переноса контейнеров с помощью специального "тягача", подвешенного к рельсу, либо транспортные "тележки" для его перевоза по обычной асфальтированной дороге. И при этом не исключаются варианты взаимодействия со стандартными видами транспорта - поездами, кораблями, самолетами. То есть вы сели в контейнер, и больше ничего не нужно думать, за вас это сделает некая умная транспортная система.
2.2 Высокоскоростной транспорт на магнитном подвесе
Новым и перспективным направлением развития высокоскоростного железнодорожного транспорта являются поезда на магнитном подвесе. Исследования данного вида транспорта начались еще в середине прошлого века. Так первый патент на поезд на магнитном подвесе был получен в июне 1941 года. В свою очередь первая коммерческая линия с использованием данного типа поездов была введена в 1984 году в Британии. Эта линия была мало скоростная. В 1995 году линию закрыли, признав небезопасной.
С внедрением в данной отрасли сверхпроводников позволило перевести данный вид транспорта в высокоскоростной железнодорожный транспорт. На данный момент основными представителями по созданию такого вида транспорта является Япония и Германия.
Лидером в данной отрасли является Япония. Его поезд на магнитных подвесах установил новый рекорд 580 км/ч в декабре 2003 года. Все тестирования новых технологий проводятся на линии Яманаши, которая протяженностью 18,4 км. Во время движения под действием электромагнита поезд “плывет” в 10 миллиметрах от поверхности пути. Магниты находятся в самом составе и по бокам пути. Япония начала разрабатывать программу поездов на магнитной подушке в 60-х годах прошлого века. До сих пор японские модели таких поездов являются самыми быстрыми и тихими в мире.
Другим представителем магнитных скоростных дорог является Германия (компания Transrapid) со своей магнитной скоростной дорогой Transrapid. Электромагнитная система этой дороги зависит от притягивающих сил отдельно отрегулированных электромагнитов, которые в качестве реактивной части ленточно установлены на обеих сторонах транспортного средства и от смонтированных на внутренней стороне пути пакетов активной стали статора. Магниты притягивают транспортное средство снизу к пути до зазора в 10 мм, направляющие магниты удерживают его сбоку в колее. Высоконадежная электронная система регулирования обеспечивает при этом стабильное «парящее» состояние.
Бесконтактный привод осуществляется от синхронного линейного электродвигателя с длинным статором, который служит также и в качестве тормоза для служебного торможения. В отличие от обычных транспортных систем в поездах Transrapid первичная приводная часть расположена не в транспортном средстве, а в шине. Для этого смонтированы феромагнитные пакеты активной стали статора с трехфазной кабельной обмоткой. В этих обмотках образуется электромагнитное перемещающееся поле, которое совместно с полем несущих магнитов способствует получению необходимой для поступательного движения транспортного средства тяги. Изменением силы и частоты трехфазного тока можно бесступенчато регулировать маршрутную скорость до 500 км/ч. Переменой полярности магнитного поля осуществляется перемена направления тяги и, в этом случае, привод становится бесконтактным тормозом.
Transrapid перемещается по одно - или двухколейной шине, которая состоит из отдельных несущих элементов шины из стали или бетона, длиной от 25 до 31 м. Эти несущие элементы устанавливаются обычно на стойках на высоте 5 м.
Маршрутная скорость до 500 км/ч сокращает время путешествий до такого, которое до сих пор было известно только в авиации. Transrapid - это не только скорость, но и безопасность и комфорт. Его комфортабельность делает из каждой поездки впечатляющее событие. Transrapid скользит мягко без каких-либо толчков и безопасно как никакая другая транспортная система. Сход с рельсов исключается благодаря тому, что Transrapid как бы «охватывает» свою шину.
Развитие совершенно новой транспортной технологии имеет смысл только в том случае, если она предлагает также и новые решения в области экономики и экологии. В обычных транспортных системах повышение мощностей означает одновременно и повышение затрат. Transrapid нарушает эту закономерность. Техника перемещения на магнитной подушке работает без сопротивления и, таким образом, без износа. Несмотря на высокую ощность это приводит к значительно сниженным издержкам на уход и техническое обслуживание, а благодаря этому и к более низким эксплуатационным затратам.
Не смотря на то, что особо высокая доля инвестиционных затрат для этой транспортной системы выпадает на проложение путей, инвестиции на изготовление линии для магнитной скоростной дороги Transrapid не выше, а в труднопроходимой местности даже намного ниже, чем для современной железной дороги. Путь движения может гибко согласовываться с условиями ландшафта благодаря повышенной способности преодолевать подъемы (10% и более) и небольшому радиусу кривых (4000 м при 400 км/ч).
Таким образом, для магнитной скоростной дороги не требуется дорогих тоннелей, выемок и насыпей, что в свою очередь является большим экономическим и экологическим преимуществом. Расположенные обычно на стойках шины занимают немного места и не пересекают ландшафт и застроенные площади. Кроме этого, ландшафт вдоль пути не загрязняется выхлопными газами и другими вредными веществами. Благодаря своим бесконтактным несущей направляющей и приводной системам Transrapid не создает шумов от движения и приводных шумов. Он примиряет человека и природу с современной транспортной техникой. Из всего вышесказанного видно, что Transrapid оправдывает свой девиз: «Скорость, экономичность, защита окружающей среды».
Первый в мире поезд, использующий магнитную левитацию поехал 1 января 2003 года. Из Шанхая. На испытаниях поезд достиг скорости 500 км/ч, однако пассажиры наслаждаются скоростью “всего” 400 км/ч.
Название поезда - Transrapid 08, маршрут - Шанхай-Пудонг, длина маршрута всего 30 км, время доставки - каких-то 7 минут.
Из обзора двух представителей магнитных железных дорог мы видим, что данное направление развития высокоскоростного железнодорожного транспорта имеет большие перспективы и на практике внедряется уже сегодня.
Заключение
Поезда на магнитной подушке считаются одним из наиболее перспективных видов транспорта будущего. От обычных поездов и монорельсов поезда на магнитной подушке отличаются полным отсутствием колес - при движении вагоны как бы парят над одним широким рельсом за счет действия магнитных сил. В результате скорость движения такого поезда может достигать 400 км/ч, и в ряде случаев такой транспорт может заменить собой самолет. В настоящее время в мире реализуется на практике только один проект магнитной дороге, называемой также Transrapid.
Многим разработкам и проектам уже по 20-30 лет. И главной задачей для их создателей является привлечение инвесторов. Сама проблема транспорта достаточно существенна, ведь зачастую мы покупаем некоторые продукты так дорого, потому что много затрачено на их перевозку. Вторая проблема - это экология, третья - большая загруженность транспортных путей, что увеличивается год от года, и для некоторых видов транспорта на десятки процентов.
Еще один вопрос, который может появиться в ближайшем будущем, - это быстрое прохождение таможни. На самом деле он решаем путем полной чипизации всех товаров. Чипизация еще выгодна и тем, что вы, вернее, уже ваши дети, смогут придти в магазин и получить полную информацию о товаре с помощью считывающего устройства.
Список литературы
1. Дроздова Т.Е. Теоретические основы прогрессивных технологий. - Москва: МГОУ, 2001. - 212 с.
2 .Материаловедение и технология конструкционных материалов / Тялина Л.Н., Федорова Н.В. Учебное пособие. - Тамбов: ТГТУ, 2006. - 457 с.
3. Методы охраны внутренних вод от загрязнения и истощения / под ред. Гавич И.К. - М.: ЮНИТИ-ДАНА, 2002. - 287 с.
4. Методы очистки производственных сточных вод / Жуков А.И. Монгайт И.Л., Родзиллер И.Д. - М.: Инфра-М, 2005. - 338 с.
5. Основы технологий важнейших отраслей промышленности / под ред. Сидорова И.А. Учебник ВУЗов. - М.: Высшая школа, 2003. - 396 с.
6.Система технологий важнейших отраслей народного хозяйства / Дворцин М.Д., Дмитриенко В.В., Крутикова Л.В., Машихина Л.Г. Учебное пособие. - Хабаровск: ХПИ, 2003. - 523 с.
Размещено на Allbest.ru
Подобные документы
Определение маршрутов движения поездов, локомотивов и маневровых составов. Оперативное руководство и планирование работы станции. Технология обработки транзитных поездов без переработки. Нормирование технологического операций с поездами и вагонами.
курсовая работа [514,7 K], добавлен 12.09.2021Перспективы развития САМ-систем. Теоретическое обоснование высокоскоростной обработки. Принципы генерации траектории режущего инструмента. Резание параллельными слоями. Минимум врезаний инструмента. Рекомендации для предварительной обработки сталей.
курсовая работа [2,3 M], добавлен 14.11.2010Конструкция изделия цилиндрического вертикального резервуара для хранения нефтепродуктов. Разработка оборудования для сварки на флюсовой подушке полотнищ боковых стенок резервуаров. Расчет параметров сварки. Технико-экономическое обоснование проекта.
дипломная работа [3,8 M], добавлен 14.12.2013Основы высокоскоростной механической обработки, инструменты и основные режимы. Обеспечение жесткости, долгого срока шпинделя в широком диапазоне скоростей вращения. Применение тяжелых HF-шпинделей в авиакосмической и автомобильной промышленности.
курсовая работа [5,4 M], добавлен 11.03.2011Схемы изменения направления движения. Характеристика системы технического обслуживания. Монтажные схемы аппаратуры. Расчет производительности труда работников. Охрана труда и экология на посту электрической централизации. Безопасность движения поездов.
дипломная работа [78,6 K], добавлен 14.11.2008Формула расчета защитного эффекта. Состав исследуемых вод. Контроль скорости коррозии. Влияние магнитного поля на эффективность омагничивания воды. Анализ результатов лабораторного изучения влияния магнитной обработки воды на ее коррозионную активность.
статья [100,8 K], добавлен 19.01.2013Методика расчета магнитной цепи синхронного генератора, выбор его размеров и конфигурации, построение характеристики намагничивания машины. Определение параметров обмотки, выполнение теплового и вентиляционного расчетов, сборного чертежа генератора.
курсовая работа [541,5 K], добавлен 20.12.2009Оценка горно-геологических и горнотехнических условий эксплуатации шахты. Способы вскрытия и подготовки шахтного поля. Разработка и технология ведения очистных работ. Экономика и организация труда в очистном забое. Техника безопасности и охрана труда.
курсовая работа [394,9 K], добавлен 23.06.2011Рабочие характеристики асинхронного двигателя, определение его размеров, выбор электромагнитных нагрузок. Расчет числа пар полюсов, мощности двигателя, сопротивлений обмоток ротора и статора, магнитной цепи. Механические и добавочные потери в стали.
курсовая работа [285,2 K], добавлен 26.11.2013Обзор комплекса очистного оборудования. Обоснование схемы подземного транспорта шахты. Расчет участкового ленточного конвейера. Расчёт магистрального конвейерного бремсберга. Транспорт угля в магистральном конвейерном штреке. Вспомогательный транспорт.
курсовая работа [513,5 K], добавлен 20.03.2013