Лопастные насосы. Редукционный клапан. Средства измерения
Лопастные насосы и их использование для водоснабжения. Центробежные и осевые лопастные насосы. Применение и устройство редукционного клапана давления. Функции гидравлических аккумуляторов. Средства измерения давления, температуры, крутящегося момента.
Рубрика | Производство и технологии |
Вид | контрольная работа |
Язык | русский |
Дата добавления | 10.02.2015 |
Размер файла | 202,0 K |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
Размещено на http://www.allbest.ru/
ОРЛОВСКИЙ ГОСУДАРСТВЕННЫЙ АГРАРНЫЙ УНИВЕРСИТЕТ
Факультет агротехники и энергообеспечения
Кафедра ЭМТП и тракторы
КОНТРОЛЬНАЯ РАБОТА
по дисциплине "Гидравлические машины"
Выполнил:
Студент группы Т-3с з/о
Артамонов Д.Е.
Проверил ст. преподаватель
Рыжов Ю.Н.
Орел 2007
Содержание
1. Лопастные насосы
2. Редукционный клапан
3. Гидравлические аккумуляторы
4. Средства измерения
Литература
1. Лопастные насосы
В современной технике применяется большое количество разновидностей машин. Наибольшее распространение для водоснабжения населения получили лопастные насосы. Рабочим органом лопастной машины является вращающееся рабочее колесо, снабженное лопастями.
Лопастные насосы делятся на: центробежные и осевые.
Центробежный лопастной насос
В центробежном лопастном насосе жидкость под действием центробежных сил перемещается через рабочее колесо от центра к периферии.
На рисунке 1 изображена простейшая схема центробежного насоса. Проточная часть насоса состоит из трех основных элементов - подвода 1, рабочего колеса 2 и отвода 3. По подводу жидкость подается в рабочее колесо из подводящего трубопровода. Рабочее колесо 2 передает жидкости энергию от приводного двигателя. Рабочее колесо состоит из двух дисков а и б, между которыми находятся лопатки в, изогнутые в сторону, противоположную направлению вращения колеса. Жидкость движется через колесо из центральной его части к периферии. По отводу жидкость отводится от рабочего колеса к напорному патрубку или, в многоступенчатых насосах, к следующему колесу.
Рисунок 1 - Схема центробежного насоса.
Осевой лопастной насос
В осевом лопастном насосе жидкость перемещается в основном вдоль оси вращения рабочего колеса (рисунок 2). Рабочее колесо осевого насоса похоже на винт корабля. Оно состоит из втулки 1, на которой закреплено несколько лопастей 2. Отводом насоса служит осевой направляющий аппарат 3, с помощью которого устраняется закрутка жидкости, и кинетическая энергия ее преобразуется в энергию давления. Осевые насосы применяют при больших подачах и малых давлениях.
Рисунок 2 - Схема осевого насоса.
Осевые насосы могут быть жестколопастными, в которых положение лопастей рабочего колеса не изменяется, и поворотно-лопастными, в которых положение рабочего колеса может регулироваться.
2. Редукционный клапан
Редукционным называют гидроклапан давления, предназначенный для поддержания в отводимом от него потоке рабочей жидкости более низкого давления, чем давление в подводимом потоке.
В гидроприводах находят применение в основном два типа редукционных клапанов.
Первый тип клапанов обеспечивает установленное соотношение между давлениями на входе и выходе из клапана.
Редукционный клапан (рисунок 3) состоит из запорно-регулирующего элемента - плунжера 1, прижатого к седлу пружиной 2, сила натяжения которой регулируется винтом 3. Отверстие 4 корпуса соединяется с гидролинией высокого давления, а отверстие 5 с гидролинией низкого давления. В исходном положении клапан прижат к седлу, а вход клапана отделен от выхода. При повышении давления P1 плунжер поднимается и гидролиния высокого давления соединяется с гидролинией низкого давления. Чем больше давление P1, тем больше открывается проходное сечение клапана и тем больше становится давление P2.
Таким образом, давление P2 зависит от давления на входе клапана, от начальной силы натяжения Pпр и жесткости пружины c:
(1)
а б
Рисунок 3 - Редукционный клапан:
а - принципиальная схема; б - условное обозначение
Второй тип редукционного клапана поддерживает постоянное редуцированное давление на выходе независимо от колебания давления в подводимом и отводимом потоках рабочей жидкости.
Такие редукционные клапаны могут быть прямого и непрямого действия.
Рассмотрим работу редукционного клапана непрямого действия (рисунок 4). Клапан состоит из основного запорно-регулирующего элемента - золотника 1 ступенчатой формы, нагруженного нерегулируемой пружиной 2 с малой жесткостью, и вспомогательного запорно-регулирующего элемента 5 в виде шарикового клапана. Силу натяжения пружины 4 шарикового клапана можно изменять винтом 3. В корпусе клапана имеются каналы, соединяющие полости 7 и 8 с выходом, а в золотнике 1 - капиллярный канал 9, соединяющий полость 6 с полостью 8, а через последнюю и с выходом клапана.
Рисунок 4 - Редукционный клапан непрямого действия:
а - принципиальная схема; б - условное обозначение.
Если пружина 4 настроена на давление большее, чем давление P1 на входе клапана, то золотник 1 занимает исходное положение (показано на рисунке 4). В этом случае в полостях 6, 7 и 8 будет одинаковое давление, равное P1, полость 10 соединена с полостью 11, а жидкость свободно протекает через клапан. Редуцирования давления при этом не происходит. При настройке пружины 4 на давление P2 < P1 шариковый клапан откроется и жидкость в небольшом количестве из полости 6 будет поступать на слив. В капиллярном канале 9 золотника создается течение жидкости с потерей в нем давления на преодоление гидравлических сопротивлений. В результате давление в полости 6 упадет и золотник поднимется вверх, уменьшив площадь живого сечения между полостями 10 и 11.
Это в свою очередь вызовет понижение давления в полостях 11, 8 и 7, опускание золотника и увеличение площади живого сечения между полостями 10 и 11. Процесс повторится снова, и золотник, совершая колебательные движения, установится на определенной высоте. Всякое изменение давления на входе или выходе клапана вызывает ответное перемещение золотника. В конечном итоге за счет изменения дросселирования давление на выходе клапана поддерживается постоянным. В этом клапане полость 7 и узкий канал, соединяющий полость с выходом клапана, оказывают демпфирующее влияние на золотник, уменьшая его колебания.
3. Гидравлические аккумуляторы
Гидравлическим аккумулятором называется гидроемкость, предназначенная для аккумулирования энергии рабочей жидкости, находящейся под давлением, с целью последующего использования этой энергии в гидроприводе.
В зависимости от носителя потенциальной энергии гидроаккумуляторы подразделяют на грузовые, пружинные и пневматические.
Принципиальная схемы гидроаккумуляторов приведены на рисунке 5.
б в
Рисунок 5 - Принципиальные схемы гидроаккумуляторов: а - грузовой; б - пружинный; в - пневмогидравлический с упругим разделителем
Грузовой аккумулятор (рисунок 5, а) состоит из цилиндра 1, плунжера 2 и груза 3 весом 2G. При зарядке плунжер поднимается (происходит увеличение потенциальной энергии), при разрядке - опускается. Давление разрядки постоянно, но громоздкость ограничивает их применение.
Пружинный аккумулятор (рисунок 5, б) состоит из цилиндра 2, поршня 1, пружины 3, помещенной в корпусе 4. Зарядка и разрядка происходит через отверстие 5. Они компактны, но есть недостаток - неравномерность давления в начале и в конце цикла разрядки, малый полезный объем.
Пневмогидравлический аккумулятор (рисунок 5, в) с упругим разделителем состоит из баллона 1 и эластичной диафрагмы 2, закрепленной в верхней части аккумулятора. Зарядку газом производят через отверстие 4, а рабочей жидкостью через отверстие 3. Верхняя часть заполняется газом до начального давления PН, соответствующего минимальному рабочему Pmin в гидросистеме. Рабочая жидкость заполняет нижнюю часть до давления Pmax, равного максимальному давлению в гидросистеме. Газ сжимается также до давления Pmax. Когда давление в гидросистеме станет меньше Pmax, рабочая жидкость вытесняется из гидроаккумулятора. Кольцо 5 предохраняет диафрагму от продавливания и повреждения. Достоинства: не требует частой подзарядки газом; безынерционен; пригоден к эксплуатации после длительного перерыва в работе и устанавливается в любом положении.
Функции гидроаккумуляторов:
- поддерживают на заданном уровне давление;
- компенсируют утечки;
- сглаживают пульсацию давления, создаваемую насосами;
- выполняют функцию демпфера;
- предохраняют систему от забросов давления вызванных наездом машин на дорожные препятствия;
- используются для достижения большей скорости холостого хода при совместной работе с насосами.
В схеме на рисунке 6 гидроаккумулятор 5 выполняет функцию компенсатора утечек и поддерживает постоянным давление в гидроприводе машины для удержания груза. При наложении грузозахватного органа на груз насос клапаном 2 разгружен, а требуемое давление в рабочей полости гидроцилиндра 6 поддерживается гидроаккумулятором.
Обратный клапан 8 в этой схеме блокирует аккумулятор от линии слива при разгруженном насосе. Распределитель 1 управления клапаном 2 включается от реле давления 7, которое настраивают на рабочее давление. Дроссель 3 служит для регулирования расхода при разрядке аккумулятора. Зарядка аккумулятора происходит через обратный клапан 4 в конце сжатия груза.
По сравнению с безаккумуляторным рассмотренный гидропривод имеет меньшие габарит, массу и может быть более экономичным, так как потребляемая насосом мощность будет меньше за счет уменьшения времени работы насоса под нагрузкой.
Риcунок 6. Схема включения гидроаккумулятора для компенсации утечек: 1 - распределитель; 2 - предохранительный клапан непрямого действия; 3 - дроссель; 4, 8 - обратный клапан; 5 - гидроаккумулятор; 6 - гидроцилиндр; 7 - реле давления
4. Средства измерения
В процессе эксплуатации гидроприводов применяют средства измерения, имеющие нормированные метрологические свойства и предназначенные для нахождения значений физических величин, характеризующих работу этих гидроприводов.
Применяемые средства измерения характеризуются ценой деления, абсолютной погрешностью и классом точности.
Цена деления шкалы - разность значений величин, соответствующих двум соседним отметкам шкалы прибора.
Абсолютная погрешность - разность между показанием прибора и истинным значением измеряемой величины.
Класс точности - обобщенная характеристика средств измерения, определяемая отношением максимально допустимой погрешности Д к конечному значению n шкалы прибора, выраженным в процентах, т.е.
(2)
При эксплуатации и испытаниях гидроприводов и отдельных гидроагрегатов измеряют давление, расход и температуру рабочей жидкости, скорость движения, усилия, крутящие моменты развиваемые на выходных звеньях гидродвигателей.
Измерение давления
Для измерения избыточного давления применяют манометры. Манометры по своему назначению подразделяются на приборы общего назначения (типа М, МТ, ОБМ) и образцовые (типа МО). Рабочие манометры и общего назначения имеют класс точности 1; 1,5; 2,5 и 4. Образцовые манометры имеют более высокие класс точности (0,15; 0,25; 0,4), их применяют для поверки манометров общего назначения и в испытательных стендах.
По принципу действия манометры подразделяются на жидкостные, грузопоршневые, деформационные и электрические.
Жидкостные манометры применяют для измерений небольших давлений и чаще всего представляют собой стеклянную трубку, присоединенную к резервуару (рисунок 7).
Рисунок 7 - Войлочный фильтр типа Г43: 1 - корпус; 2 - крышка; 3 - перфорированная труба; 4 - фильтрующие элементы |
Рисунок 8 - Магнитный фильтр типа С43-3: 1 - пробка; 2 - латунная шайба; 3 - корпус; 4 - шайба; 5 - прокладка; 6 - уплотнение; 7 - латунная труба; 8 - крышка; 9 - магниты |
Грузопоршневые манометры (рисунок 8), состоящие из цилиндра 1 и поршня 2, преобразуют давление рабочей жидкости в усилие, развиваемое поршнем.
Деформационные манометры получили в гидравлических машинах наибольшее распространение. Принцип их работы основан на зависимости деформации чувствительного элемента (мембраны, трубчатой пружины, сильфона) от измеряемого давления.
а б в г
Рисунок 9 - Деформационные манометры: а - мембранный; б - мембранный с двойной мембраной; в - с консольной балкой; г - сильфонный; 1 - мембрана; 2, 4 - активный и компенсирующий тензорезистор; 3 - консольная балочка
В мембранный манометрах давление со стороны рабочей жидкости передается на мембрану (рисунок 9, а, б, в). На мембране установлены тензорезисторы, которые изгибаясь вместе с мембраной изменяют свое электрическое сопротивление. Изменение сопротивления регистрируется электрическими приборами и преобразуется в показания значения соответствующего давления.
В сильфонных манометрах (рисунок 9, г) давление рабочей жидкости приводит к растяжению гофрированной упругой трубки пропорционально давлению.
Мембранный и сильфонные манометры предназначены для измерения небольших давлений.
Пружинный манометр (рисунок 10) имеет пружину в виде изогнутой латунной трубки (трубка Бурдона) 1 эллиптического поперечного сечения. Верхний конец трубки запаян, а нижний припаян к штуцеру 2, через который манометр присоединяется в гидросистему. При заполнении трубки рабочей средой под давлением она стремится выпрямиться. Через рычажный механизм 3, усиливающий деформацию трубки, перемещение ее свободного конца передается на стрелку 4, расположенную по центру шкалы прибора. Пружинные манометры просты по конструкции, ими можно измерять давление в широком диапазоне.
а б
Рисунок 10 - Схема (а) и условное обозначение (б) пружинного Манометра.
Шкала всех манометров градуируется в паскалях или мегапаскалях. На старых образцах давление указывается в кгс/см2. На шкале наносится заводское обозначение; класс точности; номер ГОСТ; год выпуска; номер манометра и название рабочей среды (жидкость, пар, газ), в которой измеряется давление.
Электрические манометры применяют для непрерывного измерения мгновенного значения давления в комплекте с осциллографами. Чувствительным элементом этих приборов может служить трубка Бурдона (рисунок 1, а) или тонкостенный полый стакан (рисунок 11, б) с наклеенными на их стенки тензодатчиками.
Датчики с манганиновой проволокой (рисунок 11, в), электрическое сопротивление которой меняется при объемном сжатии, применяются для замера давления.
Для замера пульсаций давления применяют пьезоэлектрические датчики (рисунок 11, г), регистрирующие только динамическую составляющую давления.
Рисунок 11 - Электрические манометры:
а - с трубкой Бурдона; б - тонкостенный цилиндрический датчик с наклеенными тензодатчиками; в - с манганиновой проволокой; г - пьезоэлектрический; 1 - трубка Бурдона; 2 - тензодатчики; 3 - тонкостенный стакан; 4 - манганиновый датчик; 5 - узкая щель; 6 - корпус; 7 - заливка эпоксидной смолой; 8 - пьезоэлектрический датчик; 9 - перегородка
Измерение расхода
Для определения подачи рабочей жидкости используют расходомеры. По принципу действия различают расходомеры: счетчиковые, струйные, электромагнитные, ультразвуковые, тахометрические, а также основанные на перепаде давления и др.
В струйных расходомерах (рисунок 12, а) на пути рабочей жидкости в трубопроводе 3 располагается некоторое препятствие типа плоской мембраны 1, отклонение которой является функцией скорости струи, а регистрирующий ток - функцией взаимного положения мембраны 3 и неподвижного электрода 2.
а б
в г
Рисунок 12 - Схемы расходомеров:
а - струйный; б - ультразвуковой; в - турбинный; г - тепловой;1 - мембрана; 2 - неподвижный электрод; 3 - трубопровод; 4 - направляющая; 5 - корпус; 6 - подшипник; 7 - турбина; 8 - успокоитель;9 - преобразователь сигнала; 10 - излучатель сигнала; 11 - дополнительный излучатель; 12 - приемник; 13 - дополнительный приемник; 14 - пластина; 15 - термопара; 16 - теплоизоляция; 17 - нагреватель
Ультразвуковые расходомеры (рисунок 12, б) работают на основе ультразвуковых колебаний. Благодаря эффекту Доплера частота и фаза ультразвукового сигнала, проходящего от излучателя 11 к приемнику 13, будет изменяться в функции скорости протекания рабочей жидкости. Введение дополнительной пары излучатель 10 - приемник 12 обеспечивает компенсацию температурной нестабильности.
Тахометрические турбинные расходомеры (рисунок 12, в) работают с малогабаритными электронными преобразователями. В таком расходомере поток рабочей жидкости приводит во вращение турбину, каждый проход лопасти которой наводит импульс ЭДС в обмотке индукционного преобразователя. Скорость потока определяется через частоту электрических импульсов на выходе преобразователя путем как непосредственного измерения, так и выводом на цифровые приборы или преобразованием в аналоговый сигнал. Такими расходомерами можно измерять расходы до 360 л/мин.
Тепловой неконтактный расходомер применяется для определения подачи насосом рабочей жидкости без разборки гидросистемы (рисунок 12, г). Он имеет стабилизированный источник питания (СИП), датчик и измерительный прибор (ИП). СИП обеспечивает питание нагревателя и ИП, включающий в себя дифференциальную термопару, позволяет определить скорость потока рабочей жидкости по разности температур входящего потока рабочей жидкости и нагревателя.
Измерение температуры
Температуру рабочей жидкости в гидроприводах измеряют термометрами, которые по принципу действия делятся на термометры расширения, сопротивления и теплоэлектрические. При диагностировании гидроприводов наибольшее распространение получили термометры расширения, имеющие границы измерений от -60 до +250 С.
Измерение крутящего момента
Измерение крутящего момента на валах гидромашин определяют балансирными динамометрами или торсионометрами, первые из которых получили наибольшее распространение.
Балансирные динамометры бывают электрические, тормозные, гидравлические и механические.
лопастной насос редукционный клапан
Литература
1 Андреев А.Ф., Барташевич Л.В., Боглан Н.В. и др. Гидропневмоавтоматика и гидропривод мобильных машин. Объемные гидро- и пневмомашины и передачи. - Минск: Высшая школа, 1987. 310 с.
2 Анурьев В.И. Справочник конструктора-машиностроителя. В 3-х Т. - 5-е изд., перераб. и доп. Том 3 - М.: Машиностроение, 1980 г. - 559 с.
3 Башта Т.М. Гидропривод и гидропневмоавтоматика. - М.: Машиностроение, 1972. - 320 с.
4 Башта Т.М., Руднев С.С., Некрасов Б.Б. и др. Гидравлика, гидромашины и гидроприводы: Учебник. 2-е изд., перераб. - М.: Машиностроение, 1982. - 423 с.
5 Богданович Л.Б. Гидравлические механизмы поступательного движения: Схемы и конструкции. - М., Киев: МАШГИЗ, 1958. - 181 с.
Размещено на Allbest.ru
Подобные документы
Насосы - гидравлические машины, предназначенные для перемещения жидкостей. Принцип действия насосов. Центробежные насосы. Объемные насосы. Монтаж вертикальных насосов. Испытания насосов. Применение насосов различных конструкций. Лопастные насосы.
реферат [305,4 K], добавлен 15.09.2008Понятие и классификация гидравлических машин, их разновидности и функциональные особенности. Общая характеристика и свойства насосов, параметры и факторы, которые на них влияют. Основное уравнение турбомашин. Характеристики центробежного насоса.
презентация [491,3 K], добавлен 14.10.2013Развитие вакуумной техники. Упрощенная схема вакуумной системы. Объемные вакуумные насосы (поршневые, кольцевые, ротационные). Давление запуска насоса, наименьшее и наибольшее рабочее давление. Насосы, основанные на принципе ионно-сорбционной откачки.
реферат [953,3 K], добавлен 25.11.2010Назначение нефтеперекачивающей станции. Система механического регулирования давления. Функциональная схема автоматизации процесса перекачки нефти. Современное состояние проблемы измерения давления. Подключение по электрической принципиальной схеме.
курсовая работа [2,8 M], добавлен 15.06.2014Общие сведения о измерениях и контроле. Физические основы измерения давления. Классификация приборов измерения и контроля давления. Характеристика поплавковых, гидростатических, пьезометрических, радиоизотопных, электрических, ультразвуковых уровнемеров.
контрольная работа [32,0 K], добавлен 19.11.2010Единицы измерения давления, основное уравнение гидростатики, параметры сжимаемости жидкости, уравнение Бернулли. Расход жидкости при истечении через отверстие или насадку, режимы движения жидкости. Гидравлические цилиндры, насосы, распределители, баки.
тест [525,3 K], добавлен 20.11.2009Оптимизация гидравлической программы промывки. Выбор плотности промывочной жидкости. Скорость восходящего потока. Оценка гидравлических потерь в циркуляционной системе. Определение гидродинамического давления против продуктивного пласта. Буровые насосы.
презентация [5,3 M], добавлен 16.10.2013Понятия и определения метрологии. Причины возникновения погрешностей и методы уменьшения. Средства измерения давления, температуры, веса, расхода и количества вещества. Расходомеры и счетчики. Динамическая характеристика измерительного устройства.
шпаргалка [2,4 M], добавлен 25.03.2012Средства перекачки горючего. Насосы центробежные двустороннего входа для перекачивания нефтепродуктов. Подготовка насоса к использованию. Меры безопасности при работе агрегата. Организация технического обслуживания технологического оборудования.
курсовая работа [259,5 K], добавлен 16.10.2015Контроль температуры различных сред. Описание принципа бесконтактного метода измерения температуры. Термометры расширения и электрического сопротивления. Манометрические и термоэлектрические термометры. Люминесцентный метод измерения температуры.
курсовая работа [93,1 K], добавлен 14.01.2015