Комбинированная обмотка. Средства измерений

Схема комбинированной обмотки. Расчет аппарата с электромагнитным приводом. Цепь запуска дизеля и схема тепловоза ТЭМ7. Подключение электродвигателя маслопрокачивающего насоса. Классификация средств измерений по типу, виду и метрологическому назначению.

Рубрика Производство и технологии
Вид контрольная работа
Язык русский
Дата добавления 29.03.2015
Размер файла 264,4 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

Приведите схему комбинированной обмотки и поясните ее

Комбинированная, или лягушачья, обмотка впервые была предложена Латуром в 1910 году.

Комбинированная обмотка представляет собой совокупность простой петлевой и сложной волновой обмоток, которые укладывают в одних и тех же пазах якоря в четыре слоя и присоединяются к пластинам одного и того же коллектора (рис.1)

Рис. 1. Образование комбинированной обмотки.

Для симметрии обе обмотки состоят из одинакового числа секций, и каждая из них служит для проведения половины общего тока якоря. В связи с этим число параллельных ветвей простой петлевой обмотки должно быть одинаковым с числом параллельных ветвей сложной волновой обмотки 

а всего комбинированная обмотка имеет число параллельных ветвей

Изобретение относится к области электротехники, а именно к электрической машине с насыщением стали магнитопровода, питаемой трехфазным током, имеющей комбинированную обмотку. Сущность изобретения состоит в том, что одна часть обмотки соединена в звезду, а другая в треугольник, с пространственным сдвигом между этими частями не равным рm/3p, где m - целое число, р - число пар полюсов, при этом выполнено укорочение или удлинение в шага обмотки в интервале значений 0,5<в><1,5, за исключением значения в = 1, или/и выполнено распределение обмотки. Технический результат состоит в том, что изобретение обеспечивает уменьшение загрузки токами части обмотки, соединенной в треугольник, и уменьшение зависимости перегрузки треугольника от напряжения питания.

Приведите схему аппарата с электромагнитным приводом и поясните ее

Для замыкания и размыкания контактов электрических аппаратов применяют различные приводы. В ручном приводе усилие передается от руки человека через систему механических передач к контактам. Ручной привод применяют в некоторых разъединителях, рубильниках, выключателях и контроллерах. Чаще всего ручной привод используют в неавтоматических аппаратах, хотя в некоторых защитных аппаратах включение осуществляется вручную, а отключение -- автоматически под действием сжатой пружины. К дистанционным приводам относят электромагнитный, электропневматический, электродвигательный и тепловой приводы.

Наиболее широко применяется в электрических аппаратах электромагнитный привод, в котором используется сила притяжения якоря к сердечнику электромагнита или сила втягивания якоря в катушку соленоида. Любой ферромагнитный материал, помещенный в магнитное поле, приобретает свойства магнита. Поэтому магнит или электромагнит будет притягивать к себе ферромагнитные тела. На этом свойстве основано устройство разного рода подъемных втягивающих и поворотных электромагнитов.

Сила F, с которой электромагнит или постоянный магнит притягивает к себе ферромагнитное тело -- якорь (рис. 2, а),

F = B2S / (2?0) = 4B2S*105 (89)

Где В -- магнитная индукция в воздушном зазоре;

S -- площадь сечения полюсов.

Магнитный поток Ф, создаваемый катушкой электромагнита, а следовательно, и магнитная индукция В в воздушном зазоре, как было указано выше, зависят от магнитодвижущей силы катушки, т. е. от числа витков ? и тока I, протекающего по ней. Поэтому силу F (тяговое усилие электромагнита) можно регулировать, изменяя ток в его катушке.

Свойства электромагнитного привода характеризуются зависимостью силы F от положения якоря. Эта зависимость называется тяговой характеристикой электромагнитного привода. На ход тяговой характеристики оказывает существенное влияние форма магнитной системы.

Широкое распространение в электрических аппаратах получила магнитная система, состоящая из П-образного сердечника 1 (рис. 2,б) с катушкой 2 и поворотного якоря 4, который соединен с подвижным контактом 3 аппарата.

Примерный вид тяговых характеристик приведен на рис. 3. При полностью разомкнутых контактах воздушный зазор х между якорем и сердечником относительно велик и магнитное сопротивление системы будет наибольшим. Поэтому магнитный поток Ф в воздушном зазоре электромагнита, индукция В и тяговое усилие F будут наименьшими. Однако при правильно рассчитанном приводе это усилие должно обеспечить притяжение якоря к сердечнику.

Рис. 2. Принципиальная схема электромагнита (а) и схема электромагнитного привода с П-образным магнитопроводом (б)

По мере приближения якоря к сердечнику и уменьшения воздушного зазора магнитный поток в зазоре увеличивается и соответственно возрастает тяговое усилие.

Тяговое усилие F, создаваемое приводом, должно быть достаточным для преодоления сил сопротивления подвижной системы аппарата. К ним относятся сила тяжести подвижной системы G, контактное нажатие Q и сила Р, создаваемая возвратной пружиной (см. рис. 2,б). Изменение результирующей силы при перемещении якоря показано на диаграмме (см. рис. 3) ломаной линией 1--2--3--4. При движении якоря и уменьшении воздушного зазора х до момента соприкосновения контактов привод должен преодолевать только сопротивление, обусловленное массой подвижной системы и действием возвратной пружины (участок 1--2). Далее усилие возрастает скачком на величину начального нажатия контактов (2--3) и растет по мере дальнейшего их перемещения (3--4).

Сопоставление характеристик, показанных на рис. 3, позволяет судить о действии аппарата. Так, если ток в катушке управления создает э. д. с. I2? то наибольший зазор х, при котором может включиться аппарат, составляет x2 (точка А), а при меньшей э. д. с. I1? тягового усилия будет недостаточно, и аппарат может включиться только при снижении зазора до х1 (точка Б).

При размыкании электрической цепи катушки привода подвижная система возвращается в исходное положение под действием пружины и силы тяжести. При малых значениях воздушного зазора и возвращающих усилий якорь может удерживаться в промежуточном положении остаточным магнитным потоком. Это явление устраняется установкой фиксированного наименьшего воздушного зазора и регулировкой пружин.

В автоматических выключателях применяют системы с удерживающим электромагнитом (рис. 4, а). Якорь 1 удерживается в притянутом положении к ярму сердечника 5 под действием магнитного потока Ф, создаваемого удерживающей катушкой 4, которая питается от цепи управления. При необходимости отключения подается ток в отключающую катушку 3, создающую магнитный поток Ф0, направленный навстречу магнитному потоку Фу катушки 4, который размагничивает якорь и сердечник.

Рис. 3. Тяговые характеристики электромагнитного привода и диаграмма усилий.

Рис.4. Электромагнитный привод с удерживающим электромагнитом (а) и с магнитным шунтом (б)

В результате якорь под действием отключающей пружины 2 отходит от сердечника, и контакты 6 аппарата размыкаются. Быстродействие отключения достигается благодаря тому, что в начале движения подвижной системы действуют наибольшие усилия натянутой пружины, тогда как в обычном электромагнитном приводе, рассмотренном ранее, движение якоря начинается при большом зазоре и малом тяговом усилии. В качестве отключающей катушки 3 в автоматических выключателях иногда используют шины или размагничивающие витки, по которым проходит ток силовой цепи, защищаемой аппаратом.

При достижении током в катушке 3 некоторого значения, определяемого уставкой аппарата, результирующий магнитный поток Фу -- Ф0, проходящий через якорь, снижается до такого значения, что больше не может удержать якорь в притянутом состоянии, и аппарат отключается.

В быстродействующих выключателях (рис. 4,б) катушки управления и отключения устанавливают в различных частях магнитопровода, чтобы избежать их взаимного индуктивного влияния, которое замедляет размагничивание сердечника и повышает собственное время выключения, особенно при высоких скоростях нарастания аварийного тока в защищаемой цепи.

Отключающую катушку 3 устанавливают на сердечнике 7, который отделен от основного магнитопровода воздушными зазорами.

Якорь 1, сердечники 5 и 7 выполняют в виде пакетов из листовой стали, а поэтому изменение в них магнитного потока будет точно соответствовать изменению тока в защищаемой цепи. Поток Ф0, создаваемый отключающей катушкой 3, замыкается двумя путями: через якорь 1 и по нешихтованному магнитопроводу 8 с катушкой управления 4. Распределение потока Ф0 по магнитным цепям зависит от скорости его изменения. При больших скоростях нарастания аварийного тока, который в данном случае создает размагничивающий поток Ф0, весь этот поток начинает протекать через якорь, поскольку быстрому изменению части потока Ф0, проходящей по сердечнику с катушкой 4, препятствует э. д. с, индуцируемая в удерживающей катушке при быстром изменении проходящего через нее потока. Эта э. д.с. согласно правилу Ленца создает ток, замедляющий нарастание этой части потока Ф0. В результате скорость отключения быстродействующего выключателя будет зависеть от скорости нарастания тока, проходящего через отключающую катушку 3. Чем быстрее нарастает ток, тем при меньшем токе начинается выключение аппарата. Это свойство быстродействующего выключателя весьма ценно, поскольку наибольшую скорость ток имеет в режимах короткого замыкания, и чем раньше выключатель начнет разрывать цепь, тем меньше будет ограничиваемый им ток.

В отдельных случаях требуется замедление работы электрического аппарата. Это выполняется с помощью устройства для получения выдержки времени, под которой понимается время от момента подачи или снятия напряжения с катушки привода аппарата до начала движения контактов. Выдержка времени на отключение электрических аппаратов, управляемых постоянным током, осуществляется с помощью дополнительной короткозамкнутой обмотки, находящейся на одном магнитопроводе с катушкой управления.

При снятии питания с катушки управления магнитный поток, создаваемый этой катушкой, изменяется от своего рабочего значения до нуля.

При изменении этого потока в короткозамкнутой катушке наводится ток такого направления, что его магнитный поток препятствует спаду магнитного потока катушки управления и удерживает якорь электромагнитного привода аппарата в притянутом положении.

Вместо короткозамкнутой катушки может быть установлена на магнитопроводе медная гильза. Действие ее аналогично действию короткозамкнутой катушки. Этого же эффекта можно достичь при замыкании накоротко цепи катушки управления в момент отключения ее от сети.

Для получения выдержки на включение электрического аппарата используют различные механические механизмы времени, принцип действия которых аналогичен часовому механизму.

Электромагнитные приводы аппаратов характеризуются током (или напряжением) срабатывания и возврата. Током (напряжением) срабатывания называется наименьшее значение тока (напряжения), при котором обеспечивается четкое и надежное срабатывание аппарата. Для тяговых аппаратов напряжение срабатывания составляет 75 % номинального напряжения. Если постепенно плавно снижать ток в катушке, то при определенном его значении аппарат отключится. Наибольшее значение тока (напряжения), при котором аппарат уже отключается, называется током (напряжением) возврата. Ток возврата Iв всегда меньше тока срабатывания Iср, поскольку при включении подвижной системе аппарата необходимо преодолеть силы трения, а также повышенные воздушные зазоры между якорем и ярмом электромагнитной системы.

Отношение тока возврата к току срабатывания называют коэффициентом возврата:

кв = Iв / Iср (90)

Этот коэффициент всегда меньше единицы

Опишите цепь запуска дизеля и приведите ее схему тепловоза ТЭМ7

К схемам пуска и контроля работы дизеля относятся схемы, связанные с топливоснабжением дизеля, с прокачкой его маслом перед запуском и после остановки и с проворотом коленчатого вала при запуске.

Для успешного пуска и работы дизеля необходимо поддержание достаточного давления топлива (100... 150 кПа) в коллекторе топливных насосов высокого давления (ТНВД). Это давление создает топливоподкачивающий насос (ТН).

Рис. 5. Типичная схема подключения электродвигателя топливоподкачивающего насоса.

ВА «Топливный насос» -- автоматический выключатель топливного насоса; КТН-- контактор топливного насоса; ЭТН -- электродвигатель топливного насоса; ДП-- дополнительные полюса; СІ--С2, ІШ--Ш2 -- обмотки возбуждения топливного насоса.

На всех отечественных тепловозах и дизель-поездах якорная цепь электродвигателя ТН (ЭТН) защищается от токов короткого замыкания автоматическим выключателем и, как правило, коммутируется контактом контактора топливоподкачивающего насоса (обозначение - КТН, рис. 5.). Тепловозы постройки Людиновского тепловозостроительного завода (с гидропередачей и ТЭМ7) КТН (реле) не оборудованы. Цепь электродвигателя ТН на них замыкается и размыкается только автоматическим выключателем «Топливный насос», установленным на пульте управления.

Перед запуском осуществляют прокачку масляной системы дизеля во избежание сухого трения в подшипниках скольжения при провороте коленчатого вала. Прокачка осуществляется масло-прокачивающем насосом (МН) с ручным или электрическим приводом. На тепловозах широкой колеи и дизель-поездах применяют МН только с электрическим приводом. Цепь электродвигателя МН (ЭМН) защищается от токов короткого замыкания, как правило, плавкой вставкой и коммутируется электромагнитным контактом контактора маслопрокачивающего насоса (КМН; рис. 6).

Рис.6. Типичная схема подключения электродвигателя маслопрокачивающего насоса: пр -- предохранитель; КМН-- контактор масляного насоса; ЭМН -- электродвигатель масляного насоса; дп-- добавочные полюса; С1--С2, Ш1 -- Ш2 -- обмотки возбуждения масляного насоса.

Проворот коленчатого вала осуществляется электрической машиной, получающей питание от АБ. При провороте используется последовательная или смешанная схема возбуждения, поскольку они обеспечивают максимальный пусковой момент: после подключения якорной цепи к АБ сила тока при неподвижном якоре достигает максимальной величины, магнитная система полюсов статора насыщается; вращающий момент, пропорциональный силе якорного тока и магнитному потоку полюсов, очень велик; по мере раскручивания якоря он снижается.

Электромагнитные контакторы, осуществляющие соединение якорной цепи машины, производящей запуск, с АБ, называют пусковыми. На тепловозах серии ТЭМ7А пуск машины, осуществляющей проворот коленчатого вала, реостатный: машина соединяется с АБ через пусковое сопротивление, которое через 1 с шунтируется. На остальных тепловозах и дизель-поездах пуск прямой (безреостатный).

Рис. 7. Типичные упрощенные схемы проворота коленчатого вала дизеля односекционного тепловоза с электрической передачей переменно-постоянного тока с реостатным пуском СТГ (ТЭМ7А); СТ -- стартер; КД1, КД2,КРН -- контакторы; АБ -- аккумуляторная батарея; Н1 --Н2, П -- обмотки возбуждения; СТГ-- стартер-генератор; СЗБ -- сопротивление заряда батареи; ДЗБ -- диод заряда батареи; РН -- регулятор напряжения.

После запуска дизеля частота вращения его коленчатого вала и маховика быстро возрастает; сцепленный шестерней с его зубчатым венцом хвостовик начинает вращаться быстрее вала якоря стартера, вследствие чего втулка, сворачиваясь по резьбе, движется от дизеля и, толкая хвостовик, выводит его из зацепления. После этого стартер работает в режиме холостого хода, его якорная цепь разрывается после размыкания пускового контактора КД. Именно эта непродолжительная работа в режиме холостого хода и требует использования смешанной, а не последовательной схемы возбуждения: двигатель последовательного возбуждения без нагрузки, как известно, идет «вразнос», поскольку при малой величине якорного тока ток возбуждения и магнитный поток полюсов статора также малы и частота вращения якоря стартера п неограниченно возрастает.

На тепловозах с передачей переменно-постоянного тока тяговый генератор представляет собой синхронную машину переменного тока и, следовательно, не может быть использован для проворота коленчатого вала дизеля. Функцию стартера на таких тепловозах выполняет вспомогательный генератор, называемый стартером-генератором (СТГ).

Поскольку при запуске дизеля необходимо развитие значительного вращающего момента, СТГ тепловоза с передачей переменно-постоянного тока имеет мощность, приблизительно в четыре раза большую, чем ВГ тепловоза с передачей постоянно-постоянного тока. Избытки мощности СТГ при работе его в режиме генератора (при работающем дизеле) используются на нужды электрического привода компрессора (все тепловозы с передачей постоянно-постоянного тока оборудуются компрессорами с механическим приводом от коленчатого вала дизеля).

Поскольку якорная цепь СТГ гальванически связана с цепями управления, так как именно он осуществляет их питание при работающем дизеле, для сборки схемы проворота достаточно одного контактора, контакт которого осуществляет подключение СТГ к АБ через пусковую обмотку по плюсу; по минусу АБ и СТГ соединены как при пуске, так и при работе дизеля.

Итак, для осуществления пуска дизеля необходимо выполнить целый ряд операций в определенной последовательности, или, как говорят, по определенному алгоритму. Эту последовательность с выдержкой необходимых интервалов времени между операциями и промежуточным контролем успешности их выполнения осуществляет релейная схема пуска дизеля, собранная из реле, реле времени, датчиков давления, концевых выключателей, а на тепловозах ТЭМ7А и некоторых 2ТЭ116 -- также полупроводниково-релейных блоков.

Релейные схемы пуска дизелей тепловозов и дизель-поездов чрезвычайно разнообразны, что связано как с конструктивными особенностями тепловоза (дизель-поезда), так и со временем начала его производства (архаичностью схемы), а иногда и просто с тем, что над созданием схем работали конструкторские бюро нескольких тепловозостроительных заводов, каждое из которых находило свое решение.

Для успешного пуска дизеля необходимо выполнить следующие операции:

1. Включение топливоподкачивающего насоса (на тепловозах ЧМЭЗ всех индексов -- накачка топлива в коллектор ТНВД ручным насосом). Операция осуществляется замыканием автоматического выключателя в якорной цепи ЭТН (см. рис. 5), а на тепловозах и дизель-поездах, в схемах которых имеется контактор (реле) топливоподкачивающего насоса, -- также и его замыканием, которое происходит после замыкания контакта автоматического выключателя (тумблера) в цепи катушки контактора (реле).

2. Включение маслопрокачивающего насоса осуществляется замыканием контактора КМН (см. рис. 6), на катушку которого машинист подает питание, нажимая кнопку «Пуск дизеля» (на ТЭМ7А-- тумблер с самовозвратом). Прокачка дизеля маслом должна осуществляться через определенный промежуток времени (20...70 с на тепловозах и дизель-поездах различных серий); на всех современных тепловозах этот интервал времени автоматически выдерживается реле времени, получающим питание одновременно с катушкой КМН: замыкающийся с выдержкой времени контакт этого реле собирает цепь пусковых контакторов. В случае если после кратковременного нажатия кнопки (тумблера) «Пуск дизеля» ее (его) можно отпустить и все дальнейшие операции схема выполнит автоматически, считается, что тепловоз (дизель-поезд) оборудован схемой автозапуска. К таким схемам следует отнести и довольно специфическую схему, разработанную на Брянском машиностроительном заводе (тепловозы ТЭМ2 и т.д.). Пуск дизеля на тепловозах с этой схемой осуществляется переводом тумблера без самовозврата из положения «Остановка» в положение «Пуск», после чего получают питание катушки КТН и КМН.

3. Проворот коленчатого вала дизеля осуществляется замыканием пусковых контакторов (см. рис. 7). Одновременно с этим собирается схема питания катушки блокмагнита дизеля без защиты от пониженного давления масла и подается питание на катушку вентиля ускорителя пуска (на тепловозах, имеющих такие устройства).

4. Разборка пусковых цепей выполняется после успешного запуска дизеля или в том случае, если запуск явно не удается, во избежание слишком глубокой разрядки батареи. При этом снимается питание с катушек пусковых контакторов, вентиля ускорителя пуска и КМН, а также разрывается пусковая цепь питания катушки блок-магнита регулятора дизеля. На тепловозах, оборудованных топливоподкачивающим насосом с механическим приводом (ТЭП70, 2ТЭ116), снимается питание и с катушки КТН.

Приведите классификацию средств измерений

комбинированный обмотка электромагнитный тепловоз

Под средством измерений понимается техническое средство (или их комплекс), предназначенное для измерений, имеющее нормированные метрологические характеристики, воспроизводящие и(или) хранящие единицу физической величины, размер которой принимается неизменным (в пределах установленной погрешности) в течение известного интервала времени.

Классификация средств измерений

Средства измерений можно классифицировать по следующим основным признакам: тип, вид и метрологическое назначение.

Тип - это совокупность средств измерений, имеющих принципиальную одинаковую схему, конструкцию и изготавливаемых по одним и тем же техническим условиям.

Вид - это совокупность типов средств измерений, предназначенных для измерений какой-либо одной физической величины.

По метрологическому назначению средства измерений подразделяются на рабочие средства измерений, предназначенные для измерений физических величин; метрологические средства измерений, предназначенные для обеспечения единства измерений.

По конструктивному исполнению средства измерений подразделяются на: меры; измерительные приборы; измерительные установки; измерительные системы; измерительные комплексы.

По уровню автоматизации - на неавтоматизированные средства измерений; автоматизированные средства измерений; автоматические средства измерений.

По уровню стандартизации: стандартизованные средства измерений; нестандартизованные средства измерений.

По отношению к измеряемой физической величине: основные средства измерений; вспомогательные средства измерений.

Мера - средство измерений, предназначенное для воспроизведения заданного размера физической величины. Например, набор плоскопараллельных концевых мер длины.

Различают меры однозначные и многозначные.

Однозначная мера воспроизводит физическую величину одного размера (например, концевые меры длины, калибры и т. п.).

Многозначная мера - мера, воспроизводящая физическую величину разных размеров. Например, линейка.

Комплект мер разного размера одной и той же физической величины, необходимый для применения на практике, как в отдельности, так и в различных сочетаниях называется набором мер.

Измерительный прибор - средство измерений, предназначенное для получения значений измеряемой физической величины в установленном диапазоне. Измерительный прибор, как правило, содержит устройство для преобразования измеряемой величины в сигнал измерительной информации и его индикации в форме, наиболее доступной для восприятия. Например, в качестве устройства для индикации используются шкала и стрелка и т. п.

Различают следующие измерительные приборы: показывающий, аналоговый, цифровой, регистрирующий, самопишущий, печатающий, суммирующий, интегрирующий, сравнения.

Показывающий измерительный прибор допускает только отсчитывание показаний измеряемой величины (штангенциркуль, микрометр, вольтметр и т. п.). В аналоговом измерительном приборе показания или выходной сигнал являются непрерывной функцией измеряемой величины (ртутный термометр).

Цифровой измерительный прибор - измерительный прибор, показания которого представлены в цифровой форме (штангенциркуль с числовым отсчетом).

Регистрирующий измерительный прибор - измерительный прибор, в котором предусмотрена регистрация показаний. Регистрация может быть как в аналоговой, так и числовой форме. Делятся на самопишущие и печатающие измерительные приборы.

Самопишущий измерительный прибор - регистрирующий прибор, в котором предусмотрена запись показаний в форме диаграммы.

Печатающий прибор - прибор, в котором предусмотрено печатание показаний в цифровой форме.

Суммирующий измерительный прибор - измерительный прибор, показания которого функционально связаны с суммой двух или нескольких величин, подводимых к нему по различным каналам (например, ваттметр).

Интегрирующий измерительный прибор - измерительный прибор, в котором значение измеряемой величины определяется путем ее интегрирования по другой величине (счетчик электроэнергии).

Измерительный прибор сравнения - измерительный прибор, предназначенный для непосредственного сравнения измеряемой величины с величиной, значение которой известно (равноплечие весы, потенциометр и т. п.).

Измерительная установка - совокупность функционально объединенных мер, измерительных приборов и других устройств, предназначенных для измерений одной или нескольких физических величин и расположенная в одном месте.

Измерительной системой называется совокупность функционально объединенных мер, измерительных приборов, ЭВМ и других технических средств, размешенных в разных точках контролируемого пространства (объекта) с целью измерений одной или нескольких физических величин, свойственных этому пространству (объекту).

Все средства измерений делятся на универсальные средства и средства специального назначения.

Универсальным называется средство измерений, предназначенное для измерений длин, углов в определенном диапазоне размеров изделий с разнообразной конфигурацией. Например, один и тот же прибор с дополнительными приспособлениями (стойки, штативы и т. п.) может быть использован для измерения различных размеров. Эта особенность универсальных средств измерений способствует их широкому применению.

Специальным называется средство измерений, предназначенное для измерений специальных элементов у деталей определенной формы (например, калибры, приборы для измерения углов, параметров зубчатых колес и т. п.) или специальных параметров у деталей вне зависимости от ее геометрической формы (приборы для измерения шероховатости, отклонений формы и т. п.).

Средства измерений длин и углов в зависимости от физического принципа, положенного в основу построения измерительного преобразователя прибора, подразделяют на следующие группы: штриховые (имеют линейную или угловую шкалу и нониус - штангенинструменты, угломеры); микрометрические (основаны на использовании винтовой пары - микрометры); рычажно-механические (индикаторы часового типа, рычажные скобы и т. п.); рычажно-оптические (оптиметры); оптико-механические (проекторы, инструментальные микроскопы и т. п.); пневматические (основаны на применении сжатого воздуха); гидравлические; электрические и электронные; комбинированные (основаны на использовании различных принципов) и др.

Средства измерений специального назначения подразделяют на следующие группы: измерение формы и расположения поверхностей; измерения параметров шероховатости поверхности; измерения параметров резьбы; измерения параметров углов и конусов; измерений параметров зубчатых колес.

Список литературы

1. Находкин В.М., Черепашенец Р.Г. Технология ремонта тягового подвижного состава. М.: Транспорт, 1998.

2. Аникиев И.П., Антропов В.С. Ремонт электрооборудования тепловозов. М.: Транспорт, 1989.

3. Технология ремонта тепловозов / Под ред. Иванова В.П. М.: Транспорт, 1987.

4. Кацман М.М. Электрические машины: Учеб. Для ссузов - 2-5-е изд., перераб. И доп.- М.: Высш. Шк., 1990, 2000, 2003-496 с.

5. Современные методы и технологии технического диагностирования и ремонта тяговых электрических машин подвижного состава [Текст]: монография / Ш. К. Исмаилов [и др.]. - Омск: ОмГУПС, 2010. - 572 с.

Размещено на Allbest.ru


Подобные документы

  • Общая характеристика объектов измерений в метрологии. Понятие видов и методов измерений. Классификация и характеристика средств измерений. Метрологические свойства и метрологические характеристики средств измерений. Основы теории и методики измерений.

    реферат [49,4 K], добавлен 14.02.2011

  • Классификация средств измерения. Виды поверки и поверочная схема. Сущность и сравнительная характеристика методов поверки: непосредственное сличение, прямые и косвенные измерения. Порядок разработки и требования к методикам поверки средств измерения.

    реферат [24,5 K], добавлен 20.12.2010

  • Средство измерений как техническое средство снятия параметров, имеющее нормированные метрологические характеристики. Порядок разработки и требования к методикам поверки средств измерения, сущность методов поверки, их классификация и порядок сертификации.

    контрольная работа [19,3 K], добавлен 23.09.2011

  • Сведения о методах и видах измерений. Описание теории и технологической схемы процесса искусственного охлаждения. Метрологическое обеспечение процесса. Выбор и обоснование системы измерений, схема передачи информации. Расчет погрешностей измерения.

    курсовая работа [437,4 K], добавлен 29.04.2014

  • Метрологические характеристики, нормирование погрешностей и использование средств измерений. Класс точности и его обозначение. Единицы средств измерений геометрических и механических величин. Назначение и принцип работы вихретоковых преобразователей.

    контрольная работа [341,3 K], добавлен 15.11.2010

  • Основные термины и определения в области метрологии. Классификация измерений: прямое, косвенное, совокупное и др. Классификация средств и методов измерений. Погрешности средств измерений. Примеры обозначения класса точности. Виды измерительных приборов.

    презентация [189,5 K], добавлен 18.03.2019

  • Метрологическая аттестация средств измерений и испытательного оборудования. Система сертификации средств измерений. Порядок проведения сертификации и методика выполнения измерений. Функции органа по сертификации. Формирование фонда нормативных документов.

    контрольная работа [38,3 K], добавлен 29.12.2009

  • Государственные эталоны, образцовые и рабочие средства измерений. Государственная система обеспечения единства измерений. Метрологические службы организаций. Определение и подтверждение соответствия систем измерения установленным техническим требованиям.

    презентация [36,0 K], добавлен 30.07.2013

  • Общие вопросы основ метрологии и измерительной техники. Классификация и характеристика измерений и процессы им сопутствующие. Сходства и различия контроля и измерения. Средства измерений и их метрологические характеристики. Виды погрешности измерений.

    контрольная работа [28,8 K], добавлен 23.11.2010

  • Этапы проведения измерений. Вопрос о предварительной модели объекта, обоснование необходимой точности эксперимента, разработка методики его проведения, выбор средств измерений, обработка результатов измерений, оценки погрешности полученного результата.

    реферат [356,6 K], добавлен 26.07.2014

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.