История развития сварочных технологий

Развитие технологии спайки различных металлов в глубокой древности. История изобретения сварочных электродов и газосварочных горелок. Специфические особенности плавления основного металла и присадочного материала в процессе электрошлаковой сварки.

Рубрика Производство и технологии
Вид контрольная работа
Язык русский
Дата добавления 12.03.2015
Размер файла 26,1 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru

Размещено на http://www.allbest.ru

Введение

Сварка пришла к нам из глубины веков. Способ получения неразъемных соединений различных металлических деталей путем сварки и пайки был известен еще в глубокой древности. Так, в египетских пирамидах при археологических раскопках нашли золотые изделия, которые имели паянные оловом соединения, а при раскопках итальянского города Помпеи обнаружили свинцовые водопроводные трубы с продольным паяным швом. Широко применялась в прошлом и кузнечная сварка. При этом способе сварки соединяемые металлы нагреваются до состояния пластичности, а затем проковываются в местах соединения.

Ранее сварка представляла собой технологический процесс самого разнообразного применения, но, за небольшим исключением, не использовалась для создания сложных конструкций. Чаще ее использовали для изготовления свинцовых труб или свинцовых кровельных листов. Подогрев осуществлялся с помощью древесного угля, а сварку выполняли последовательными ударами молота. Широко распространена была ремонтная сварка, например, ремонт каретных осей, разрушающихся от усталости.

Уровень технологии сварки в средние века можно увидеть на примере огромной пушки Дол Грайэт, 1382 года выпуска. Эта пушка представляла собой кованую трубу, усиленную наружными обручами, которые присоединялись к трубе кузнечной сваркой. Общая масса изделия более 16 тонн. Такой способ изготовления пушек был широко распространен во всем мире. Самые большие пушки этого типа были изготовлены в Индии в XVI и XVII веках. Они достигали 9 м в длину и весили до 50 тонн.

В большинстве древних строений в качестве несущих элементов, нагруженных сжатием, применялись камень и нормированный бетон, а также древесина для балок и перекладин. В некоторых случаях требовались узлы, работающие на растяжение, и тогда использовали железные анкера, изготовленные кузнечной сваркой или ковкой. Одним из примеров тому является купол Храма Рока в Иерусалиме (VIII в.). В нем горизонтальная растягивающая нагрузка восьмигранного свода приложена к восьмигранному стальному крепежному кольцу. И это не украшение, а составной компонент конструкции. В итальянской Венеции аркады Дворца Дожей также поддерживаются стальными брусьями. И здесь горизонтальная нагрузка сводов требовала сварного крепления. Вообще, готическая архитектура и архитектура эпохи Возрождения часто требовала стальных сварных соединений несущих конструкций, как на начальной стадии строительства, так и при последующем ремонте. Это было первое широко распространенное применение сварки в элементах сооружений.

Большинство современных сварочных процессов были разработаны в первой половине ХХ - го века, хотя начало свое они берут в веке XIX. Так, в 1802 году впервые в мире профессор Санкт-Петербургской медико-хирургической академии Василий Владимирович Петров (1761 - 1834) открыл и наблюдал дуговой разряд от построенного им сверхмощного "Вольтового столба". Этот столб состоял из 2100 пар разнородных кружков (из меди и цинка), которые были проложены бумажными кружками, смоченными водным раствором нашатыря. Тогда это был наиболее мощный источник электрического тока. Проделав большое количество опытов, профессор Петров показал возможность использования электрической дуги для освещения и плавления металлов. Он первым предложил применить электрическую дугу в качестве источника теплоты для мгновенного расплавления металлов. Изначально в дуговой сварке не использовали расходных сварочных материалов, и основным видом электросварки была сварка дугой с использованием неплавящегося угольного электрода. Впервые она была применена в 1881 году Августом де Меританом. Спустя короткое время, в 1888 году, Н.Г. Славянов заменил уголь на голый металлический электрод (пруток), обычно изготавливавшийся из холоднокатаной стали (например, телеграфной проволоки, проволоки для изгороди и т.д.). Тем самым было положено начало дуговой сварке плавящимся электродом. Дугу от такого электрода было очень трудно зажигать и поддерживать, так как она горела на открытом воздухе, и поэтому наплавленный металл был сильно загрязнен и вспенен кислородом и азотом. Процесс сварки был не слишком благоприятен для пользователя и сопровождался образованием неровных поверхностей плавления, пористости и довольно обильным крупнокапельным переносом металла.

Перспективы сварки, как и в научном, так и в техническом плане, безграничны. Применение сварки способствует совершенствованию машиностроения и развитию новых отраслей техники - ракетостроении, атомной энергетике, радиоэлектроники. Развитие сварки требует серьезного повышения уровня теоретических знаний и практической подготовки квалифицированных рабочих.

Сварка потолочных швов является самой сложной, так как при этом сварочная ванна расположена дном вверх, и жидкий металл стремится вылиться из нее, а капли с конца электрода стремятся упасть вниз. Основное правило при сварке потолочных швов -- поддержание возможно короткой дуги. Для сварки применяют электроды небольшого диаметра, а сварочный ток уменьшают на 15...20% по сравнению с током при сварке нижних швов. При сварке производят концом электрода зигзагообразные движения, приближая или удаляя электрод от сварочной ванны. Желательно применять электроды с тугоплавким покрытием, образующим вокруг электрода «втулку», которая содержит направленный газовый поток, удерживающий жидкий металл.

1. История развития сварки

Способ получения неразъемных соединений различных металлических деталей путем сварки и пайки был известен еще в глубокой древности. Так, в египетских пирамидах при археологических раскопках нашли золотые изделия, которые имели паянные оловом соединения, а при раскопках итальянского города Помпеи обнаружили свинцовые водопроводные трубы с продольным паяным швом. Широко применялась в прошлом и кузнечная сварка. При этом способе сварки соединяемые металлы нагреваются до состояния пластичности, а затем проковываются в местах соединения. Ранее сварка представляла собой технологический процесс самого разнообразного применения, но, за небольшим исключением, не использовалась для создания сложных конструкций. Чаще ее использовали для изготовления свинцовых труб или свинцовых кровельных листов. Подогрев осуществлялся с помощью древесного угля, а сварку выполняли последовательными ударами молота. Широко распространена была ремонтная сварка, например, ремонт каретных осей, разрушающихся от усталости. Уровень технологии сварки в средние века можно увидеть на примере огромной пушки Дол Грайэт, 1382 года выпуска.

Эта пушка представляла собой кованую трубу, усиленную наружными обручами, которые присоединялись к трубе кузнечной сваркой. Общая масса изделия более 16 тонн. Такой способ изготовления пушек был широко распространен во всем мире. Самые большие пушки этого типа были изготовлены в Индии в XVI и XVII веках. Они достигали 9 м в длину и весили до 50 тонн. В большинстве древних строений в качестве несущих элементов, нагруженных сжатием, применялись камень и нормированный бетон, а также древесина для балок и перекладин. В некоторых случаях требовались узлы, работающие на растяжение, и тогда использовали железные анкера, изготовленные кузнечной сваркой или ковкой.

Одним из примеров тому является купол Храма Рока в Иерусалиме (VIII в.). В нем горизонтальная растягивающая нагрузка восьмигранного свода приложена к восьмигранному стальному крепежному кольцу. И это не украшение, а составной компонент конструкции. В итальянской Венеции аркады Дворца Дожей также поддерживаются стальными брусьями. И здесь горизонтальная нагрузка сводов требовала сварного крепления. Вообще, готическая архитектура и архитектура эпохи Возрождения часто требовала стальных сварных соединений несущих конструкций, как на начальной стадии строительства, так и при последующем ремонте. Это было первое широко распространенное применение сварки в элементах сооружений.

2. Появление сварочных электродов

С наступлением индустриализации, вследствие развития науки и техники, многие изготавливаемые ранее из дерева и камня элементы сооружений были заменены металлическими. Преобладающим металлом было и остается железо или его сплавы, называемые сталями. Можно с уверенностью утверждать, что и в дальнейшем сварка будет оставаться одним из ведущих технологических процессов в промышленном производстве и в строительстве. До 2/3 мирового потребления стального проката идет на производство сварных конструкций и сооружений.

Сварке подвергаются практически любые металлы и неметаллы в любых условиях - на земле, в морских глубинах и в космосе. Толщина листов свариваемых деталей колеблется от единиц микрон до десятков и сотен сантиметров, масса сварных конструкций - от долей грамма до сотен и тысяч тонн. Зачастую сварка является единственно возможным или наиболее эффективным способом создания неразъемных соединений конструкционных материалов и получения заготовок, максимально приближенных к оптимальной форме готовой детали или конструкции. Большинство современных сварочных процессов были разработаны в первой половине ХХ века, хотя начало свое они берут в веке XIX. Так, в 1802 году впервые в мире профессор Санкт-Петербургской медико-хирургической академии Василий Владимирович Петров (1761 - 1834) открыл и наблюдал дуговой разряд от построенного им сверхмощного "Вольтового столба".

Этот столб состоял из 2100 пар разнородных кружков (из меди и цинка), которые были проложены бумажными кружками, смоченными водным раствором нашатыря. Тогда это был наиболее мощный источник электрического тока. Проделав большое количество опытов, профессор Петров показал возможность использования электрической дуги для освещения и плавления металлов. Он первым предложил применить электрическую дугу в качестве источника теплоты для мгновенного расплавления металлов. Н.Н. Бенардос в 1882г. изобрел способ дуговой сварки с применением угольного электрода. В последующие годы им были разработаны способы сверки дугой, горящей между двумя или несколькими электродами; сварки в атмосфере защитного газа; контактной точечной электросварки с помощью клещей; создан ряд конструкций сварочных автоматов. Н.Н. Бенардосом запатентовано в России и за границей большое количества различных изобретении в области сварочного оборудования и процессов сварки. Изначально в дуговой сварке не использовали расходных сварочных материалов, и основным видом электросварки была сварка дугой с использованием неплавящегося угольного электрода. Впервые она была применена в 1881 году Августом де Меританом.

Спустя время, в 1888 году, Н.Г. Славянов заменил уголь на голый металлический электрод (пруток), обычно изготавливавшийся из холоднокатаной стали (например, телеграфной проволоки, проволоки для изгороди и т.д.). Тем самым было положено начало дуговой сварке плавящимся электродом. Дугу от такого электрода было очень трудно зажигать и поддерживать, так как она горела на открытом воздух, и поэтому наплавленный металл был сильно загрязнен и вспенен кислородом и азотом. Процесс сварки был не слишком благоприятен для пользователя и сопровождался образованием неровных поверхностей плавления, пористости и довольно обильным крупнокапельным переносом металла. Первые флюсы, наносимые непосредственно на поверхность электродов, были аналогичны флюсам кузнечной сварки (песок, борат, пепел и т.п.). Учитывая то, что с помощью дуговой и кузнечной сварки решаются совершенно разные технические задачи, данный подход не был эффективным. Основной прогресс был достигнут (приблизительно в 1902 году), когда Кельберг изготовил флюс для голых электродов. Стержни опускали в пасту, состоящую из порошкообразных карбонатов и окисей металлов, смешанных с водой.

Покрытие высушивали при обычной температуре (от 20 до 30С), и электрод был готов к применению. Хотя по современным стандартам такое флюсование электрода считается сырым, с тонкой, низкокачественной обмазкой, оно давало некоторую газовую защиту при сварке и в какой-то степени обеспечивало стабилизацию дуги.

3. Появление толстопокрытых сварочных электродов, развитие современных видов сварки

В 1903 году французские инженеры Эдмон Фуше и Шарль Пикар сконструировали первую ацетиленокислородную сварочную горелку и получили на нее патент Германии. Предложенные ими конструкции газосварочных горелок принципиально почти не изменились до настоящего времени.

Созданию газовой сварки и резки способствовали исследования процессов горения газовых смесей французским ученым Анри Луи Лэ Шателье. В 1895 году он получил высокотемпературное пламя, свыше 3000С, при сжигании ацетилена и кислорода. Хотя ацетилен был открыт еще в 1836 году, а в 1863-м был синтезирован М. Бертло, но доступным.

Техническим продуктом он стал лишь после того, как был найден способ приготовления карбида кальция из известняка и угля. С 1906 года, после появления достаточно надежных конструкций ацетиленовых генераторов, началось промышленное применение ацетиленокислородной сварки для технологического оборудования, газопроводов и других конструкций. В 1904 году во Франции была обнаружена возможность использования Ацетиленокислородной горелки для резки металлов, а в 1908-1909 годах во Франции и в Германии проведены первые успешные опыты по кислородной подводной резке. В 1911 году комиссия при Министерстве торговли и промышленности России допустила газовую сварку для изготовления паровых котлов, разрешив сварку некоторых неответственных частей котла. Более интенсивное развитие в России газовая сварка получила в период Первой мировой войны. Начиная с этого времени и вплоть до 30-х годов газовая сварка занимает ведущее, положение в сварочном производстве России, а затем и СССР. Поскольку газовая сварка в то время обеспечивала наиболее высококачественные сварные соединения, то с ее помощью выполнялись все ответственные работы. Например, все магистральные нефтепроводы и продуктопроводы в СССР в 1926-1935 годах создавались с применением газовой сварки. В 1912 году появилось толстое электродное покрытие, по существу представляющее собой обертку из синего асбеста, пропитанного жидким стеклом. Преимущество толстого покрытия заключалось в существенных добавках других составляющих, чего не было в тонком покрытии. Электроды с толстым покрытием, пропитанным жидким стеклом, нашли применение в таких важных областях промышленности, как изготовление вооружений и ремонт бойлеров кораблей. Широкое использование толстого флюсового покрытия было обусловлено еще и тем, что оно не только обеспечивало защиту от атмосферного загрязнения, но и создавало легко ионизируемые компоненты, стабилизирующие горение дуги.

Этим компенсировался недостаток умения сварщика и повышался шанс получения шва без дефектов.

Впервые прочность сварного шва стала равной прочности основного металла. С внедрением в технику дуговой сварки толстопокрытых электродов появились новые способы дуговой сварки, в это же время были разработаны машины для контактной сварки, после чего на многих производствах газовая сварка постепенно начала вытесняться электрической сваркой. С увеличением использования электрической и вытеснением газовой сварки увеличилось использование кислородной резки. В 30-х годах в связи с дефицитом карбида кальция широкое распространение получила резка с использованием горючих жидкостей, сначала бензина, затем керосина, а в послевоенные годы широко стала внедряться резка с использованием пропан-бутана и природного газа.

К концу 1930-х годов в США и СССР был разработан способ сварки под флюсом, при котором дуга и расплавленный металл защищены оболочкой из расплавленного флюса и слоем нерасплавленных частиц гранулированного флюса. Непрерывная сварка электродом под флюсовым покрытием осуществлялась при помощи сварочной головки с автоматической подачей прутка. Этот процесс механизированной сварки известен как гравитационная сварка. С начала 1940-х годов этот метод широко использовался на японских верфях для сварки протяженных горизонтально-вертикальных угловых швов. Преимущество данного процесса заключается в том, что для достижения глубокого провара и получения высокой скорости наплавки металла при значительной экономии затрат можно применять очень высокие сварочные токи. Шов сваривают без разбрызгивания металла и попадания воздуха, так как дуга и сварочная ванна полностью защищены. В 1940 году была начата сварка дугой, возбуждаемой вольфрамовым электродом в гелии, хотя идея применения защиты дуги и наплавленного металла от атмосферного загрязнения принудительной подачей газа в зону сварки известна примерно столько же, сколько и покрытый электрод. Этот процесс сварки стал началом применения дуговой сварки вольфрамовым электродом в среде инертного газа. В связи с потребностью в высокоочищенных газах для сварки алюминиевых сплавов и реактивных металлов чистота защитного газа была повышена до 99,95%. Популярность приобрел аргон как наиболее эффективный и безопасный в применении газ.

В конце 40-х годов параллельно фирмой "Union Carbide and Carbon Согр" (США-ФРГ), институтом ВНИИавтоген и кафедрой сварочного производства МВТУ им. Баумана были разработаны и внедрены в производство способы кислородно-флюсовой резки. В 1948 году был разработан новый процесс с применением защитного газа - дуговая сварка плавящимся электродом в среде защитного газа. В данном процессе электрод имел форму проволоки, которая подавалась из бухты в дугу со скоростью, равной скорости плавления проволоки. Так как применение аргона для дуговой сварки плавящимся электродом в среде защитного газа экономически невыгодно, то после нескольких лет исследований в СССР, Великобритании, Нидерландах и Японии к концу 1950-х годов были разработаны методы, сделавшие возможным использование в качестве защитного газа углекислый газ. Примерно в 1960 году был разработан процесс сварки под флюсом несколькими электродами, при котором используют две или более сварочные проволоки, подающиеся в одну и ту же сварочную ванну. Проволоки могут быть под током либо использоваться в качестве присадки. Такой процесс позволяет увеличить скорость наплавки металла и улучшить эксплуатационную гибкость.1960-е годы были самым важным периодом, в течение которого были разработаны многие процессы сварки плавлением, отличные от вышеупомянутых, которые стали широко применяться во всем мире. В их число входит дуговая сварка порошковой проволокой в защитном газе и без него, электрогазосварка и т.д. В конце 70-х - начале 80-х годов началось освоение газолазерной резки. В то время ее считали наиболее перспективной среди всех способов термической резки. В начале 1980-х годов были разработаны и начали применяться порошковые проволоки малого диаметра (1,2-1,6 мм).

4. Способы и виды сварки

С развитием общества создаются и новые более совершенные технологии производства, появляются принципиально новые приспособления и виды механизмы. Эти научные знания дают возможность человечеству совершенствоваться и стремиться к новым достижениям. В наше время мы можем получать прочные неразъёмные соединения двух элементов с помощью сварки. Сама технология сварки была придумана в начале прошлого столетия и за короткий отрезок времени она сумела прочно утвердиться в современном производстве и нашла огромное применение во многих областях промышленности. Но что есть сварка? Сварка - это сложный технологический процесс создания неразъемных элементов посредством образования атомно-молекулярных связей между заготовками, которые Вам нужно скрепить воедино посредством разогрева, либо пластической деформации.

Сварка плавлением.

Электродуговая сварка. Необходимое для местного расплавления деталей и присадочного материала тепло образуется при горении электрической дуги между свариваемым металлом и электродом. По способу механизации сварка может быть ручная, полуавтоматическая и автоматическая. Механизированная (полуавтоматическая и автоматическая) сварка может быть под флюсом и в защитных газах.

Электрошлаковая сварка. Плавление основного металла и присадочного материала происходит за счет тепла, выделяющегося при прохождении электрического тока через расплавленный шлак (в период установившегося процесса).

Тепло выделяется за счет бомбардировки зоны сварки электронным потоком, приобретающим высокие скорости в высоковольтной установке, имеющей мощность до 50 квт.

Анодом является свариваемая деталь, а катодом -- вольфрамовая нить или спираль, нагретая до температуры 2300С.

Газовая сварка. Основной и присадочный металлы расплавляются высокотемпературным газокислородным пламенем (температура до 3200С).

Импульсно-дуговая сварка. Сущность способа состоит в том, что сварочный ток не сохраняет постоянную величину, а поступает в дежурную сварочную дугу определенными кратковременными импульсами.

Плазменная сварка. Плавление металлов осуществляется плазменно-дуговой струей, имеющей температуру выше 10000С.

Лазерная сварка. Сварка основана на использовании фотоэлектронной энергии. При большом усилении световой луч способен плавить металл. Для получения такого луча применяют специальные устройства -- лазеры.

Сварка давлением.

Контактная сварка. Место сварки разогревается или расплавляется теплом, образованным при прохождении электрического тока через контактируемые места изделий.

Ультразвуковая сварка. Сварка осуществляется за счет превращения при помощи специального преобразователя ультразвуковых колебаний в механические высокой частоты и применения небольшого сдавливающего усилия.

Сварка трением. Сварка заключается в том, что вследствие трения одного из свариваемых стержней о другой место соединения разогревается; при приложении осевого усилия соединяемые металлы свариваются.

Холодная сварка. Сварка основана на способности металла образовывать, общие кристаллы при значительном давлении.

Газопрессовая сварка. Сварка осуществляется нагреванием концов стержней или труб по всему периметру окружности многопламенными горелками до пластического состояния или плавления с их последующим сжатием.

Термитная сварка. Процесс сварки заключается в том, что свариваемые детали закладываются в огнеупорную форму, а в установленный сверху тигель засыпается термит -- порошок из алюминия и окиси железа. При горении термита окись железа восстанавливается, а образующийся при этом жидкий металл при заполнении формы оплавляет и соединяет кромки свариваемых изделий.

Сварка токами высокой частоты. Этот способ сварки основан на разогреве токами высокой частоты концов стыкуемых стержней или труб до пластического состояния с последующим приложением осевых усилий для получения неразъемного соединения.

5. Защита от ожогов

Ожоги, вызванные сварочной дугой, представляют опасность, особенно для глаз. Яркость световых лучей сварочной дуги значительно превышает норму, допустимую для человеческого глаза. Ультрафиолетовые лучи, являющиеся одной из составляющей светового потока дуги, даже при кратковременном действии в течение нескольких секунд вызывают заболевание глаз, называемое электроофальмией. Заболевание сопровождается острой болью, резью в глазах, слезотечением, спазмами век.

При значительном поражении глаз световым потоком сварочной дуги можно даже ослепнуть. Продолжительное воздействие светового потока дуги на кожу вызывает ее ожоги. Кроме этого искры, рассеивающиеся во время сварочных работ способны вызвать ожоги. Поэтому все участники сварочного процесса должны пользоваться защитными приспособлениями.

При электросварочных работах основным таким приспособлением является защитная маска, смотровое отверстие которой оснащено светофильтром, задерживающим инфракрасные и ультрафиолетовые лучи и снижающим яркость светового потока дуги.

Для защиты от ожогов кожного покрова применяют брезентовую спецодежду и рукавицы. Запрещается выполнять сварочные работы с закатанными рукавами и расстегнутым воротом. Спецодежда и обувь сварщика должны обеспечивать оптимальный теплообмен организма при работе с физическими нагрузками, эффективно защищать от брызг расплавленного металла и опасных метео факторов, иметь оптимальные весовые характеристики, не стеснять свободу движений, отвечать эстетическим требованиям.

Для защиты ног следует применять кожаную (летом) или войлочную (зимой) обувь, защищающую от теплового излучения, холода, искр, брызг расплавленного металла. Руки защищают рукавицами от теплового излучения, контакта с нагретыми выше 45°С поверхностями, от низких температур и сварочных брызг. Для защиты окружающих от светового потока и искр расплавленного металла используют перегородки, переносные ширмы и т.д.

6. Пожарная безопасность

Сварочные работы могут стать причиной пожара, если не выполняются элементарные требования противопожарной защиты. Причиной пожара могут стать искры и капли расплавленного металла, небрежное обращение с огнем сварочной горелки, наличие на рабочем месте горючих жидкостей и газов, захламленность в месте огневых работ. Опасность пожара особенно следует учитывать на строительно-монтажных площадках и при ремонтных работах, в местах неприспособленных для сварки и т.д. Поэтому в местах сварочных работ следует строго соблюдать меры противопожарной защиты, правильно организовывая рабочее место. Если сварочные работы проводятся на высоте, то следует учитывать ограждение рабочего места и очистку от сгораемых материалов.

Размещенные в указанных границах строительные материалы, настилы, конструкции и т.д. необходимо защитить от попадания на них искр металлическим экраном, покрывалом из негорючего материала или другими доступными средствами. В крайнем случае, материалы можно полить водой. Двери в смежные со сваркой помещения должны быть постоянно закрыты, технологические люки закрыты огнестойкими материалами. Сварочные работы, которые проводятся в местах проходов или проездов, должны быть ограждены с вывешиванием предупредительных плакатов. Все технологическое оборудование, на котором предусмотрены сварочные работы, должно быть предварительно подготовлено и приведено в состояние, удовлетворяющее противопожарным мерам. Рабочее место сварщика оборудуется средствами первичной противопожарной защиты.

После окончания сварочных работ исполнитель обязан тщательно осмотреть место их проведения, устранить возможные источники пожара. Если сварочные работы проводились на трассах топливоподачи, в кабельных сооружениях, складах с горючими материалами и других пожароопасных местах, то в течение 3-х часов после работы необходимо организовать наблюдение за этим местом.

7. Охрана окружающей среды

В соответствии конституцией в интересах ныне живущего, и будущих поколений принимаются меры для охраны и рационального использования земли и ее недр, водных ресурсов и растительного и животного мира, для сохранения в чистоте воздуха и воды, обеспечения воспроизводства природных богатств и улучшения окружающей человека среды. Эти мероприятия в годовых планах предприятий группируются по разделам: охрана и использование водных ресурсов, охрана воздушного бассейна, охрана и рациональное использование земель, охрана и использование минеральных ресурсов.

Охрана и использование водных ресурсов предусматривают мероприятия по возведению сооружений для забора воды и водоемов, очистки сточных вод, систем оборотного водоснабжения с целью уменьшения безвозвратных потерь воды и др.

В сварочном производстве на многих предприятиях применяют систему обратного водоснабжения воду, используемую для охлаждения сварочного оборудования, многократно используют после ее естественного охлаждения.

Охрана воздушного бассейна предусматривает мероприятия по обезвреживанию вредные для человека и окружающей среде веществ, выбрасываемых с отходящими газами. Сооружения очистных установок в виде мокрых сухих пыле уловителей, для химической и электрической очистки газов, а также для улавливания ценных веществ, утилизации отходов и др.

Например, из отходящих продуктов сгорания производят сжиженный углекислый газ для сварочных и других целей.

Охрана и рациональное использование земель предусматривает мероприятия, направленные на сокращения выхода земель из сельскохозяйственного оборота, предохранения их от эрозии и других разрушительных процессов, рекультивацию земель и др.

Охрана и рационального использования минеральных ресурсов предусматривают мероприятия по совершенствованию систем и методов разработки месторождений полезных ископаемых и схем обогащения руд, использованию отходов металлургического производства и машиностроения, повышения из руд покупных ценных компонентов и др.

Деятельность предприятия не должна нарушать нормальных условий роботы других предприятий и организации, ухудшать бытовые условия населения. С этой целью в газовых планах предусматриваются также меры борьбы с производственными шумами, вибрациями, воздействиями электрических и магнитных полей. Шум, создаваемый сварочным оборудованиям, должен быть минимальным.

Источники питания сварочной дуги, а также ряд электрических устройств, применяемых в сварочных автоматах и полуавтоматах, создают помехи и радио- и теле приему. С целью устранения этого явления во всех типах сварочного оборудования, создающего такие помехи, устанавливают помехозащитные устройства.

Литература

сварочный электрод присадочный

1. Автоматизация сварочных процессов / Под ред. В.К. Лебедева, В.П. Черныша. Киев: Вища школа, 1986. 296с.

2. Автоматика и автоматизация сварочных процессов / Н.С. Львов, Э.А. Гладков. М.: Машиностроение, 1982. 302с.

3. Автоматическое регулирование сварочных процессов. Т. 2 / Э.А. Гладков, И.И. Заруба, Ю.Н. Ланкин //Сварка в СССР. М.: Наука, 1981.

4. Диффузионная сварка материалов: Справочник / Под ред. П.Ф. Казакова. М.: Машиностроение, 1981. 271с.

5. Газовая сварка и резка металлов: Учебник для сред. ПТУ. - 3-е изд., перераб. и доп. / И.И. Соколов. - М.: Высшая школа, 1986. - 304с.

6. Газорезчик: учеб. пособие / В.В. Овчинников. - М.: Издательский центр «Академия», 2007. - 64с.

7. Комбинированные машины для сварочного производства / П.И. Севбо. Киев, Наукова думка, 1975. 224с.

8. Контактная система для передачи тока до 3,5 кА на частоте 440 кГц / В.И. Червинский, И.В. Лунин // Сварочное производство, 1985.

9. Механизация и автоматизация сварочного производства / А.Д. Гитлевич, Л.А. Этингоф. М.: Машиностроение, 1979. 208с.

Размещено на Allbest.ru


Подобные документы

  • Описание основного материала. Трудности и особенности сварки сплава АМг-6. Выбор и обоснование способа и режимов сварки, разделки кромок, сварочных материалов и оборудования. Специальные технологические материалы, условия и особенности их применения.

    курсовая работа [279,5 K], добавлен 17.01.2014

  • Высокопроизводительный процесс изготовления неразъемных соединений. Необходимость сварки деталей разных толщин. Процесс электрошлаковой сварки. Скорость плавления присадочного металла. Выполнение прямолинейных, криволинейных и кольцевых сварных швов.

    дипломная работа [2,7 M], добавлен 15.02.2013

  • Выбор и обоснование выбора материала сварной конструкции. Определение типа производства. Последовательность выполнения сборочно-сварочных операций с выбором способа сборки, сварки, оборудования для сборки и сварки, режимов сварки, сварочных материалов.

    курсовая работа [1,9 M], добавлен 16.05.2017

  • Механизация и автоматизация самих сварочных процессов. Подготовка конструкции к сварке. Выбор сварочных материалов и сварочного оборудования. Определение режимов сварки и расхода сварочных материалов. Дефекты сварных швов и методы контроля качества.

    курсовая работа [1,4 M], добавлен 07.08.2015

  • Процесс лазерно-дуговой сварки с использованием дуги, горящей на плавящемся электроде. Экспериментальное исследование изменения металла при сварке и микроструктуры сварных швов. Сравнительная оценка экономической выгоды различных процессов сварки.

    дипломная работа [4,6 M], добавлен 16.06.2011

  • Характеристика сварной конструкции. Особенности сварки стали 16Г2АФ. Выбор сварочных материалов, основного и вспомогательного сварочного оборудования. Технологический процесс сварки: последовательность сборки, сварка, подогрев металла, контроль качества.

    курсовая работа [1,0 M], добавлен 20.07.2015

  • Выбор и обоснование способов сварки и сварочных материалов, рода тока и полярности. Характеристика основного металла. Описание механизированного сборочно-сварочного приспособления. Расчет режимов для ручной дуговой и механизированной сварки в среде СО2.

    курсовая работа [221,6 K], добавлен 20.01.2014

  • Разновидности электрошлаковой сварки, ее достоинства и недостатки. Особенности многоэлектродной электрошлаковой сварки. Применение пластинчатых электродов для сварки. Сварка плавящимся мундштуком при сложной конфигурации изделия. Виды сварных соединений.

    презентация [218,5 K], добавлен 13.10.2014

  • Изготовление сварных конструкций. Проектирование технологии и организации сборочно-сварочных работ. Основной материал для изготовления корпуса, оценка его свариваемости. Выбор способа сварки и сварочных материалов. Определение параметров режима сварки.

    курсовая работа [447,5 K], добавлен 26.01.2013

  • Преимущества сварки в защитном газе. Расчет ее режимов для угловых швов. Химический состав, механические и технологические свойства стали 09Г2С. Выбор сварочных материалов. Определение норм времени и расхода сварочных материалов. Методы контроля изделий.

    курсовая работа [165,1 K], добавлен 05.03.2014

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.