Технологія плазмового зварювання

Установки для плазмового зварювання. Налагоджування, експлуатація та ремонт устаткування. Впровадження енергозберігаючих технологій. Різання металів та їхніх сплавів. Охорона праці і техніка безпеки при проведенні робіт. Механічні травми при заготівлі.

Рубрика Производство и технологии
Вид реферат
Язык украинский
Дата добавления 18.11.2014
Размер файла 124,7 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

Зугреський Професійний Ліцей

Реферат

на тему: “Технологія Плазмового зварювання”

Виконав:

учень групи 2-Г (12)

Шешин А. А.

Перевірив:

Негайлова А. В.

Зугрес - 2013

ПЛАН

ВСТУП

1. УСТАНОВКИ ДЛЯ ПЛАЗМОВОГО ЗВАРЮВАННЯ

2. НАЛАГОДЖУВАННЯ, ЕКСПЛУАТАЦІЯ ТА РЕМОНТ УСТАТКУВАННЯ ДЛЯ ПЛАЗМОВОГО ЗВАРЮВАННЯ

3. РІЗАННЯ МЕТАЛІВ І ЇХНІХ СПЛАВІВ

4. ВПРОВАДЖЕННЯ ЕНЕРГОЗБЕРІГАЮЧИХ ТЕХНОЛОГІЙ

5. ОХОРОНА ПРАЦІ І ТЕХНІКА БЕЗПЕКИ ПРИ ПРОВЕДЕННІ ЗВАРЮВАЛЬНИХ І РІЗАЛЬНИХ РОБІТ

ВИСНОВКИ

ЛІТЕРАТУРА

ВСТУП

Сучасний агропромисловий комплекс насичений складною технікою, його механо- і енергооснащеність постійно підвищуються. Підтримка техніки в справному стані являє собою важливе завдання, у рішенні якої зварювання займає провідне місце серед інших технологічних процесів.

На заводах будіндустрії й у ремонтних майстернях використовуються різні способи зварювання - ручне дугове покритими електродами, у менших обсягах - механізоване в захисному газі, автоматична під флюсом, контактне й інші. Розвиток науки про зварювання сприяє впровадженню у виробництво нових марок зварювальних і наплавочних матеріалів - високопродуктивних електродів, дротів суцільного перерізу для зварювання в захисних газах, порошкових дротів, а також удосконаленого зварювального устаткування.

Подальший розвиток одержують способи наплавлення для відновлення деталей будівельних машин, що працюють в умовах абразивного зношування. При цьому в багатьох випадках наплавленню піддаються нові деталі, що помітно підвищує строк їхньої служби. Все більшого значення набувають способи газополум'яної і плазменної обробки металів, особливо термічного різання із застосуванням газів- замінників ацетилену, а також плазмових процесів.

1. УСТАНОВКИ ДЛЯ ПЛАЗМОВОГО ЗВАРЮВАННЯ

До комплекту установки для плазмового зварювання входять: джерело живлення дуги, шафа керування, переносний блок керування, плазмотрони, механізми переміщення плазмотрона вздовж та упоперек лінії зварювання (у автоматів), осцилятор, газові та водяні комунікації.

Характеристики та призначення деяких установок плазмового зварювання наведено у табл. 6.29.

Будова та принцип дії всіх установок ідентичні. Так, установка УПС-301, призначена для ручного плазмового зварювання постійним струмом прямої полярності, складається з тиристорного випрямляча з крутоспадаючими зовнішніми вольт-амперними характеристиками, пальника для аргонодугового зварювання, плазмотрона (стабілізація й стискання дуги в ньому здійснюються тангенціальним потоком газу), шафи керування (з силовим трансформатором, силовим блоком тиристорів, зрівняльним реактором, стабілізуючим дроселем, магнітним пускачем, автоматичним вимикачем, блоком керування, електродвигуном з вентилятором), переносного блока керування, педальної кнопки, газового редуктора з витратоміром, турелі, з'єднувальних проводів і шлангів. Турель установлюється на джерелі живлення та служить опорою виносному блоку керування.

Таблиця 1 Технічні характеристики установок для плазмового зварювання

Тип

установки

Діапазон

регулювання

постійного

струму, А

Номінальна

робоча

напруга, В

(мн.х)

Плазмо-

створючий

та захисний

газ

Призначення

(МЗ -- механізоване

зварювання;

РЗ -- ручне зварювання)

УПС-

300--800

65--75

С02

МЗ маловуглецевих

1002/3

сталей (лонжеронів

трактора К-701)

УПС-201

200--800

До 70

Аг, Не

МЗ міді та її сплавів до 20

(120)

мм, МЗ

УПС-804

300--

90(180)

С02

сталей завтовшки 6--12

800

мм без розчищування

(пряма)

кромок

УПС-501

70--500

45 (80)

Аг, Не

МЗ нержавіючої сталі до

(пряма та

7 мм, міді та її сплавів

зворотна)

до 6 мм, алюмінію та

УПС-404

100--500

45 (90)

Аг

МЗ кільцевих стикових швів 3 алюмінію та його сплавів із стінкою

УПС-301

25--315 (пряма та зворотна)

40 (80)

Аг

РЗ нержавіючої сталі до 5 мм, міді та її сплавів від 0,5 до 3 мм та алюмінію і його сплавів -- 1 --8 мм

УПО-201

20--300

40

С02

МЗ маловуглецевої сталі. Різання сталі до 40 мм, міді до 20 мм, алюмінію та його сплавів до 30 мм

Ввімкнення установки в мережу та захист її від короткого замикання здійснюються автоматичним вимикачем, розташованим на задній стінці шафи керування. Силова частина шафи керування являє собою тиристорний регулятор, складений за шестифазною схемою випрямлення із зрівняльним реактором. Для згладжування зварювального струму на виході тиристорного перетворювача є згладжувальний дросель, який забезпечує ефективне згладжування починаючи з 50 А. Крутоспадаючими зовнішні вольт-амперні характеристики стають завдяки застосуванню баластних опорів -- у першому діапазоні регулювання, а у другому діапазоні -- завдяки негативному зворотному зв'язку за вихідним струмом магнітного підсилювача. Тиристорний блок і силовий трансформатор охолоджуються вентилятором. На лицьовій панелі блока керування встановлені кнопки "Пуск" і "Стоп" джерела живлення, два амперметри та перемикач діапазонів струму. Блок керування забезпечує в автоматичному режимі такі технологічні операції: продувку газу перед зварюванням, збудження основної зварювальної дуги, заварювання кратера наприкінці зварювання, вимикання джерела живлення після заварювання кратера, подачу газу після зварювання, виконання точкового та імпульсного зварювання, регулювання тривалості ввімкнення осцилятора (не більш як 1 с) та повторне ввімкнення осцилятора не рідше ніж через 9 с.

Плазмотрон (рис. 6.45), використовуваний з установкою УПС-301, призначений для постійних струмів прямої полярності від 20 до 315 А та зворотної полярності -- від 20 до 250 А. Характеристики деяких плазмотронів наведено в табл. 6.30.

Таблиця 2 Технічні характеристики плазмотронів для зварювання

Тип плазмот - рона

Максимальний зварювальний струм. А, полярності

Товщина зварювального металу, мм

Максимальна витрата, л/год

Маса, кг

прямої

зворотної

газів (сумарна)

Охолоджучої води

ПРС-0201

60

20

0,05--1,5

6,6

2,0

0,1

ПРС-0401

100

40

0,1--2,5

6,6

2,0

0,3

ПРС-0301

315

--

2--6

17

4,0

1,0

Для аргонодугового зварювання застосовується пальник постійного струму прямої полярності від 4 до 80 А.

Установка УПС-501 для автоматичного плазмового зварювання складається з самохідного візка, який пересувається по напрямній балці, блока газової апаратури, спільного блока керування, скомпонованого з джерелом живлення типу ВДУ-504-1. До комплекту установки входять також плазмотрони на 300 та 500 А. Крім робочого режиму, установка дає змогу виконувати різноманітні маніпуляції у налагоджувальному режимі. Надійне запалювання дуги забезпечується підвищеною витратою плазмоутворюючого газу при збудженні чергової дуги. Після запалювання основної дуги витрата газу автоматично знижується до робочої. Регулювання сили струму здійснюється плавно, починаючи зі 100 А. Для виключення можливості запуску установки без водяного охолодження служить реле водяного потоку. Рухатися зварювальна дуга може зі швидкістю 5--100 км/год, швидкість регулюється потенціометром з пульта керування та переставлянням шестірень. Рух реверсивний. Передбачено також регулювання швидкості та кута подачі дроту й переміщення плазмотрона по вертикалі та впоперек шва. Під час налагоджувальних операцій є можливість регулювання й контролю витрати плазмоутворюючого та захисного газу, а також швидкості переміщення візка й швидкості подачі дроту.

2. НАЛАГОДЖУВАННЯ, ЕКСПЛУАТАЦІЯ ТА РЕМОНТ УСТАТКУВАННЯ ДЛЯ ПЛАЗМОВОГО ЗВАРЮВАННЯ

Після довгочасного простою налагоджування починають з перевірки опору ізоляції по відношенню до корпуса (не нижче, ніж 1,0 МОм для первинного контуру і 0,5 МОм -- для вторинного) та надійності заземлення.

Рукоятку автоматичного вимикача, що знаходиться на задній стінці шафи керування (установка УПС-301), переводять у положення "Ввімкнено". Потім вибирають положення перемикача (І або II) діапазонів зварювальних струмів. Кнопкою "Перевірка газу" на лицьовій панелі переносного блока та за допомогою ротаметрів установлюється потрібна витрата плазмоутворюючого й захисного газів.

Резистором регулювання струму на панелі переносного пульта задається потрібний струм. Після цього в плазмотрон установлюють електрод за калібром.

Зварювальний цикл установки УПС-301 починається після ввімкнення кнопки "Пуск" на плазмотроні або педальної кнопки, якщо перед цим у пальник подано гарячу воду, а у джерелі живлення працює вентилятор. Натискати на кнопку "Пуск" можна, якщо між виробом і плазмотроном не менш як 50 мм. Після натиску на кнопку "Пуск" починається подача газу і через 3 с з сопла має з'явитися видима частина чергової дуги. Після підведення плазмотрона до виробу на відстань 5--10 мм від зрізу сопла до поверхні виробу (при натисненій на плазмотроні кнопці) не пізніше ніж через 3 с має збудитися основна дуга. Якщо з будь-якої причини дуга не збудилася, то через 9 с при натисненій кнопці на ручці плазмотрона цикл запалювання автоматично повториться. Зварювання слід проводити при плавному переміщенні пальника. Після закінчення зварки кнопку на плазмотроні відпускають, зварювальний струм при цьому плавно зменшується. Зварювальний шов захищається від окислення затримкою пальника на 1--10 с над місцем зварки після обриву дуги. Сила зварювального струму контролюється амперметрами на блоці керування силовими тиристорами. Регулювання струму у безперервному режимі роботи та амплітуди імпульсів у імпульсному точковому режимі здійснюється регулятором на переносному блоці. Сила струму паузи в імпульсному й точковому режимах регулюється регулятором на блоці керування циклом зварювання.

Роботу джерела живлення перевіряють лише під навантаженням баластних реостатів типу РБ-300 при вимкненому осциляторі за допомогою низьковольтних осцилографів типу С1-4 або С1-9. На початку роботи на установці УПС-501 настроюються потрібні швидкості зварювання та подачі електродного дроту, витрата плазмоутворюючого й захисного газів, час нагріву виробу та заварювання кратера, сила зварювального струму. Після перемикання тумблера з положення "Налагоджування" у положення "Автоматичне зварювання" регулюється положення плазмотрона відносно виробу вздовж та упоперек стику, відстань від плазмотрона до виробу повинен бути в межах 18--20 мм. Закінчивши підготовку, натискують на кнопку "Пуск". Відпускають цю кнопку лише після збудження плазмової дуги. Після прогрівання виробу включають механізм руху візка і виконується зварювання. Для закінчення зварювання натискують на кнопку "Заварювання кратера". Пальник при цьому зупиняється, а зварювальний струм падає до нуля. Прилади, розташовані на пульті керування, дозволяють контролювати основні параметри режиму зварювання.

Таблиця 3 Несправності установки УСП-301 та способи їх усунення

Несправність

Причина

Спосіб усунення

Випрямляч автоматично вимикається

Пробитий один або кілька тиристорів випрямного блока

Вимкнути установку з мережі,

відключити вентилі від трансформатора. Перевірити омметром усі вентилі

При запуску двигуна вентилятор не обертається й не гуде

На виході джерела живлення немає напруги

Вторинну обмотку трансформатора пробито на корпус

Згорів один із запобігачів кола двигуна, обрив у колі однієї з фаз двигуна

Не працює вентилятор або повітря всмоктується не з боку лицьової панелі

Перевірити опір ізоляції джерела живлення. Ліквідувати пробій

Перевірити запобігачі й замінити згорілі. Перевірити цілісність кола Перевірити роботу вентилятора та пускової апаратури. Змінити напрям обертання двигуна, замінивши положення будь-яких двох проводів мережі

При роботі джерело не забезпечує спадаючу зовнішню характеристику

Нестійке зварювання. Знижена напруга неробочого ХОДУ

Пошкоджена система керування тиристорами. Вийшли з ладу тиристори

Обрив кола зворотного зв'язку

Не на всі тиристори подаються імпульси керування

Перевірити наявність імпульсів керування, перевірити тиристори

Перевірити коло зворотного зв'язку

Перевірити наявність імпульсів керування на керуючих електродах тиристорів осцилографом типу СІ-4 та ін. Перевірити імпульси можна й вольтметром постійного струму. Середня напруга імпульсів керування 1--2 В

Не подається аргон у зону зварювання Не працює газовий клапан і джерело живлення. Не горить лампа на передній панелі блока запалювання

Не включається газовий клапан та джерело живлення при справних реле контролю вентиляції та витрати охолоджуючої води Не збуджується чергова дуга

Не працює газовий клапан

Неправильний напрямок руху охолоджуючого повітря, несправне реле контролю вентилятора, недостатнє охолодження пальника, несправність гідравлічного реле системи охолодження Вийшли з ладу елементи електричної схеми керування реле

Не включено мікроперемикач у схемі запалювання

Розібрати й змастити клапан

Поміняти місцями два проводи живлення мережі. Перевірити реле контролю вентиляції. Перевірити тракт охолоджуючої води

Знайти та замінити несправні елементи схем керування реле

Відремонтувати мікроперемикач

Не збуджується чергова дуга

Чергова й основна дуги збуджуються нормально. струм основної дуги не ОЄГУ- люється. Збудник дуги не вмикається. Через 1 с джерело живлення вимикається

Пошкоджено коло живлення сопла

Перегоріли запобігачі Наявність води у газових трактах плазмотрона Не спрацьовує струмове реле Вийшли з ладу елементи електоичної схеми Сдіоди Д24, Д26)

Перевірити цілісність проводів живлення сопла Замінити запобігачі

Продути плазмотрон сухим повітрям

Перевірити роботу реле. Знайти несправність електоичної схеми, замінити діоди

Ремонт та обслуговування установок плазмового зварювання, зачищення та заміна електродів мають провадитися при відключених автоматичному вимикачеві, системах постачання води й газу.

3. РІЗАННЯ МЕТАЛІВ І ЇХНІХ СПЛАВІВ

Плазмене різання

Сутність процесу полягає у використанні як джерело нагрівання металу стовпа, що розріжеться, стислої електричної дуги, що обдувається газом. У різультаті обдува внутрішня поверхня стовпа газу, що стикається з дугою, нагрівається й іонізується, тобто розпадається на позитивно й негативно заряджені частки й перетворюється в потік плазми з високою щільністю енергії й температурою порядку 15 000°С.Стисла дуга інтенсивно розплавляє метал, що розріжеться по лінії різа.

Процес плазмоутворення може вестися по двох схемах:

• плазменною дугою прямої дії, порушуваної між електродом і виробом, що включено в електричне коло;

• плазменним струменем, тобто дугою непрямої дії, порушуваної між двома електродами, а виріб в електричне коло не включено.

Перша схема більше продуктивна й тому набагато частіше при міняється, чим друга, котра використовується в основному для плазменного напилювання покриттів. Розділове плазменне різання виробляється на постійному струмі прямої полярності. Поверхневе плазменне різання застосовується рідко.

З економічної точки зору, різання плазменною дугою доцільні для обробки вуглеводних і легованих сталей товщиною до 50 мм, міді товщиною до 80 мм, алюмінію і його сплавів товщиною до 120 мм, чавуну - до 90 мм.

Плазмоутворрючі гази. Для реалізації плазменного різання використовують різні плазмоутворюючі гази: активні (кисень, повітря) і неактивні (аргон, азот, водень і ін.).

Теплофізичні й хіміко-металургійні властивості робочих газів істотно впливають на якість і швидкість різання.

Вибір плазмоутворрючого середовища виробляється залежно від властивостей і товщини металів, що розріжуться, призначення й умов різання. Так, активні плазмоутворрючі гази (киснезмістовні суміші) застосовуються переважно для різання чорних металів, а неактивні гази і їхньої суміші -- для різання кольорових металів і їхніх сплавів.

Устаткування. Для плазменного різання, як і для кисневого, використовують стаціонарні й переносні машини, а також напівавтоматичні установки для мащинного й ручного різання.

Стаціонарні машини застосовуються для різання листового прокату більших розмірів. Переносні машини й напівавтомати доцільно використовувати для різання листового прокату прямолінійної й криволінійної форми із чорних і кольорових металів.

Комплекти апаратури КДП-1 і КДП-2 для ручного плазменного різання призначаються для різання алюмінію, міді й високолегованих сталей товщиною до 30--60 мм.

Комплект КДП-1 має різак РДП-1 з водяним охолодженням, призначений для різання алюмінію товщиною до 80 мм, нержавіючої сталі -- до 60 мм і міді -- до 40 мм. Як газ використовуються аргон, азот і водень. КДП-2 допускає різання алюмінію товщиною до 50 мм, стали -- до 40 мм і міді -- до 20 мм. Різак цього комплекту РДП-2 має повітряне охолодження й може бути використаний на монтажних роботах при будь-яких температурах. КДП-1 і КДП-2 варто укомплектовувати на час виконання робіт з різання прийнятними зварювальними випрямлячами й перетворювачами. При цьому необхідно мати на увазі, що чинними правилами техніки безпеки для ручний плазменной різання дозволена максимальна величина напруги холостого ходу джерела харчування 180 У.

Для машинного різання застосовують установки марок АПР-402, АПР- 404, УВПР «Київ», Опр-Б і др. Установка АПР-402 може робити різання чорних і кольорових металів і їхніх сплавів товщиною до 160 мм. Вона призначена для комплектування стаціонарних машин термічного різання й забезпечує розкрій листового матеріалу, різання труб і круглого прокату.

Установка УВПР «Київ» призначена для різання металу товщиною до 60 мм (по алюмінію). Вона складається із блоку живлення, шафи керування й плазмотрона ВПР-9 з вихровою системою стабілізації дуги. Плазмоутворрючий газ -- повітря. Установка використовується для комплектовки машин портального й портально-консольного типів.

Плазмотрони. Основним ріжучим інструментом при плазменному різанні є плазмотрон. Існує велика розмаїтість типів і конструкцій плазмотронів.

Найбільше поширення одержали плазмотрони постійного струму з газовою стабілізацією дуги й зі стрижневими електродами -- Катодами, що переважно не плавляться. плазмовий устаткування зварювання метал

Матеріалом катода при повітряно-дуговому різанні служить лантанірований вольфрам або цирконій, запресований у мідну вставку.

Стабільність горіння плазменної дуги, як основної, так і чергової, залежить від витрати газу. Ця величина повинна бути оптимальної.

При недостатній витраті (тиску) газу при горінні основної дуги він весь іонізується в об'ємі каналу сопла. Тому що ні «холодної» діелектричного прошарку плазмоутворюючого газу, то відбувається перекидання основної дуги на сопло (ефект подвійного дугоутворення). Це приводить до руйнування сопла й зупинці процесу різання.

При великій витраті газу він не встигає іонізуватися усередині сопла, плазма не утвориться, дуга гасне.

Для іонізації аргону потрібна напруга до 100 У, азоту -- 150--160 У, повітря -- 300 У. Цим положенням необхідно керуватися при виборі джерела струму. Для плазменного різання краще використовувати джерела постійного струму із твердою характеристикою. Для різання на азоті можна використовувати випрямляч ВПР-401 з напругою холостого ходу 180 У, для різання на повітрі -- ВПР-402М, ВПР-602 з напругою холостого ходу 300 У.

Для різання на аргоні звичайно застосовуються два джерела постійного струму, з'єднаних за паралельною схемою.

При різанні необхідно підтримувати постійним відстань між торцем сопла плазмотрона й поверхнею листа, що дозволяється. 'Звичайно ця відстань становить 3--15 мм. Припинення різа здійснюється автоматично розривом дугового стовпа при сході плаз-мотрона з листа.

Швидкість різання задається технологічними режимами, що рекомендуються (табл. 17.4-17.6) - залежно від матеріалу, що розріжеться, його товщини й сили струму.

При швидкості різання менше оптимальної різ стає ширше внизу, а при швидкості більше оптимальної -- різ звужується. Мінімальна різниця в ширині різа між його верхніми й нижніми ділянками досягається при швидкості різання, близької до оптимального.

Режими різання й склад плазмоутворюючих газів визначаються маркою металу, що розріжеться, вимогами, пропонованими до якості різа, і використовуваним устаткуванням.

Ручне різання виконується по розмітці або направляючої, а машинне різання - по шаблонах, фотокопірам і програмам контурного керування.

При виборі режиму різання необхідно враховувати, що зі збільшенням сили струму й витрати повітря знижується ресурс роботи електрода й сопла плазмотрона. Необхідно завжди прагнути до роботи на мінімальному струмі, що забезпечує задану продуктивність.

Плазменне різання низковуглеводних сталей робиться переважно із застосуванням повітряно-плазменних методів. Цей процес раціональний для ручного різання сталі товщиною до 40 мм і машинного різання листів товщиною до 50-60 мм.

Таблиця 4 Орієнтовні режими воздушно-плазменной різання низкоуглеродистой стали*

Сила струму дуги,А

Швидкість різання стали (м/хв) при товщині листа, мм

10

20

30

40

50

60

200

1,9

0,9

--

--

300

3,1

1,6

0,9

0,5

400

3,7

2,4

1,5

0,7

0,5

0,4

* Діаметр сопла 3,0 мм при різанні стали товщиною до 30 мм, 4,0 мм при різанні сталі товщиною більше 30 мм; витрата повітря 6 мУч.

Різання високолегованих сталей. Плазменне різання раціонально використовувати для обробки легованих сталей товщиною менш 100 мм. При більшій товщині металу звичайно використовують киснево-флюсове різання.

Найбільше застосування при машинному різанні корозійно-стійких сталей одержало повітряно-плазменне різання. Стиснене повітря використовується для різання товщин до 50-60 мм. Для ручного різання цих же товщин може бути використаний чистий азот, а для машинного різання товщин більше 50-60 мм - суміші азоту з воднем або киснем. Зразкові дані про повітряно-плазменного різання високолегованих сталей наведені в табл. 17.5.

Таблиця 5 Зразкові режими воздушно-плазменной машинного різання коррозионно-стійких сталей

Товщина металу, що розріжеться, мм

Діаметр сопла, мм

Сила струму, А

Витрата повітря, мУч

Напруга, В„

Швидкість,, м/хв

5-15

2

250-300

2,4-3,0

140-160

5,5-2,6

16-30

3

250-300

2,4-3,0

160-180

2,2-1,0

31-50

3,-,:л

250-300

2,4-3,0

170-190

1,0-0,3

* Дані наведені для установки «Київ».

Різання алюмінієвих сплавів. Плазменне різання застосовується для обробки листів з алюмінієвих сплавів товщиною до 200 мм. Різання алюмінієвих сплавів товщиною 5--20 мм можна виконувати з використанням азоту або повітря в якості плазмоутворюючого газу. При обмежених вимогах по якості й деякому зниженні продуктивності варто застосовувати повітря замість азоту. При цьому діапазон розріджуваних товщин може бути розширений у три рази.

Різання алюмінієвих сплавів товщиною від 20 до 100 мм доцільно виконувати в азотно-водневих сумішах зі змістом 65-- 68 % азоту й 32--35 % водню. У цьому випадку більший зміст водню приводить до насичення поверхні різа воднем.

Орієнтовні режими машинної повітряно-плазменного різання алюмінієвих сплавів наведені в табл. 17.6.

Таблиця 6 Орієнтовні режими повітряно-плазменного різання алюмінієвих сплавів*

Струм дуги, А

Швидкість різання алюмінію (м/хв) при товщині листа, мм

10

20

зо

40

50

60

70

200

3,0

1,6

0,8

--

--

--

--

300

5,3

2,9

1,8

1,3

0,8

0,6

--

400

11,1

4,0

2,5

1,6

0,9

0.7

0.6

* Дані наведені для установки типу АПР-404.

4. ВПРОВАДЖЕННЯ ЕНЕРГОЗБЕРІГАЮЧИХ ТЕХНОЛОГІЙ

Без зварювання неможливо собі уявити розвиток техніки, будівництва та промисловості. Успіхи в галузі автоматизації та механізації зварювальних робіт дали можливість докорінно змінити технологію будівництва та виготовлення важливих об'єктів з метою економії затрати матеріалів та електроенергії.

Зварювання від робітника вимагає засвоєння спеціальних знань. Він повинен освоїти передові методи роботи, прагнути раціоналізувати процеси зварювання, проявляти ініціативу й винахідливість, шукати нові шляхи підвищення продуктивності праці, поліпшення якості виробів, збільшення випуску продукції за одиницю часу, економії матеріалів та зниження собівартості зварних виробів. Продуктивність праці зварювальника може бути підвищена завдяки організаційним і технічним заходам.

У ряді випадків у використанні зварювання є принципово важливим напрямом автоматизація і механізація процесу. Для газового зварювання в її сучасному стані цей шлях хоча і можливий, але не знаходить широкого використання у зв'язку із заміною газового зварювання іншими процесами в масовому виробництві, в яких виправдовується використання спеціалізованих автоматів.

При індивідуальних і дрібносерійних роботах використовування спеціалізованих автоматів нераціональне, тому слід розглянути шляхи можливого підвищення продуктивності ручного газового зварювання, що використовуються зварювачами-передовиками.

При ручному зварюванні можливе використання великих потужностей полум'я, чим користуються звичайно. Проте це вимагає високої кваліфікації зварювачів і приводить до підвищення продуктивності праці приблизно на 20% при збільшенні потужності полум'я близько 50%. Питання про раціональність використання цього методу повинне розв'язуватися в кожному окремому випадку.

Використання жорсткого полум'я (тобто полум'я з підвищеними швидкостями викиду горючої суміші з пальників) приводить до більшої концентрації нагріву і тим самим до збільшення продуктивності зварювання. При цьому швидкість викиду в універсальних пальниках може бути гранично збільшена на 20--30% від нормальних швидкостей викиду. Зварювання жорстким полум'ям ще більш важке, ніж зварювання полум'ям підвищеної потужності, у зв'язку з посиленим видуванням металу із зварювальної ванни.

Більш ефективним є використання «активованого» полум'я, тобто полум'я з дещо підвищеною кількістю кисню. При цьому одночасно з підвищенням ефективності прогрівання і розплавлення відбуватиметься і окислення розплавленого металу. Для розкислювання рідкого металу необхідно у ванну вводити достатню кількість розкислювачів (при зварюванні вуглецевих сталей звичне Бі і Мп), які, як правило, вводяться ~ з присадним металом (наприклад, для сталі застосовується присадний дріт із вмістом Б і 0,5--0,8% і Мп 0,8--1%). Добиваючись підвищення продуктивності зварювання, слід враховувати збільшення вартості присадного металу.

Поширеними формами підвищення продуктивності газового зварювання є також використовування місцевого або загального попереднього підігріву перед зварюванням із застосуванням дешевого палива (печі на коксівному газі, сурми і ін.). Ці методи особливо ефективні при масовому виробництві або зварюванні браку литих - деталей.

Деякі зварювачі при зварюванні дрібних деталей, вміло розташовуючи їх на зварювальному (поворотному) столі, використовують для попереднього підігріву тепло відходів газів полум'я, що підігрівають наступну деталь при зварюванні попередньої. Це приводить до підвищення продуктивності зварювання на 20-40% без якого-небудь збільшення витрати матеріалів.

Раціональні методи підвищення економічності газового зварювання повинні вишукуватися у кожному окремому випадку її використання.

5. ОХОРОНА ПРАЦІ І ТЕХНІКА БЕЗПЕКИ ПРИ ПРОВЕДЕННІ ЗВАРЮВАЛЬНИХ І РІЗАЛЬНИХ РОБІТ

Безпека праці при дуговому зварюванні

Основні небезпеки та шкідливості, що призводять до виробничих травм при зварюванні:

ураження електричним струмом при електрозварювальних роботах;

ураження зору та відкритої поверхні шкіри випромінюванням електричної дуги;

отруєння організму шкідливими газами, пилом та випарами, що виділяються при зварюванні;

травхми від вибухів балонів стиснутого газу, ацетиленових генераторів і посудин з-під горючих речовин;

пожежна небезпека та опіки;

механічні травми при заготівельних і складально-зварювальних операціях;

небезпека радіаційного враження при контролі зварних з'єднань радіаційними методами.

Електробезпека. Враження електричним струмом відбувається при дотику до струмоведучих частин електропроводки та зварювальної апаратури, що застосовується для дугового контактного та променевого видів зварювання. Струми, що проходять через тіло людини, більші ніж 0,05 А (при частоті 50 Гц), можуть викликати важкі наслідки й навіть смерть (>0,1 А). Опір людського організму залежно від його стану (втомленість, вологість шкіри, стан здоров'я) змінюється в широких межах від 1000 до 20 000 Ом. Напруга холостого ходу джерел живлення нормальної дуги досягає 90 В, а обтиснутої дуги - 200 В. Тому при поганому самопочутті зварника через нього може пройти струм, близький до граничного, - 0,09 А.

Електробезпека забезпечується:

виконанням вимог електробезпеки електрозварювального обладнання, надійною ізоляцією, застосуванням захисних огорож, автоблокуванням, заземленням електрообладнання та його елементів, обмеженням напруги холостого ходу джерел живлення (генератори постійного струму до 90 В, трансформатори до 75 В). Довжина проводів між мережею живлення і пересувним зварювальним агрегатом не повинна перевищувати 15 м. При роботі в утруднених умовах або в закритих посудинах зварювальна установка повинна мати блокуючий пристрій для автоматичного вимкнення зварювального кола або зниження напруги при обриві дуги до 12 В. При зварюванні на змінному струмі можна використовувати пристрій для зниження вторинної напруги джерела живлення типу БСНТ-4. Корпуси зварювальних апаратів, каркаси розподільних щитів і шаф необхідно заземлювати мідним проводом перерізом не менше 6мм2 чи сталевим перерізом не менше 12 мм2.Температура нагріву окремих частин зварювального агрегату не повинна перевищувати 75° С;

індивідуальними засобами захисту (робота в сухому та міцному спецодязі та рукавицях, у черевиках без металевих шпильок та гвіздків);

додержанням умов роботи (припинення роботи під час дощу та сильного снігопаду, коли немає укриття; користування гумовим килимком, гумовим шоломом та калошами при роботі всередині місткості, а також переносною лампою напругою не більше 12 В; ремонт електрозварювального обладнання та апаратури спеціалістами- електриками).

Захист зору та відкритої поверхні шкіри. Електрична зварювальна дуга створює три види випромінювання: світлове, ультрафіолетове, інфрачервоне.

Світлові промені засліплюють, бо їх яскравість значно перевищує допустимі норми. Ультрафіолетове випромінювання навіть при захворювання. Особливу увагу слід звертати на концентрацію марганцю, бо його наявність в повітрі більше 0,3 мг/'м3 може викликати важкі захворювання нервової системи.

Найшкідливішим є зварювання покритими електродами, а при автоматичних методах зварювання кількість шкідливих виділень значно менша.

Основними заходами, спрямованими на захист від отруєння шкідливими виділеннями при зварюванні та поліпшення умов праці, є: застосування місцевої та загальнообмінної вентиляції; механізація та автоматизація зварювальних процесів; заміна шкідливих процесів і матеріалів менш шкідливими (наприклад, заміна електродів з кислим покриттям з великим вмістом оксиду марганцю на рутилові);

застосування ізолюючих та захисних пристроїв;

в особливо небезпечних випадках використання індивідуальних засобів захисту (респіратори з хімічним шоломом, протигази).

Пожежна безпека. Причинами пожежі при зварювальних роботах можуть бути іскри та краплі розплавленого металу та шлаку, необережне поводження з полум'ям пальника при наявності горючих матеріалів поблизу робочого місця зварника. Небезпеку пожежі особливо слід враховувати на будівельно-монтажних майданчиках і при ремонтних роботах у непристосованих для зварювання приміщеннях.

Основні вимоги пожежної безпеки викладено в "Правилах пожежної безпеки при проведенні зварювальних та інших вогневих робіт на об'єктах народного господарства". Місця, де виконується зварювання, мають бути оснащені вогнегасниками, ящиками з піском, лопатами та совками, бочками чи відрами з водою. Дерев'яні конструкції, розташовані ближче 5 м від зварювальних постів, обштукатурюють або оббивають листовим азбестом чи листовою сталлю по повсті, змоченій в глинистому розчині. В зоні попадання бризок металу та іскор не має бути займистих предметів. Легкозаймисті та вибухонебезпечні матеріали мають бути на відстані не менш як ЗО м від місця зварювання. Дерев'яні підлоги, настили, помости при потребі захищають від іскор і крапель розплавленого металу та шлаку листами азбесту чи заліза. Зварників забезпечують спецодягом, взуттям, рукавицями та головним убором.

Для забезпечення вибухобезпеки зварювальні роботи в місткостях з-під горючих продуктів виконують лише після їх ретельної очистки від залишків продуктів і дво-, трикратного промивання гарячим 10 %-ним розчином лугу з наступним продуванням парою чи повітрям. Газопроводи можна ремонтувати тільки після їх ретельного продування.

Травми (удари, порізи) бувають при заготівельних і складально- зварювальних операціях. Такі травми спричинюються недодержанням техніки безпеки під час роботи на металорізальному обладнанні при заготівельних операціях, відсутністю пристроїв для транспортування і складання важких деталей; несправністю транспортних засобів - візків, ланцюгів, тросів, захоплювачів, недотриманням персоналом основних правил з такелажних робіт; несправністю інструменту - кувалд, молотків, зубил, ключів і т. ін.

Основними заходами зі зниження травматизму є продумані з точки зору безпеки робіт технологія заготівлі, складання та зварювання, правильне оснащення робочих місць та додержання персоналом основних правил з техніки безпеки.

Вимоги безпеки праці при газозварюванні та різанні

Основними джерелами небезпеки при газовому зварюванні є: вибухи ацетиленових генераторів від зворотних ударів полум'я, коли не спрацьовує водяний затвор;

вибухи кисневих балонів у момент їх відкривання, якщо на штуцері

балона чи на клапані редуктора є масло;

небезпека пожежі в приміщенні, займання волосся та одягу, опіки зварника при необережному поводженні з пальником;

опіки очей у разі, коли зварники не користуються світлофільтрами; отруєння шкідливими газами, що накопичилися, коли немає припливно-витяжної вентиляції в приміщеннях.

Безпечна робота при газовому зварюванні і різанні можлива лише при правильному поводженні з матеріалами, обладнанням та апаратурою згідно з "Правилами техніки безпеки та виробничої санітарії при виробництві ацетилену, кисню та газополуменевій обробці металів". До виконання газозварювальних і газорізальних робіт допускаються робітники не молодше 18 років, які пройшли спеціальне навчання з перевіркою знань безпечної роботи.

Забороняється працювати без водяного затвора чи при несправному водяному затворі; не можна до одного водяного затвора приєднувати кілька пальників або різаків.

Потрібно строго додержуватися правил поводження та догляду за ацетиленовими генераторами згідно з інструкцією з експлуатації.

Треба бути обережним при роботі з карбідом кальцію: зберігати його в сухих, добре провітрюваних, вогнестійких приміщеннях; на місці виконання робіт зберігати карбід кальцію в непошкоджених барабанах із щільно закритою кришкою; розкривати барабани з карбідом кальцію слід лише спеціальним інструментом, що запобігає можливості утворення іскор; треба захищати барабани від поштовхів і ударів.

Слід захищати кисневі балони від поштовхів і ударів при транспортуванні та зберіганні. Для забезпечення вибухобезпеки транспортувати балони дозволяється на ресорних транспортних засобах, спеціальних ручних візках і носилках, у спеціальних контейнерах. Балони слід надійно кріпити у вертикальному положенні на значній відстані від нагрівальних приладів, у захищеному від дії сонячних променів місці. Сумісне зберігання балонів з горючими газами та киснем не допускається.

Експлуатація брудних, із вм'ятинами та подряпинами, несвоєчасно випробуваних балонів не допускається. Особливо слід звертати увагу на відсутність масла чи бруду на штуцері вентиля кисневих балонів.

Під час газополуменевої обробки зварники повинні працювати в спецодязі, рукавицях і захисних окулярах із стеклами Г-1, Г-2, Г-3, а допоміжні робітники - в окулярах із стеклами В-1, В-2, В-3. Зі збільшенням потужності полум'я треба застосовувати скло з більшим номером, якнайтемніше.

При виконанні газополуменевих робіт всередині відсіків, ям та резервуарів, де можливі накопичення шкідливих газів, мають працювати переносні припливно-витяжні вентилятори.

До виконання робіт з рідким пальним можуть допускатися лише спеціально навчені робітники, що мають відповідні посвідчення. Застосування рідкого пального на стапельних роботах і в закритих приміщеннях (котли, цистерни та ін.) забороняється. Неприпустиме застосування етилованого бензину та бензину з великим октановим числом. При роботі на рідкому пальному можна користуватися лише бензомаслостійкими шлангами згідно з ГОСТ 9356-75 із внутрішнім діаметром 6 мм та довжиною не менше 5 м.

Надання першої медичної допомоги при нещасних випадках

У всіх нещасних випадках перш за все треба викликати швидку допомогу, після чого негайно приступити до подавання допомоги власноручно.

Допомога неспеціалістів у галузі медицини обмежується зупинкою кровотечі, перев'язкою рани чи опіку, штучним диханням, накладанням нерухомої пов'язки при переломі, переносом і перевезенням потерпілого. В аптечці першої допомоги на ділянці чи в бригаді мають бути: розчин йоду спиртовий, бинти, вата, розчин борної кислоти, цинкові краплі, піпетки для очей, нашатирний спирт, сода, марганцевокислий калій, ефірно- валеріанові краплі, складні фанерні шини, подушка з киснем або карбогеном.

При враженні електричним струмом треба звільнити потерпілого від електропроводів (з додержанням техніки безпеки), забезпечити доступ свіжого повітря, при втраті свідомості негайно викликати швидку медичну допомогу, а до прибуття лікаря робити штучне дихання.

При електроофтальмії на очі необхідно покласти вату, змочену в холодній воді, а краще в слабому розчині питної соди чи в 2 %-ному розчині борної кислоти, а потерпілого бажано перевести в темне приміщення.

При загорянні на людині одягу треба накинути на неї будь-яку річ - брезент, мішок, ковдру і притиснути до тіла, а при наявності води - облити її водою. Якщо людина знепритомніла, треба винести її на свіже повітря. При тяжких опіках обережно зняти одяг і взуття (краще розрізати їх), обпалене місце змазати, покрити стерильним матеріалом, накласти вату і перев'язати. Опіки хімічними речовинами змочують водою протягом 10-15 хв. При опіках кислотою роблять примочки з содового розчину, лугом - з розчину борної кислоти чи слабкого розчину оцту.

При отруєнні газами треба перш за все винести потерпілого на свіже повітря, розстібнути одяг. Дати понюхати нашатирний спирт, розтерти шкіру, зігріти, коли холодно, зробити штучне дихання, дати подихати киснем (особливо при отруєнні СО).

У разі перегріву при роботі влітку на відкритому повітрі (тепловий удар) потерпілого слід перенести в прохолодне місце, зняти одяг, змочити голову і ділянку серця холодною водою, дати понюхати нашатирний спирт. При зупинці дихання зробити штучне дихання; коли потерпілий опритомніє, дати йому випити води із сіллю.

ВИСНОВКИ

Значення зварювального виробництва в машинобудуванні дуже велике - зараз важко назвати народного господарства, де не використовувався б той чи інший вид зварювання.

Із застосуванням зварювання стало можливим створення таких конструкцій і апаратів, які практично неможливо було виготовити іншими способами. Зварювання внесло докорінні зміни в конструкцію і технологію виготовлення багатьох виробів.

Зварювання значно знижує трудомісткість, оскільки потребує меншого об'єму робіт, ніж при клепанні або литті. Виключаються такі роботи, як розмітка, свердління отворів, складна формовка та ін. Особливо відчутне зниження трудомісткості при виготовленні крупно габаритних виробів: при заміні литих корпусів і станин зварнолитими, а штампованих виробів складної форми штампозварювальними знижує вартість виготовлення багатьох виробів.

Сучасний агропромисловий комплекс насичений складною технікою, його механо- і енергооснащеність постійно підвищуються. Підтримка техніки в справному стані являє собою важливе завдання, у рішенні якої зварювання займає провідне місце серед інших технологічних процесів.

ЛІТЕРАТУРА

1. Сапиро Л.С. Справочник сварщика: пособие для сварщиков, мастеров, технологов. М.: Машиностроение, 1984.

2. Шебеко Л.П. Производственное обучение электросварщиков. М.: Машиностроение, 1990.

3. Никифоров Н.И. Справочник молодого газосварщика и электросварщика. М.: Высшая школа, 1987.

4. Руге Ю. Техника сварки. М.: Машиностроение, 1989.

5. Геворкян В.Г. Основы сварочного дела. М.: Высшая школа, 1991.

6. Биховський О.Г., Піньковський I.В. Довідник зварника. К.: Техніка, 2002.

7. Шинкарев Б.Н. Электро- и газосварочные работы. М.: Металлургия, 1986.

8. Кигаев А.М., Китаев Я.Н. Справочная книга сварщика. М.: Машиностроение, 1982.

Размещено на Allbest.ru


Подобные документы

  • Визначення і класифікація легованих сталей. Характеристики, призначення, будова та принцип дії установок плазмового зварювання, способи усунення несправностей. Дугове електричне та повітряно-дугове різання металів та їх сплавів, апаратура та технологія.

    дипломная работа [322,3 K], добавлен 19.12.2010

  • Історія розвитку зварювання. Діаграма технологічної пластичності жароміцних нікелевих сплавів. Суть, техніка та технологія дифузійного зварювання. Вплив температури на властивості з'єднань при нормальній температурі сплавів. Процес дифузійного зварювання.

    реферат [1,3 M], добавлен 02.03.2015

  • Характеристика зварювання сталей, чавуну і кольорових металів. Сплави алюмінію: алюмінієво-марганцевисті, алюмінієво-магнієві, алюмінієво-мідні і алюмінієво-кремнисті. Наплавлення швидкоспрацьовуваних поверхонь. Зварювання залізо-нікелевими електродами.

    реферат [35,6 K], добавлен 06.03.2011

  • Методи технологічного процесу і режими зварювання: вугільним, графітовим і вольфрамовим електродом та порошковим дротом. Характеристика газів і обладнання для з'єднання металічних частин неплавкими електродами, необхідні інструменти для проведення робіт.

    дипломная работа [3,0 M], добавлен 01.02.2011

  • Дослідження процесу зварювання під час якого утворюються нероз'ємні з'єднання за рахунок сил взаємодії атомів (молекул) в місці, де з'єднуються матеріали. Зварювання плавленням і зварювання тиском (пластичним деформуванням). Газове зварювання металів.

    реферат [467,9 K], добавлен 21.10.2013

  • Кисень і ацетилен, їх властивості і одержання, транспортування і зберігання. Вибір і підготовка зварювальних матеріалів. Апаратура, устаткування для газового зварювання. Будова ацетиленово-кисневого полум'я. Особливості і режими зварювання різних металів.

    курсовая работа [917,2 K], добавлен 21.04.2013

  • Вплив домішок на властивості міді, її фізичні та механічні властивості. Вибір способу зварювання. Ручне дугове зварювання графітовим електродом. Зварювання під флюсом. Механічні властивості дроту. Розроблення зварювальних кромок. Термічна обробка.

    контрольная работа [228,7 K], добавлен 16.06.2016

  • Передові прийоми і прогресивні технології зварювання, високопродуктивні способи зварювання. Аналіз зварної конструкції. Вибір обладнання і пристосування, підготовка матеріалів до зварювання. Техніка дугового зварювання та контроль якості зварювання.

    курсовая работа [2,4 M], добавлен 25.03.2016

  • Коротка характеристика виробу, його призначення і матеріал, оцінка зварюваності. Вибір зварювальних матеріалів та обладнання. Порядок і технологія виконання швів, критерії оцінки їх якості. Розрахунок витрати матеріалів. Правила безпеки та охорона праці.

    курсовая работа [515,0 K], добавлен 24.05.2014

  • Особливості технології зварювання плавленням металоконструкцій. Способи зварювання сталі: ручне електродугове зварювання, напівавтоматичне зварювання в СО2. Порівняльний аналіз конструктивних, технологічних та економічних факторів технології зварювання.

    реферат [412,4 K], добавлен 13.12.2011

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.