Анализ технологической схемы сбора и подготовки нефти и газа

Методика определения толщины эмульсионного слоя при разгазировании капель в зависимости от числа объемов выделившегося газа. Основные составляющие и принцип работы блочной автоматизированной сепарационной установки с предварительным сбросом воды.

Рубрика Производство и технологии
Вид курсовая работа
Язык русский
Дата добавления 03.12.2014
Размер файла 324,4 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru

Размещено на http://www.allbest.ru

Введение

Технологические процессы сбора и подготовки углеводородного сырья заключаются в последовательном изменении состояния продукции нефтяной скважины и отдельных ее составляющих (нефть и газ), завершающийся получением товарной продукции. Технологический процесс после разделения продукции скважины состоит из нефтяного и газового материальных потоков.

Технология сбора, очистки и использования пластовой воды является особым процессом, который обычно рассматривается отдельно. Технология сбора и обработки нефти и газа состоит из трех последовательных этапов: 1) разделение; 2) сбор; 3) доведение нефти и газа до нормированных свойств, устанавливаемых стандартами. На третьем этапе нефтяной поток подвергается очистке от пластовой воды и минеральных солей и извлечению из него углеводородов для стабилизации нефти, что позволяет уменьшить потери углеводородов при хранении и транспорте. На этом же этапе из газового потока извлекаются тяжелые углеводороды (отбензинивание) с целью получения товарного газа и сжиженных углеводородов. Следовательно, третий этап является завершающим этапом сбора нефти и газа. Этот этап называют подготовкой нефти или газа.

Под технологической схемой сбора и подготовки нефти и газа понимается графическое изображение процесса разделения и последовательного и непрерывного изменения состояния материальных потоков углеводородного сырья, завершающегося получением товарной нефти, товарного газа и товарных сжиженных углеводородов. Системы сбора и подготовки нефти и газа представляют комплекс последовательных и взаимосвязанных аппаратов, механизмов, машин и сооружений, обеспечивающих выполнение условий, предусмотренных в технологической схеме.

1. Совмещение процессов сепарации и деэмульсации нефти

Совмещение технологических процессов в одних и тех же аппаратах дает возможность значительно сократить число аппаратов на промыслах, существенно упростить их обслуживание, ускорить обустройство нефтяных промыслов в целом и повысить эффективность использования аппаратуры на всех стадиях разработки нефтяных месторождений. Совмещение процессов сепарации газа II ступени с частичным обезвоживанием нефти в ряде случаев успешно решается в рамках предварительного сброса определенного количества воды перед поступлением эмульсии на установки подготовки нефти, где осуществляется основной процесс. При этом используется эффект умеренной турбулизации свободным газом эмульсии при рассредоточенном прохождении ее вместе с газом через слой воды.

Исследованиями ТатНИПИнефть (Тронов В.П.) установлена принципиальная возможность совмещения процессов сепарации газа с глубоким обезвоживанием и обессоливанием нефти и получением из технологического цикла чистых дренажных вод, пригодных для закачки в пласт. В отличие от совмещенной технологии предварительного сброса воды, в новом технологическом процессе деэмульсации нефти, позволяющем осуществлять прямое глубокое обезвоживание и обессоливание нефти при ее разгазировании, исключены промежуточные операции по укрупнению капель, их коалесценции и т.д. В нем использован эффект прямой доставки глобул пластовой воды в состав дренажных вод за счет оттеснения глобул расширяющимися газовыми пузырьками из внутренних областей капли непосредственно на контур ее контакта с дренажной водой. Для этого эмульсия с растворенным в ней газом вводится в капельном состоянии через сопла форсунок (или других устройств) в рабочий объем камеры с гидрофильной средой. В момент перехода в гидрофильный объем капли вспениваются изнутри пузырьками газа в соответствии с заданным перепадом давления на соплах форсунки. Это позволяет вести процесс деэмульсации нефти при скоростях потока, соизмеримых со скоростью всплывания газово-эмульсионных пузырьков в водной среде, т.е. на 4 - 5 порядков выше, чем при обычной технологии. Впрыскивание газированной нефти в капельном состоянии в водную среду, содержащую реагент-деэмульгатор, при снижении давления приводит к резкому выделению газа, общему увеличению поверхности капель нефти, контактирующей с активной водой, утоньшению пленки нефти и разрушению в связи с этим тонкодисперсной части эмульсии, соприкасающейся с окружающей капли активной водой.

Увеличение поверхности капель нефти в зависимости от количества выделившегося свободного газа определяется по приведенному уравнению:

,

где S1 - новая поверхность капли; S - поверхность исходной капли; n - кратное количество объемов выделившегося газа по отношению к исходному объему капли (коэффициент вспенивания).

Толщину эмульсионного слоя при разгазировании капель в зависимости от числа объемов выделившегося газа также можно определить по формуле:

,

где ; d - диаметр исходной капли.

Возникающие в капле пузырьки газа могут иметь различное расположение и структуру, которая зависит от газового фактора (при данном перепаде), свойств нефти и времени всплытия эмульсионного пузырька с газовым подъемником в водной среде. В идеальном виде расположение газового пузырька (г) внутри эмульсионной капли соответствует позиции IV.

В связи с тем, что нефть (н) по отношению к воде (в) на границе раздела с газом играет роль поверхностно-активного вещества, выскальзывание газового пузырька из эмульсионной капли в водную среду энергетически невыгодно и поэтому невозможно. Анализ показал, что при равных поверхностях практически всегда:

,

где - поверхностное натяжение.

Т.е. переход газового пузырька в водную фазу невозможен. С учетом поверхностей контакта (S) это неравенство можно записать в следующей форме:

,

где Sвг = Sнг.

Выскальзывание газового пузырька из капли эмульсии привело бы к появлению еще одного слагаемого в левой части уравнения, что сделало бы дебаланс неравенства еще большим, т.е.

.

Поверхностное натяжение нефти на границе раздела со своими парами оказывается еще меньше. При наличии в воде поверхностно-активных веществ поверхностное натяжение на границе с нефтью резко понижается, вплоть до 2 - 5 дн/см. В зависимости от концентрации растворимых в воде ПАВ поверхностное натяжение на границе с газом уменьшается лишь до 36 - 45 дн/см.

Таблица 1

Вещество

Поверхностное натяжение на границе

с газом

с водой

Вода

72,5

0

72,5

Туймазинская нефть

27,2

30,2

57,4

Сураханская нефть

25,8

27,8

53,6

Балахинская нефть

28,9

27,1

56,0

Бинагазинская нефть

31,0

19,0

50,0

Ромашкинская нефть

28,0

25,6

53,6

Ухтинская нефть

31,1

33,3

64,4

Старогрозненская нефть

29,0

26,0

55,0

Таблица 2

Поверхностно-активное вещество

Поверхностное натяжение на границе раздела, дн/см

Концентрация ПАВ, мг/л

с углеводородом

с газом

Плюроник-68

7

40

10

Плюроник-64

13

45

10

Блоксополимер окиси этилена

12

44

10

ОП-7

2

34

1000

ОП-7

8

36

200

ОП-10

10

38

200

Дисолван 4411

6

37

200

Дисолван 4411

2

34

700

НЧК

7

40

5000

Идеальный процесс совмещения разгазирования с деэмульсацией нефти в слое гидрофильной среды (вода, обогащенная поверхностно-активными веществами) достигается при толщине слоя эмульсии вокруг газового ядра, равной представительному диаметру капель пластовой воды или меньшей его. В этом случае обеспечивается жесткий контакт гидрофильной среды с бронирующими оболочками каждой капли, которые под воздействием реагента разрушаются, а содержимое капель переходит в состав дренажной воды. Аналогично осуществляется глубокое обессоливание нефти.

Пенная деэмульсация эффективна при соблюдении следующих дополнительных условий:

а) время всплытия пенного элемента (группы или одного газового пузырька, окруженного слоем эмульсии) должно быть достаточным для разрушения бронирующих оболочек на каплях пластовой воды;

б) общее количество и размеры пенных элементов, всплывающих в слое воды, при их наиболее плотной упаковке теоретически ограничиваются просветностыо (сечение, занятое водой) порядка 26%;

в) производительность аппарата должна определяться количеством и скоростью свободного подъема пенных элементов в жидкой фазе чему и должна соответствовать скорость вспрыскивания в водный объем новых капель эмульсии.

В целом производительность аппаратов пенной деэмульсации может быть определена по формуле:

,

где Q - производительность по жидкости, м3/с; S - сечение аппарата, м2; z - коэффициент распределения пенных ячеек по сечению аппарата; t - время, необходимое для разрушения оболочки при всплытии пенной ячейки, с; n - коэффициент вспенивания, равный отношению кратного объема газового ядра к объему нефти в пенной ячейке.

Пенные деэмульсаторы как в горизонтальном, так и вертикальном вариантах исполнения могут иметь исключительно высокую производительность.

Теоретически пропускная способность аппарата площадью 1 м2 достигает 25 млн.т/год. Время пребывания нефти в рабочей зоне аппарата определяется несколькими минутами.

Совмещение операций по разгазированию нефти с ее горячей сепарацией и деэмульсацией в гидрофильной среде сопровождается также автоматической очисткой дренажных вод за счет эффектов флотации. Любая, самая маленькая частица нефти, впрыскиваемая в гидрофильный объем, снабжается своим газовым ядром, которое неизбежно увлекает ее на верхнюю границу раздела фаз нефть - вода. Это позволяет получать чистую дренажную воду, пригодную для закачки в пласт без дополнительной обработки на очистных сооружениях.

При подборе технологического режима пенной деэмульсации нефти должны быть правильно оценены размеры исходных капель эмульсии, вводимой в объем воды, обогащенной деэмульгаторами, а также фактор вспенивания n. Толщина эмульсионного слоя вокруг газового ядра уменьшается особенно быстро при соотношении объемов выделившегося газа и исходной капли нефти от 1 до 10 - 15, хотя на практике оптимальное соотношение может быть принято и другим. Это зависит от диаметра капелек пластовой воды в эмульсионном слое вокруг газового ядра, состояния их бронирующих оболочек и других технологических параметров. В этом же интервале наиболее резко изменяется и поверхность контакта эмульсии с обогащенной деэмульгаторами водной средой.

2. Установки комплексной подготовки нефти

На установках комплексной подготовки нефти (УКПН) осуществляются процессы ее обезвоживания, обессоливания и стабилизации. Процесс обезвоживания нефтяных эмульсий на УКПН ничем не отличается от этого процесса на стационарных термохимических установках. Для обессоливания нефти на УКПН в поток обезвоженной нефти добавляют пресную воду и тщательно перемешивают его, создавая искусственную эмульсию. Затем эта искусственная эмульсия поступает в отстойники, где происходит отделение воды. В некоторых случаях для ускорения отделения воды искусственную эмульсию пропускают через электродегидраторы.

Установки подготовки нефти, на которых проводится обезвоживание и обессоливание с использованием электродегидраторов, называются электрообессоливающими (сокращенно: ЭЛОУ).

Процесс стабилизации нефти, под которым понимается отделение от нее легких (пропан-бутановых и частично бензиновых) фракций, осуществляется в специальных стабилизационных колоннах под давлением и при повышенных температурах. После отделения легких углеводородов из нефти последняя становится стабильной и может транспортироваться до нефтеперерабатывающих заводов без потерь. Отделившись в стабилизационной колонне, легкие фракции конденсируются и перекачиваются на газофракционирующие установки или газобензиновые заводы для дальнейшей их переработки. Однако в настоящее время стабилизационные установки не используются.

Принципиальная схема установки комплексной подготовки нефти представлена на рис. 1.

Левая часть схемы, включая отстойник 3, представляет установку обезвоживания, в которой сырая нефть по линии I подается насосом 1 в теплообменник 2, где нагревается стабильной нефтью, поступающей по линии V с низа стабилизационной колонны 6. Подогретая нефть по линии II подается в отстойник 3, а из отстойника обезвоженная нефть по линии III направляется в следующий отстойник или электродегидратор 4. В поток обезвоженной нефти добавляется пресная вода по линии IX для отмывки солей.

Рис. 1. Принципиальная схема установки комплексной подготовки нефти (УКПН): 1 - насос; 2 - теплообменник; 3 - отстойник; 4 - электродегидратор; 5 - теплообменник; 6 - стабилизационная колонна; 7 - конденсатор-холодильник; 8 - емкость орошения; 9 - насос; 10 - печь; 11 - насос. Линии: I - сырая нефть; II - подогретая нефть; III - обезвоженная нефть; IV - обессоленная нефть; V - стабильная нефть; VI - верхний продукт колонны; VII - широкая фракция; VIII - дренажная вода; IX - подача пресной воды

В некоторых случаях для улучшения степени обессоливания могут применяться вместо одного отстойника или электродегидратора два последовательно включенных аппарата. В них происходит окончательное обессоливание нефти. Обессоленная нефть после электродегидратора (отстойника) по линии IV через теплообменник 5 поступает в отпарную часть стабилизационной колонны 6. В теплообменнике 5 нефть нагревается до 140 - 160С за счет тепла стабильной нефти, поступающей по линии V с низа колонны 6. Процессы обезвоживания и обессоливания проводятся обычно при довольно умеренных температурах (около 50 60С) и редко при более высоких (до 80С).

В нижней и верхней частях стабилизационной колонны установлены тарелки - устройства, способствующие лучшему разделению. В нижней части отпарной колонны поддерживается более высокая температура (до 240С), чем температура поступающей в колонну нефти за счет циркуляции части стабильной нефти с низа колонны по линии XI через печь 10. В результате этого из нефти интенсивно выделяются легкие углеводороды, которые могут увлекать с собой и более тяжелые компоненты. Продукты испарения поступают в верхнюю часть стабилизационной колонны и оттуда по линии VI в конденсатор-холодильник 7. В конденсаторе-холодильнике пары охлаждаются до 30С, при этом большая часть их конденсируется и накапливается в емкости орошения 8. Несконденсировавшиеся легкие углеводороды сверху емкости орошения по линии Х обычно подаются в качестве топливного газа к горелкам печи 10.

Часть сконденсировавшихся легких углеводородов (широкая фракция) по линии VII с низа емкости 8 насосом 9 подается в резервуары для хранения, а другая часть направляется в верхнюю часть стабилизационной колонны в качестве орошения.

3. Установки с применением блочного оборудования

В настоящее время в связи с применением напорных однотрубных схем сбора нефти, газа и воды все процессы, связанные с выделением газа из нефти, и последующей подготовки нефти, газа и воды сосредоточиваются обычно в одном пункте - центральном пункте сбора и подготовки нефти, газа и воды. При строительстве установок на центральных пунктах сбора и подготовки нефти, газа и воды обычно используется блочное оборудование и на площадке монтаж их сводится в основном к установке аппаратов и обвязке их трубопроводами.

На нефтяных месторождениях в зависимости от объемов добычи нефти наиболее приемлемы две основные типовые схемы обезвоживающих установок: 1) для небольших и средних по величине нефтяных месторождений и 2) для крупных месторождений.

На рис. 2 показана принципиальная технологическая схема установки по обезвоживанию нефти для небольших и средних но величине нефтяных месторождений - объем добычи нефти до 2 - 3 млн. т/год (6000 - 9000 т/сут.).

Продукция обводненных скважин (а если на месторождении нет раздельного сбора продукции обводненных и безводных скважин, то продукция всех скважин) поступает по сборному коллектору I в сепаратор 1 первой ступени, где газ отделяется от нефти обычно при давлениях около 0,4 - 0,6 МПа (4 - 6 кгс/см2). В качестве сепараторов первой ступени обычно применяются сепараторы типа СУ-1 или СУ-2 производительностью 750, 1500, 3000 и 5000 м3/cyт. Отделившийся на первой ступени газ по линии II под давлением 0,4 - 0,6 МПа (4 - 6 кгс/см2) направляется непосредственно к потребителю или на установку по подготовке газа. Она располагается рядом с установкой по подготовке нефти или на некотором удалении от нее, если па подготовку поступает газ с нескольких установок по подготовке нефти.

Рис. 2. Технологическая схема подготовки нефти с использованием подогревателей-деэмульсаторов

Нефтяная эмульсия из сепаратора по трубопроводу подается в сепаратор-делитель потока 2. Сепаратор-делитель потока предназначен для выполнения следующих трех основных операций: отделения остаточного газа от нефти перед поступлением ее в подогреватели-деэмульсаторы, сброса свободной воды, отделившейся от нефтяной эмульсии, и разделения нефтяной эмульсии на несколько равных по производительности потоков для равномерной загрузки основных аппаратов (подогревателей-деэмульсаторов).

Выделившийся газ из сепаратора-делителя 2 по линии IV и из подогревателя-деэмульсатора 3 по линии VI поступает на установку подготовки газа, а отделившаяся в аппарате 2 пластовая вода по линии XI - на установку подготовки воды.

Нефтяная эмульсия из сепаратора-делителя 2 по трубопроводу V поступает в подогреватель-деэмульсатор 3. Подогреватель-деэмульсатор является основным аппаратом установок по обезвоживанию нефти на месторождениях. Из него обезвоженная нефть при повышенной температуре по трубопроводу VIII поступает в сепаратор 4. Отделившаяся вода, содержащая некоторое количество реагента, выводится из аппарата по линии VII. Эта вода может полностью или частично при помощи насоса подаваться в линию I перед сепаратором первой ступени с целью более полного использования реагента. В подогревателе-деэмульсаторе газ и вода отделяются от нефти обычно при температуре 40 - 60 0С и давлении около 0,2 - 0,3 МПа (2 - 3 кгс/см2), а окончательная сепарация проводится под вакуумом (остаточное давление 0,07 - 0,08 МПа, или 0,7 - 0,8 кгс/см2) в сепараторе 4 горячей вакуумной сепарации.

Готовая нефть после горячей вакуумной сепарации по трубопроводу Х поступает на прием насосов системы безрезервуарной сдачи нефти в магистральный нефтепровод, а газ по газопроводу IX подается на прием вакуум-компрессоров и далее па установку по подготовке газа.

На рис. 3 приведена принципиальная технологическая схема установки по обезвоживанию нефти для крупных нефтяных месторождений или для группы нефтяных месторождений с объемами добычи нефти свыше 5 - 6 млн. т/год. В некоторых случаях производительность таких установок может достигать 12млн. т/год (до 36 тыс. т/сут).

Эта принципиальная схема не отличается от предыдущей, за исключением того, что вместо подогревателя-деэмульсатора здесь установлены два аппарата: нагреватель 3 и отстойник 6 со встроенным в него сепаратором 5.

На установках большой производительности из-за ограниченной мощности одного подогревателя-деэмульсатора их требуется устанавливать несколько (иногда до 10 - 12), что создает определенные трудности при эксплуатации, поэтому на установках большой производительности вместо подогревателей-деэмульсаторов устанавливают отдельно блочные печи большой мощности и отстойники с встроенными сепараторами. При рациональном наборе небольшого числа аппаратов можно обеспечить подготовку в них значительных объемов обезвоженной нефти. С уменьшением общего числа устанавливаемых аппаратов на установках подготовки нефти значительно сокращается площадка под установку, что имеет большое значение в условиях Западной Сибири, где большинство нефтяных месторождений расположено на заболоченной местности с ограниченными возможностями выбора относительно сухих незаболоченных участков для строительства центральных пунктов сбора и подготовки нефти, газа и воды.

Рис. 3. Технологическая схема подготовки нефти с использованием раздельных аппаратов для нагрева и отстоя: 1 - сепаратор первой ступени; 2 - сепаратор-делитель потока; 3 - печь; 4 - вакуумный сепаратор; 5 - встроенный сепаратор отстойника; 6 - отстойник. Линии: I - ввод эмульсии; II, IV, VI, VIII, IX - газ; III - эмульсия после первой ступени сепарации; V - эмульсия после сепаратора-делителя; VII, XI - вода; X - подготовленная нефть; XII - подача реагента

В той и другой установках обычно перед первой ступенью сепарации по линии XII подается химический реагент (деэмульгатор). При подаче реагента в этой точке в сепараторе 1 достигается хорошее перемешивание его с эмульсией, что является одним из условий глубокого разрушения ее до поступления в отстойные емкости.

В качестве сепараторов первой ступени применяются сепараторы СУ-2 производительностью 5000 м3/сут. и рабочим давлением 1 МПа (10 кгс/см2) или сепараторы с раздельным вводом нефти и газа в аппарат производительностью до 16 000 м3/сут.

В некоторых случаях, когда нефтяная эмульсия, поступающая со скважин, содержит значительное количество свободной воды, на первой ступени могут быть установлены сепараторы с предварительным сбросом свободной воды. Большое количество свободной воды может отделиться из продукции скважин в случае, если химический реагент подается на значительном удалении от центрального пункта сбора и подготовки нефти (например, на автоматизированной блочной замерной установке, на ДНС и т.п.).

В качестве сепараторов с предварительным сбросом свободной воды могут использоваться установки типа УПС (установки с предварительным сбросом свободной воды) производительностью до 10 000 м3/cyт. на рабочее давление 0,6 МПа (6 кгс/см2), а также трехфазный сепаратор производительностью 20 000 т/сут. на рабочее давление 0,6 МПа (6 кгс/см2) конструкции Гипротюменнефтегаз.

Наибольшее распространение в технологических схемах установок получили блочные автоматизированные сепараторы-делители потока, которые помимо сепарации и сброса свободной воды обеспечивают и разделение потоков. Они разработаны на производительность 6300, 10000, 16000 и 30000 т/сут. и на рабочее давление 0,6 МПа (6 кгс/см2).

Сепараторы-делители потока являются очень важной составной частью установок по обезвоживанию нефти, когда для обезвоживания применяются несколько подогревателей-деэмульсаторов или блочных печей, подключенных параллельно. До разработки сепараторов-делителей потока никакими простыми средствами автоматики не удавалось добиться равномерной загрузки по потокам подогревателей-деэмульсаторов или печей. Только с появлением сепараторов-делителей потока эта проблема была решена полностью.

Кроме указанных выше основных функций, которые выполняют сепараторы-делители потока, необходимо упомянуть еще одну дополнительную функцию, имеющую большое значение для обеспечения устойчивой работы подогревателей-деэмульсаторов или печей. Как известно, при однотрубной системе сбора нефти и газа, особенно, когда нефтегазовые коллекторы прокладываются в сильно пересеченной местности, заметное влияние на устойчивость работы всей технологической схемы обезвоживания оказывают пульсации нефтегазовой смеси в нефтегазосборных коллекторах. Эти пульсации появляются в связи с тем, что на пониженных местах трубопроводов скапливается жидкость, а на повышенных - газ. При перекрытии сечения трубы жидкостью газ проталкивает эту жидкость в виде пробки, и в сепаратор первой ступени поступает порция жидкости значительного объема, а затем порция газа. В сепараторах, таким образом, также наблюдаются явления пульсации.

Подогреватели-деэмульсаторы или печи весьма "чувствительны" к пульсациям потока (при аномально больших поступлениях жидкости может резко понизиться температура подогреваемой эмульсии и нарушиться режим обезвоживания). В результате же разделения поступающей продукции на несколько равных потоков влияние пульсаций при подаче жидкости в подогреватели-деэмульсаторы или печи ослабляется пропорционально числу потоков, выходящих из сепаратора-делителя.

В качестве отстойной аппаратуры после печей применяются горизонтальные отстойники.

При подготовке легких нефтей после нагрева в печах обычно выделяется значительное количество газа, что сокращает производительность отстойной аппаратуры, а в некоторых случаях может полностью нарушить процесс отстоя. Поэтому важным условием работы отстойников является предотвращение выделения газа из нефти. Для этого разработаны отстойники типа ОГ-200С и с встроенными сепараторами, в которых перед отстойной секцией выделяется газ из поступающей продукции.

Для последней ступени сепарации - выделения газа из нефти под вакуумом (остаточное давление 0,07- 0,08 МПа, или 0,7 - 0,8 кгс/см2) при температуре подготовки нефти - разработаны блочные автоматизированные установки вакуумной сепарации производительностью 10000 и 16000 т/сут. по готовой нефти. Число вакуумных сепараторов каждого типа на установке подготовки нефти определяется в зависимости от общей производительности установки.

После вакуумных сепараторов нефть поступает в буферные резервуары, а оттуда по закрытой системе в магистральный нефтепровод.

Остановимся несколько подробнее на этих способах стабилизации нефти и возможных их сочетаниях.

4. Сепарация

Процесс стабилизации начинается уже сразу же на первых этапах движения нефти, когда из нее отбираются выделяющиеся газообразные углеводороды (с падением давления), находившиеся в пластовых условиях в жидком состоянии.

Первым узлом отбора легких фракций оказываются трапно-сепарационные установки, на которых от нефти отделяется свободный газ, подаваемый далее по газосборным коллекторам на промысловую компрессорную станцию либо на газобензиновый завод (в зависимости от принятой схемы сбора нефти и газа).

Назначение, классификация и конструкция сепараторов.

Сепарация жидкости (разделение нефти, газа и воды) в различных сепараторах осуществляется для:

1) получения нефтяного газа, используемого как химическое сырье или топливо;

2) уменьшения перемешивания нефтегазового потока и снижения тем самым гидравлических сопротивлений;

3) разложения образовавшейся пены;

4) отделения воды от нефти при добыче нестойких эмульсий;

5) уменьшения пульсации при транспортировании нефти от сепараторов первой ступени до установки подготовки нефти.

От проведения процессов сепарации зависят потери легких фракций нефти при последующем транспорте и хранении ее. Установлено, что при моментальной сепарации нефти (с резким снижением давления) существенно увеличивается уносимое количество тяжелых углеводородов быстро движущейся струёй свободного газа.

При ступенчатой сепарации подбором давлений на ступенях можно достигнуть выделения в основном только свободного газа. Поэтому, если на промыслах нет стабилизационных установок, необходимо проводить сепарацию по возможности методами с минимальными потерями бензиновых фракций. Один из них - ступенчатая сепарация. Однако многоступенчатая сепарация нефти должна не только сократить унос тяжелых фракций с газами, а также резко снизить и унос нефтью легких свободных газов, с выделением которых в резервуарах немало теряется нефти на последующих этапах ее движения.

При сборе нефтей до любой из описанных схем давление на пути от скважины до товарных парков или нефтеперерабатывающих заводов снижается до атмосферного и нефть стремится принять температуру окружающей среды, что существенно сказывается на распределении углеводородов между фазами на сепарационных узлах, т.е. создаются условия для регулирования этого процесса подбором соответствующих условий (числом ступеней, перепадом давления между ними и изменением температуры). Это особенно важно при сборе легких нефтей. Практика показала, что число ступеней сепарации легких нефтей (Саудовская Аравия, Кувейт) может достигнуть 6 - 7, причем энергия газов первой ступени обычно используется на турбинах, приводящих в движение центробежные насосы, откачивающие нефти.

В нефтяных сепараторах любого типа различают следующие четыре секции.

I. Основная сепарационная секция, служащая для выделения из нефти газа. На работу сепарационной секции большое влияние оказывает конструктивное оформление ввода продукции скважин (радиальное, тангенциальное, использование различного рода насадок - диспергаторов, турбулизирующих ввод газожидкостной смеси).

II. Осадительная секция, в которой происходит дополнительное выделение пузырьков газа, увлеченных нефтью из сепарационной секции. Для более интенсивного выделения окклюдированных пузырьков газа из нефти последнюю направляют тонким слоем по наклонным плоскостям, увеличивая тем самым длину пути движения нефти, т.е. эффективность ее сепарации. Наклонные плоскости рекомендуется изготовлять с небольшим порогом, способствующим выделению газа из нефти.

III. Секция сбора нефти, занимающая самое нижнее положение в сепараторе и предназначенная как для сбора, так и для вывода нефти из сепаратора. Нефть может находиться здесь или в однофазном состоянии, или в смеси с газом - в зависимости от эффективности работы сепарационной и осадительной секций и времени пребывания нефти в сепараторе.

IV. Каплеуловительная секция, расположенная в верхней части сепаратора и служащая для улавливания мельчайших капелек жидкости, уносимых потоком газа.

Работа сепаратора любого типа, устанавливаемого на нефтяном месторождении, характеризуется двумя основными показателями: количеством капельной жидкости, уносимой потоком газа из каплеуловительной секции IV, и количеством пузырьков газа, уносимых потоком нефти из секции сбора нефти III. Чем меньше эти показатели, тем лучше работает сепаратор.

Как же оценить эффективность нефтяного сепаратора и его техническое совершенство?

Прежде всего, дадим общее определение эффективности сепаратора, характеризующей степень убывания в сепараторе нефти за счет разгазирования и соответствующее увеличение в нем газа. Эффективность эта будет выражаться следующим образом:

; ; ,

где G1н и G2н - соответственно массовые расходы нефти до и после сепаратора; G2г и G1г - соответственно массовые расходы газа после сепаратора и до него; V2 и V1 - соответственно объемные расходы газа после сепаратора и до него.

Таким образом, в каждой ступени сепарационной установки за счет снижения давления и температуры количество нефти уменьшается и соответственно возрастает количество газа, что может характеризовать работу этой установки в целом.

При любых условиях для герметизированной системы сбора нефти и газа Эн+Эг = const.

К показателям эффективности работы нефтяного сепаратора относятся также удельный унос капельной жидкости Кж потоком газа и удельный унос свободного газа Кг потоком нефти, которые определяются из соотношений:

;,

где qж и qг - объемные расходы капельной жидкости и свободного газа, уносимые из сепаратора, см3/ч, при рабочих условиях; Vг и Qж - объемные расходы газа и жидкости (нефти) при рабочих условиях в сепараторе, м3/ч.

Однако одни и те же значения Кж и Кг можно получить, как известно, в сепараторах различных конструкций (например, в сепараторах большого объема без специальных отбойных приспособлений и в сепараторах, скажем, гидроциклонных, вес которых небольшой), а значит, и с различными технико-экономическими показателями.

Поэтому, пользуясь только показателями Кж и Кг, не учитывая расход металла на изготовление сепараторов, их конструкцию, невозможно сделать окончательный вывод о техническом совершенстве того или иного сепаратора. Технически совершенным будет тот сепаратор, который при прочих равных условиях обеспечивает более высокую степень очистки газа и жидкости и, кроме того, имеет большую производительность и, конечно, при минимуме затрат металла на его изготовление. Эффективное отделение газа от жидкости осуществляется в таких сепараторах, как правило, при больших скоростях движения газа и жидкости по сечению сепаратора, т. е. при большей производительности. Таким образом, для полной оценки эффективности работы сепаратора наряду с показателями Кж и Кг необходимо учитывать и степень технического совершенства. Степень технического совершенства сепаратора характеризуется: 1) минимальным диаметром капель жидкости, задерживаемых в сепараторе; 2) максимально допустимой средней скоростью газового потока в свободном сечении сепаратора, а также в каплеуловительной секции; 3) временем пребывания жидкости (нефти или нефти и воды) в сепараторе, за которое происходит максимальное отделение свободного газа от жидкости. Допустимое значение удельного уноса капельной жидкости Кж не должно превышать 50 см3 на 1000 м3 газа, в то время как удельный унос свободного газа потоком жидкости при условиях в сепараторе рекомендуется принимать равным Кг 20.103 см3 на 1 м3 жидкости.

Величина Кг зависит от многих факторов, главными из которых являются вязкость и плотность нефти, а также способность нефти к вспениванию.

Для невспенивающихся и маловязких нефтей время пребывания их в сепараторе рекомендуется принимать равным от 2 до 3 мин, для вспенивающихся и вязких нефтей - от 5 до 20 мин. Маловязкими считаются нефти с вязкостью до 5.10-3 Па.с, а вязкими - с вязкостью более 1,5.10-3 Па.с (1 сП= 1.10-3 Па.с).

Для определения Кж и Кг имеется специальная методика, разработанная во ВНИИСПТнефть (в настоящее время ИПТЭР, г. Уфа).

Эффективность работы сепараторов, устанавливаемых на площадях газовых и газоконденсатных месторождений, оценивается обычно только первым показателем, т. е. количеством капельной взвеси, уносимой газом за пределы сепаратора. Поэтому требования, предъявляемые к нефтяным сепараторам и сепараторам природного газа, должны быть разными.

На рис. 4 показаны общий вид и разрез сепаратора с жалюзийной насадкой 10. Сепаратор работает следующим образом. Нефтегазовая смесь под давлением поступает через патрубок 6 к раздаточному коллектору 2, имеющему по всей длине щель для выхода смеси. Из щели нефтегазовая смесь попадает на наклонные плоскости 5, увеличивающие путь движения нефти к облегчающие тем самым выделение окклюдированных пузырьков газа. В верхней части сепаратора установлена каплеуловительная насадка 10 жалюзийного типа, сечение которой показано на том же рисунке. Капельки нефти, отбиваемые в жалюзийной насадке 10, стекают в поддон и по дренажной трубе 4 направляются в нижнюю часть сепаратора.

Каплеулавливающая насадка 10 может быть различной конструкции. Работа ее должна основываться на следующих принципах: 1) столкновении потока газа с различного рода перегородками; 2) изменении направления потока; 3) изменении скорости потока; 4) использовании центробежной силы; 5) использовании коалесцирующей набивки (различного рода металлических сеток).

На рис. 4 приведены общий вид и разрез горизонтального сепаратора, в котором частицы жидкости оседают под действием как гравитационных, так и инерционных сил. Этот сепаратор работает следующим образом.

Рис. 4. Общий вид и разрез горизонтального сепаратора: 1 - ввод газонефтяной смеси; 2 - диспергатор; 3 - наклонные плоскости; 4 - жалюзийная насадка-каплеуловитель; 5 - перегородка для выравнивания потока газа; 6 - выход газа; 7 - люк; 8 - регулятор уровня; 9 - поплавковый уровнедержатель; 10 - сброс грязи; 11 - перегородка для предотвращения прорыва газа; 12 - сливная трубка

Нефтегазовая смесь, подаваемая в патрубок 1, вначале попадает в диспергатор газа 2, где происходит дробление (диспергирование) нефтегазовой смеси. Диспергирование нефти приводит к существенному увеличению поверхности контакта нефть-газ, в результате чего происходит интенсивное выделение газа из нефти. Однако глубокое отделение газа от нефти получается в том случае, когда выделившийся в трубопроводе газ отделяется от нефти до подхода к сепаратору. После диспергатора из газа под действием гравитационных сил значительная часть капельной нефти оседает на наклонные плоскости 3, а незначительная часть ее в виде мельчайших капелек уносится основным потоком газа. Для изменения структуры потока наклонные плоскости следует выполнять с уступами (порогами), способствующими выделению газа из жидкости.

Основной поток газа вместе с мельчайшими частицами нефти, не успевшими осесть под действием силы тяжести, встречает на своем пути жалюзийную насадку 4, в которой происходят "захват" (прилипание) капелек жидкости и дополнительное отделение их от газа. При этом образуется пленка, стекающая в поддон, из которого по трубе 12 она попадает под уровень жидкости, в сепараторе.

На рис. 4 в верхней части сепаратора показана в увеличенном размере капелька К и действующие па нее силы, а в нижней части сепаратора - увеличенный пузырек газа П и также силы, действующие на него.

На рис. 5 показана одна из многих разработок блочной автоматизированной сепарационной установки с предварительным сбросом воды (БАС-1-100). Первая цифра обозначает номер модификации, вторая - объем технологической емкости в м3.

Основное назначение секции предварительного сброса воды сводится к тому, чтобы по возможности предотвратить попадание ее в сепараторы-деэмульсаторы (нагреватели) и сэкономить топливо на нагрев этой воды.

БАС работает следующим образом. Нефть, газ и пластовая вода по сборному коллектору 1 поступают в сепарационный отсек 6, в котором установлены три наклонные полки 7, способствующие лучшему отделению газа от жидкости. Для более эффективного разделения нефти от воды в сборный коллектор 1 через расходомер 2 подается горячая вода с установки УПН. Из отсека 6 нефть вместе с водой (нефтяная эмульсия) перетекают в водоотделительный отсек через распределитель потока 10. Водоотделительный и сепарационный отсек 6 разъединены перегородкой 8. Совместное течение нефтяной эмульсин растворенного газа сначала через распределитель потока 10, а затем через слой воды создает благоприятные условия для разрушения этой эмульсин. Обезвоженная в основном нефть через верхнюю перфорированную трубу 11, расходомер 14 направляется в выкидную линию 16, ведущую на УПН, а отделившаяся от нефти вода через дренажный патрубок 13, расходомер 14а поступает в выкидную линию 15, ведущую на УПВ. В правом отсеке БАС уровень раздела фаз вода-нефть автоматически поддерживается регулятором уровня 12. Необходимый перепад давления в отсеке 6 поддерживается регулятором уровня 3, который действует на заслонку 4, установленную на газоотводной линии. БАС имеет датчик предельного уровня 5.

эмульсионный сепарационный разгазирование

Рис. 5. Блочная автоматизированная сепарационная установка с предварительным сбросом воды (БАС-1-100): 1 - сборный коллектор; 2, 14 и 14а - соответственно расходомеры горячей воды, нефти и дренажной воды; 3 - регулятор уровня; 4 - заслонка; 5 - датчик предельного уровня; 6 - сепарационный отсек; 7 - наклонные полки; 8 - перегородка; 9 - успокоитель уровня; 10 - распределитель потока; 11 - перфорированная труба; 12 - двухфазный регулятор уровня прямого действия; 13 - дренажный патрубок; 15, 16 - выкидные линии соответственно для воды и нефти

На рис. 6 приведен общий вид гидроциклонного двухъемкостного сепаратора. Сепараторы этого типа широко применяются на нефтяных месторождениях страны. Принцип их работы следующий.

Нефтегазовая смесь сначала поступает в гидроциклонную головку 1, сечение которой в увеличенном масштабе показано на том же рисунке. В гидроциклонной головке за счет центробежной силы газ отделяется от нефти. Они движутся раздельно как в самой головке, так и в верхней емкости 2. Нефть по сливной полке 14 самотеком направляется на разбрызгиватель 13, в патрубок 7, а затем на сливную полку 6 и стекает с левой стороны успокоителя уровня 4. Затем она перетекает через верхнюю кромку последнего, где и накапливается. Как только уровень нефти достигнет определенной величины, сработает регулятор уровня 8, приоткрыв исполнительный механизм 5 на нефтяной линии и призакрыв исполнительный механизм 9 (заслонку) на газовой.

Рис. 6. Принципиальная схема двухъемкостного гидроциклонного сепаратора: 1 - гидроциклонная головка; 2, 3 - верхняя и нижняя емкости; 4 - успокоитель уровня; 5, 9 - исполнительные механизмы па нефтяной и газовой линии; 6, 14 - сливные полки; 7 - сливной патрубок; 8 - регулятор уровня; 10 - каплеотбойник жалюзийного типа; 11 - вертикальные и горизонтальные отбойники; 12, 13 - уголковые разбрызгиватели; 15 - пленка жидкости, стекающая вниз

Газ проходит в верхней емкости 2 три зоны - 12, 11 и 10, где очищается от капельной жидкости и направляется в газовую линию, ведущую на ГПЗ.

Гидроциклонными сепараторами оборудованы все Спутники-А и Спутники-Б, после которых газ направляется снова в сборный коллектор, перемешивается с нефтью и транспортируется с ней по коллектору до первой ступени сепарации.

Сепарационные установки НГС широко применяются при обустройстве нефтяных месторождений и предназначаются для отделения газа от продукции нефтяных скважин на первой и последующих ступенях сепарации, включая горячую сепарацию на последней степени под вакуумом.

В настоящее время выпускается нормальный ряд сепарационных установок на проектную пропускную способность по нефти от 2000 до 30000 т/с.

В шифре установок приняты обозначения: НГС--горизонтальный нефтегазовый сепаратор; первое число - рабочее давление, второе -диаметр сепаратора (в мм).

Сепарационная установка НГС (рис. 7) состоит из горизонтальной емкости 1, оснащенной патрубками для входа продукции 2, для выхода нефти 10 и газа 7. Внутри емкости непосредственно у патрубка для входа нефтегазовой смеси смонтированы распределительное устройство 3 и наклонные желоба (дефлекторы) 4 и 5. Возле патрубка, через который выходит газ, установлены горизонтальный 8 и вертикальный 6 сетчатые отбойники из вязаной проволоки. Кроме того, аппарат снабжен штуцерами и муфтами для монтажа приборов сигнализации и автоматического регулирования режима работы.

Газонефтяная смесь поступает в аппарат через входной патрубок 2, изменяет свое направление на 90° и при помощи распределительного устройства нефть вместе с остаточным газом направляется сначала в верхние наклонные 4, а затем в нижние 5 желоба. Отделившийся от нефти газ проходит сначала вертикальный 6, а затем горизонтальный 8 каплеотбойники. Эти каплеотбойники осуществляют тонкую очистку газа от капельной жидкости (эффективность свыше 99 %), что позволяет отказаться от установки дополнительного сепаратора газа.

Выделившийся в сепараторе газ через патрубок 7, задвижку и регулирующий клапан (на рисунке не показаны) поступает в газосборную сеть. Отсепарированная нефть, скопившаяся в нижней секции сбора жидкости сепаратора, через Выходной патрубок 10 направляется на следующую ступень сепарации или, в случае использования аппарата на последней ступени, в резервуар. Для устранения возможности воронкообразования и попадания газа в выкидную линию над патрубком выхода нефти устанавливается диск 9.

Рис. 7. Схема нефтегазового сепаратора типа НГС

Сепарационные установки типа НГС поставляются в комплекте со средствами местной автоматики, а средства управления и автоматического регулирования предусматриваются в проектах по привязке установок с конкретным объектом.

Широкое внедрение однотрубных герметизированных систем сбора и подготовки нефти и газа обусловило создание блочных сепарационных установок высокой пропускной способности, обеспечивающих повышенную единичную пропускную способность и высокое качество разделения нефти и газа в условиях пульсирующих потоков нефтегазоводяной смеси в сборных коллекторах.

Для удовлетворения этих требований созданы сепарационные установки с предварительным отбором газа следующих типоразмеров: УБС-1500/6, УБС-1500/16, УБС-3000/6, УБС-3000/16, УБС-6300/6, УБС6300/16, УБС-10 000/6, УБС-10 000/16, УБС-16 000/6 и УБС-16 000/16. В шифре установок приняты следующие обозначения: УБС -- установка блочная сепарационная, первое число -- пропускная способность по жидкости (в м3/с); второе -- допустимое рабочее давление. Установки предназначены для отделения нефти от газа на первой ступени сепарации.

Выбор оптимального числа ступеней сепарации.

При сепарации газа от нефти на нефтяных месторождениях и газа от конденсата на газоконденсатных месторождениях возникает вопрос: что выгоднее - многоступенчатая (5 - 7 ступеней) или двухступенчатая сепарация? Однозначный ответ на этот вопрос дать затруднительно, так как при этом должна учитываться система сбора нефти и газа па площадях нефтяных месторождений, а также газа и конденсата на площадях газоконденсатных месторождений. Например, при многоступенчатой сепарации нефти, применяемой, как правило, при высоких давлениях (4 - 8 МПа), на устьях скважин в результате незначительного понижения давления и температуры на каждой ступени происходит постепенное выделение газовой фазы (вначале легких фракций - метана, этана, затем частичное выделение тяжелых углеводородов - пропана, бутана, пентана) и в нефти остается большое количество невыделившихся тяжелых углеводородов.

Если при том же высоком устьевом давлении применить трех- или двухступенчатую сепарацию, то в результате резкого снижения давления в сепараторах будет интенсивно выделяться газовая фаза, и вместе с легкими углеводородами в газовую фазу из нефти перейдет большое количество тяжелых углеводородов.

Таким образом, если сравнить многоступенчатую сепарацию с трехступенчатой по выходу нефти, то первая оказывается более эффективной, чем вторая. Однако, если многоступенчатая сепарация будет применяться в системах негерметизированного сбора и транспорта нефти, то все тяжелые углеводороды, оставшиеся в нефти, постепенно испарятся из нее, и эффект сепарации сведется к нулю. Поэтому многоступенчатая сепарация, как и трехступенчатая, должна применяться только при герметизированной системе сбора и транспортировки нефти, начиная от устья скважин и кончая нефтеперерабатывающим заводом.

Ввиду того, что при двухступенчатой сепарации в газовую фазу переходит большое количество тяжелых углеводородов, представляющих собой ценное сырье, рационально направлять их в этом случае на газофракционную установку (ГФУ) или на газоперерабатывающий завод для получения из этих газов жидких углеводородов и, в частности, пропан-бутанов и газового бензина.

Из сказанного следует, что при сборе и транспортировке нефти на площадях месторождений можно применять как многоступенчатую, так и двухступенчатую сепарацию, если соблюдаются условия, о которых говорилось выше. Однако с точки зрения экономии металла, удобства обслуживания и наличия поблизости от месторождения газоперерабатывающего завода всегда целесообразно применять трехступенчатую сепарацию. Выделившийся на первой ступени сепарации газ под собственным давлением направляется на местные нужды: в котельные, для отопления жилых и производственных зданий и т.д. Газ, получаемый на второй и третьей ступенях сепарации, где предусматривается резкое снижение давления, будет жирным, т.е. содержащим большое количество тяжелых углеводородов, поэтому он вначале направляется в компрессорную, а после сжатия в компрессорах или эжекторах - на ГФУ или ГПЗ.

Размещено на Allbest.ru


Подобные документы

  • Описание принципиальной технологической схемы дожимной насосной станции с установкой предварительного сброса воды. Принцип работы установки подготовки нефти "Хитер-Тритер". Материальный баланс ступеней сепарации и общий материальный баланс установки.

    курсовая работа [660,9 K], добавлен 12.12.2011

  • Физико-химические свойства нефти, газа, воды исследуемых месторождений нефти. Технико-эксплуатационная характеристика установки подготовки нефти Черновского месторождения. Снижение себестоимости подготовки 1 т. нефти подбором более дешевого реагента.

    дипломная работа [1,5 M], добавлен 28.03.2017

  • Экспериментальное изучение зависимости гидравлического сопротивления слоя от фиктивной скорости газа. Определение критической скорости газа: скорости псевдоожижения и скорости свободного витания. Расчет эквивалентного диаметра частиц монодисперсного слоя.

    лабораторная работа [1,1 M], добавлен 23.03.2015

  • Модернизация системы автоматизации цеха осушки газа путем подбора анализатора температуры точки росы. Описание функциональной схемы автоматизации. Уровень оперативно-производственной службы промысла. Методика расчета экономической эффективности проекта.

    дипломная работа [2,5 M], добавлен 22.04.2015

  • Технологические установки, входящие в состав системы сбора и подготовки продукции нефтяной скважины. Описание принципиальной технологической схемы установки предварительного сброса воды (УПСВ). Общий материальный баланс УПСВ, расчет его показателей.

    курсовая работа [390,0 K], добавлен 04.08.2015

  • Промысловая подготовка аномально высоковязкой нефти до высшей группы качества путем научно обоснованного оснащения оборудованием технологической схемы и усовершенствования конструктивных элементов аппаратов. Исследование физико-химических свойств нефти.

    курсовая работа [599,9 K], добавлен 03.01.2016

  • Выбор конструкции аппарата. Описание технологической схемы. Движущая сила массопередачи. Определение скорости газа и диаметра абсорбера с насадкой кольца Рашига. Расчет толщины обечайки. Трубопровод для выхода аммиачной воды. Расчет газодувки, емкостей.

    курсовая работа [2,8 M], добавлен 16.10.2014

  • Оптимальная система сепарации нефти, газа и воды. Гравитационная сепарация. Соударение и рост капель в типичном коагуляторе с фильтром. Трёхфазный горизонтальный сепаратор. Дегазация жидкости. Факельные газоотделители и вентиляционные скрубберы.

    презентация [4,1 M], добавлен 28.10.2016

  • Изучение классификации методов осушки природных газов. Состав основного технологического оборудования и механизм работы установок подготовки газа методом абсорбционной и адсорбционной осушки. Анализ инновационного теплофизического метода осушки газа.

    доклад [1,1 M], добавлен 09.03.2016

  • Геолого-физическая характеристика Губкинского газового месторождения. Описание конструкции и методов вскрытия скважин. Изучение схемы подготовки газа на Губкинском промысле и экономическое обоснование работы установки по установки регенерации метанола.

    дипломная работа [3,9 M], добавлен 25.05.2019

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.