Текстурированные нити

Виды текстурированных нитей, их получение, свойства и применение. Свойства тканей, влияющие на срок их службы. Изменение линейных размеров текстильных материалов в процессах переработки и их эксплуатации. Предельные режимы влажно-тепловой обработки.

Рубрика Производство и технологии
Вид контрольная работа
Язык русский
Дата добавления 07.05.2014
Размер файла 778,2 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

Кафедра материаловедения

КОНТРОЛЬНАЯ РАБОТА

Материаловедение в производстве изделий легкой промышленности

Вариант 8

1. Текстурированные нити, получение, свойства, применение

2. Свойства тканей, влияющие на срок их службы

3. Изменение линейных размеров текстильных материалов в процессах переработки и эксплуатации

1. Текстурированные нити, получение, свойства, применение

ТЕКСТУРИРОВАННЫЕ НИТИ (Рис. 1), (высокообъемные химические нити), текстильные комплексные нити (состоят из большого числа элементарных нитей, или мононитей) с искусственно приданной им извитостью (извитостью обладает и каждая мононить, входящая в комплексную нить). Текстурированные нити изготовляют главным образом из синтетических полимеров; они отличаются от обычных комплексных текстильных нитей пониженной объемной массой, пористостью, мягкостью и в некоторых случаях большой упругой растяжимостью. Сущность текстурирования - придание элементарным нитям извитой формы, препятствующей их плотной укладке в комплексной нити. Благодаря этому возрастает пористость изделий, выработанных из этих нитей, улучшаются их теплозащитные и гигиенич. характеристики при сохранении основные достоинств химический нитей: высокой прочности, эластичности, износоустойчивости.

Получение текстурированных нитей происходит под воздействием механических или физических процессов (например, кручения, раскручивания, ложного кручения, прессования, гофрирования, термостабилизации или комбинирования нескольких из этих процессов), в результате чего отдельные элементарные нити принимают форму спиралей, гофрированную форму, петлистую форму и т.д. Эти деформации могут быть частично или полностью уменьшены растягивающим усилием, но после освобождения от нагрузки элементарные нити восстанавливают приданную им форму. Использование текстурированных нитей улучшает эксплуатационные свойства и повышает гигиенические показатели изделий из этих нитей

В зависимости от способа получения, свойств и назначения различают следующие виды текстурированных нитей: высокорастяжимые, малорастяжимые, извитые, петлистые, профилированные, бикомпонентные, комбинированные, а также высокообъёмную пряжу.

Высокорастяжимые нити (в РФ они называются эластик, за рубежом -- чаще всего хеланка) вырабатывают по схеме: кручение комплексных синтетических нитей (полиамидных, полиэфирных и др.) до 2500--5000 круток на 1 м, термофиксация закрученной нити; раскручивание термостабилизированной нити. В результате нить приобретает спиралеобразную форму, большую упругую растяжимость (до 400%), пушистость. Эластик(от греч. elastos -- гибкий, тягучий),текстурированные нити , обладающие большой (до 400%) упругой растяжимостью, повышенным удельным объёмом, спиралеобразной извитостью и пушистостью. Эластик вырабатывают из синтетических, преимущественно полиамидных и полиэфирных комплексных нитей, которые закручивают (до 2500--5000 кручений/м) и подвергают тепловой обработке с последующим охлаждением, чтобы зафиксировать структуру нити, полученную при кручении. Термостабилизированные нити раскручивают. После чего одиночные нити, получившие левую и правую крутки, сдваивают и подкручивают (50--100 кручений/м). Эластик производят на машинах непрерывного действия. Он идёт на изготовление чулочно-носочных и спортивных изделий, платьевых, блузочных и других тканей. Изделия из эластика обладают повышенной формоустойчивостью, способностью впитывать влагу, хорошими теплозащитными свойствами и т. д. За рубежом аналогичные нити вырабатывают под названием хеланка, флуфлон, суперлофт, эластиш и др. Малорастяжимые нити отличаются от эластика повышенной объёмностью, большой извитостью и пушистостью при небольшом упругом удлинении. В РФ такие нити, полученные из комплексных капроновых нитей, называются мерон, из лавсановых нитей -- мелан; за рубежом -- саабо или астралон. Их вырабатывают путём дополнительной термообработки высокорастяжимых нитей.

Извитые нити) получают преимущественно способом гофрирования; при этом синтетическую нить плотно набивают в специальную камеру и в таком виде подвергают тепловой обработке (в эти нити называются гофронза рубежом -- банлон). Извитые нити отличаются большой пилообразной извитостью, мягкостью, высоким удельным объёмом, но сравнительно небольшой растяжимостью. Второй способ основан на том, что синтетическая нить при протягивании по лезвию стальной пластинки подвергается сложной деформации; в результате отдельные элементарные нити приобретают спиралеобразную форму. Такие нити в России называются рилон, за рубежом -- аджилон.

Извитые нити вырабатывают также трикотажным способом. При этом из обычных термопластичных комплексных нитей на высокоскоростных трикотажных машинах производят полотно, которое подвергают тепловой обработке, в результате чего нити после роспуска полотна приобретают устойчивую извитость.

Петлистые нити получают, воздействуя воздушной струей на комплексную нить в момент её прохождения через канал прибора, в который под давлением подают воздух.

Эти нити в РФ называются аэрон, за рубежом -- таслан.

Профилированные нити (полиамидные, полиэфирные и др.) формуют, используя фильеры с отверстиями не круглого, а фигурного сечения. В результате получают нити с различной конфигурацией поперечного сечения или же с внутренними каналами. При обычной растяжимости они имеют более низкую объёмную массу, матовый оттенок, обладают повышенной гигроскопичностью. Таким способом можно получить нити, по внешнему виду и свойствам похожие на натуральные.

Бикомпонентные нити формуют из двух или более полимеров. При этом отверстия фильер разделены перегородкой на несколько (две или более) частей, к каждой из которых подаётся свой прядильный расплав.

Образующиеся нити состоят из нескольких различных по химическому составу частей. После вытягивания они подвергаются тепловой обработке, в результате которой вследствие различной усадки полимеров нити приобретают извитость, повышенную объёмность, рыхлую структуру.

Комбинированные (армированные, каркасные) нити получают при совместно текстурировании различных нитей (например, ацетатных и капроновых) или при скручивании уже готовых текстурированных нитей, обладающих различными структурой и свойствами, а также при скручивании обычных комплексных или высокорастяжимых нитей со штапельными волокнами.

Высокообъёмная пряжа вырабатывается из смеси химических штапельных волокон (в основном полиакрилонитрильных), имеющих усадку 20--30%, с низкоусадочным волокном. При термообработке такой пряжи в свободном состоянии высокоусадочные волокна укорачиваются, а низкоусадочные почти не меняют своей длины, но, будучи связаны с высокоусадочными волокнами силами трения, изгибаются, придавая пряже пушистый вид.

Производство текстурированных нитей возникло в связи с необходимостью расширить область применения синтетических волокон, которая ограничена тем, что они обладают низкой гигроскопичностью и гладкой поверхностью с неприятным «стеклянным» блеском. Текстурирование улучшает эксплуатационные свойства и повышает гигиенические показатели синтетических нитей.

Текстурированные нити успешно применяются для изготовления текстильных изделий широкого потребления: чулок, носков, верхнего и нижнего трикотажа, формоустойчивого трикотажного полотна, используемого для пошива мужских и женских костюмов (кримплен), пальто, для производства искусственного меха, ковров, одеял, драпировочных и обивочных тканей и др.

Потребность в текстурированных нитях непрерывно увеличивается, поэтому будут создаваться новые и совершенствоваться существующие способы текстурирования. Технический прогресс в технологии текстурирования осуществляется в следующих направлениях: повышение производительности оборудования; создание новых принципов текстурирования, например, путём разделения совместно скручиваемых нитей без применения сложных и дорогостоящих механизмов ложного кручения; совмещение нескольких процессов, например, формования, вытягивания и текстурирования, на одном агрегате; увеличение ёмкости паковок; механизация и автоматизация операций (заправка машин, ликвидация обрывов, съём готовых паковок); автоматическое регулирование технологических параметров с помощью программирующих устройств и др.

2. Свойства тканей, влияющие на срок их службы

Это такие свойства тканей, которые характеризуют их поведение в процессе эксплуатации и определяют срок их службы или долговечность, стабильность строения. В процессе эксплуатации различные факторы действуют на ткань как раздельно, так и совместно, что приводит к постепенному износу.

Прочность ткани при растяжении зависит от волокнистого состава тканей, толщины пряжи или нити, плотности, переплетения, характера отделки ткани. Наибольшую прочность имеют ткани из синтетических волокон. Увеличение толщины нитей и плотности ткани увеличивает прочность тканей. Применение переплетений с короткими перекрытиями также способствует росту прочности ткани. Поэтому при всех равных условиях полотняное переплетение сообщает тканям наибольшую прочность. Такие операции отделки, как валка, аппретирование, декатировка, увеличивают прочность ткани. Отбеливание, крашение приводят к некоторой потере прочности.

Прочность тканей на разрыв при растяжении. Разрывная нагрузка -- наибольшее усилие, выдерживаемое пробными полосками при растяжении их до разрыва. Размеры пробных полосок 25х50 или 50х100 мм для шерстяных тканей и полосок 25х200 или 50х200 мм для всех остальных. Этот показатель является основным стандартным показателем, характеризующим механические свойства тканей

Разрывная длина тканей -- минимальная длина, при которой масса образца равна разрывной нагрузке. Абсолютные значения разрывной нагрузки не позволяют сравнивать ткани разного волокнистого состава, строения, отделки. Для этих целей используют относительный показатель прочности (разрывную длина), который определяется по формуле

L = 20Р/G

где L -- длина, км; Р -- разрывная нагрузка полоски тканей, Н;

G -- поверхностная плотность 1 м2, г.

Удлинение при растяжении характеризует способность ткани к деформации растяжения и выражается в миллиметрах или процентах. На удлинение оказывает влияние волокнистый состав, строение, отделка тканей и др.

Деформация тканей при растяжении. Большое значение для характеристики свойств тканей имеет удлинение при нагрузках меньше разрывных. В этом случае ткань деформируется -- удлиняется, а после прекращения действия нагрузки снова укорачивается, частично или полностью восстанавливает свою длину. В общем случае деформация растяжения ткани складывается из неисчезающей (пластичной) и исчезающей частей деформации (упругой и эластичной).

Устойчивость тканей к многократным растяжениям. Способность тканей противостоять многократным деформациям растяжения меньшим, чем разрывные, называется их выносливостью или долговечностью, а также показателем усталости. Усталостью ткани называют постепенное местное изменение ее структуры, изменение формы и размеров отдельных участков одежды (образование вздутий на локтях и коленях).

Устойчивость ткани к истиранию. Это важный показатель эксплуатационных свойств, по которому судят о продолжительности срока службы тканей, которые в процессе эксплуатации часто подвергаются истирающим воздействиям. Стойкость ткани к истиранию зависит от вида волокон и степени их закрепления в ее структуре. Здесь в первую очередь играют роль геометрические и фрикционные свойства волокон, а также структура нитей и ткани. Наибольшей стойкостью к истиранию обладают ткани, которые состоят из волокон (лавсана, капрона), имеющих высокую стойкость к многократным деформациям растяжения, изгиба, кручения, смятия и т. п., в том числе высокую стойкость к истиранию. Далее идут натуральные волокна -- шерсть, лен, хлопок. Наименее стойки к истиранию ткани из искусственных волокон (вискозного, ацетатного и т. п.). Ткани из тонких и длинных волокон более стойки к истиранию, чем из грубых и коротких. Большей стойкостью к истиранию, чем ткани из химических штапельных волокон, обладают ткани из комплексных химических нитей. Стойкость тканей к истиранию возрастает с увеличением крутки пряжи. Наиболее рациональной с точки зрения стойкости к истиранию является такая структура ткани, при которой ее опорная поверхность образуется обеими системами нитей (основной и уточной) или состоит из нитей, имеющих высокую стойкость к истиранию. С уменьшением длины перекрытий нитей в структуре ткани стойкость к истиранию возрастает. Однако если перекрытия в ткани образуют чрезмерно жесткую структуру, ее стойкость к истиранию не может быть высокой. Изнашивание тканей от истирания происходит по выступающим гребням нитей, при этом волокна разрываются, разделяются на части и выпадают. Ткань становится редкой, уменьшается ее масса и, наконец, ткань разрушается.

Стойкость тканей к действию микроорганизмов. Разрушение текстильных изделий микроорганизмами происходит при хранении их в неблагоприятных условиях и при эксплуатации в мокром состоянии (брезенты, палатки, рыболовные снасти и т. п. ). В этих условиях микроорганизмы могут вызывать снижение прочности изделий, изменение их окраски и блеска. Следует отметить, что изделия повреждаются микроорганизмами только в том случае, если составляющие их вещества являются питательной средой для микроорганизмов.

Наименее устойчивы к действию микроорганизмов изделия из хлопка, лубяных, вискозных, медно-аммиачных волокон и нитей, более устойчивы шерстяные, а еще более -- шелковые изделия.

Наиболее биостойки ацетатные, синтетические, стеклянные и ас-бестовые текстильные изделия. Наиболее эффективным методом защиты химических волокон и нитей является их антимикробная модификация. В смесях с натуральными такие волокна предупреждают микробиологическую коррозию.

Стойкость тканей к действию светопогоды. Износ от действия светопогоды проявляется в старении, т. е. ухудшении свойств текстильных материалов, вызванном в основном окислительными процессами, усиливающимися под действием тепла и влаги.

Действие светопогоды -- это действие комплекса факторов: солнечного света, влаги, кислорода воздуха, температуры и др. При облучении ткани солнечными лучами в присутствии кислорода воздуха, влаги происходит сложный фотохимический процесс разрушения (деструкции) вещества, составляющего волокно.

Фотохимическая деструкция под влиянием инсоляции ведет к изменению механических свойств тканей: снижению прочности на разрыв, удлинению, стойкости к истиранию, уменьшению выносливости к многократным растяжениям, изгибам и др. Стойкость полотен и изделий к фотохимической деструкции определяется не только химическим составом их вещества, но и толщиной, строением, способами отделки и окраски.

Наиболее стойкими к свету являются шерстяные, а наименее стойкими джутовые и шелковые изделия, что соответствует стойкости составляющих их волокон и нитей. Из синтетических изделий меньшей светостойкостью обладают капроновые и лавсановые, несколько лучшей -- хлориновые. Наиболее светостойки нитроновые изделия. Меньшей светостойкостью, чем синтетические, обладают изделия вискозные и триацетатные.

Стойкость тканей к износу от стирки. Износ этого вида имеет наибольшее значение для бельевых тканей. Это комплексный фактор износа. В процессе стирки, сушки, глажения ткань подвергается действию моющего состава, механическим усилиям при мытье, истиранию, тепловому воздействию, действию светопогоды и др. В результате многократных стирок происходит изменение внешнего вида поверхности ткани, ослабление волокон и последующее их выпадение, приводящее к местным разрушениям.

Износостойкость тканей. Известно, что в условиях эксплуатации ткани подвергаются действию различных факторов: истирания, света, стирок и т. д. Под их воздействием ткань постоянно разрушается, теряет свои основные свойства, в результате чего к концу службы изделия оно становится непригодным для дальнейшей эксплуатации.

Процесс изнашивания является сложным и многообразным, потому что очень многообразны и различны изнашивающие факторы; очень сложны те явления, которые происходят в тканях в процессе изнашивания.

Разнообразные причины или факторы износа можно объединить в следующие группы: механические, физико-химические, биологические, химические и комбинированные.

Для различных текстильных изделий основные факторы износа неодинаковы. Например, основной причиной износа верхней одежды является светопогода, истирание, усталость; гардин и занавесей -- действие света; белья -- стирка, истирание и т. д.

В текстильных изделиях различают износ двух видов: общий и местный.

Существуют и другие показатели эксплуатационных свойств текстильных материалов.

текстурированный нить переработка ткань

3. Изменение линейных размеров текстильных материалов в процессах переработки и эксплуатации

Текстильные материалы обладают способностью изменять размеры при различных воздействиях. Чаще всего происходит уменьшение линейных размеров -- усадка.

Значительно реже размеры материалов увеличиваются -- это явление называют притяжкой. Многочисленные исследования показали, что в основе изменения линейных размеров текстильных материалов лежат релаксационный процесс и набухание волокон, приводящее к увеличению поперечника нитей.

Релаксационный процесс вызывается тепловыми колебаниями, приводящими к перемещению отдельных звеньев или макромолекул. В сухом состоянии в результате межмолекулярного взаимодействия подобное перемещение сильно затруднено, а во влажном молекулы воды, проникая в структуру материала, ослабляют силы межмолекулярного взаимодействия и часть их начинает взаимодействовать не между собой, а с молекулами воды, что способствует возвращению материала в равновесное состояние.

При набухании волокон под действием кипящей воды и последующего высушивания у всех волокон, кроме синтетических, поперечник увеличивается. Вследствие этого расположенные по спирали волокна растягиваются, изменяя угол своего наклона относительно оси нити, а длина нити уменьшается. Усадка в тканях происходит при смачивании и сушке. При погружении тканей в воду, особенно нагретую, сразу же изменяются их размеры, причем пребывание тканей в воде в течение определенного времени при заданных условиях и без механического воздействия на них не вызывает изменения их размеров. При сушке релаксационный процесс возобновляется, происходит дальнейшее изменение размеров тканей, однако по мере уменьшения содержания влаги процесс затухает и усадка прекращается.

Усадка трикотажных полотен происходит в основном в результате изменений в его петельной структуре. Трикотаж усаживается больше в том направлении, в котором он был больше вытянут в процессе отделки.

Основовязаные полотна имеют усадку по длине и ширине, а полотна кругловязальных машин -- усадку по длине и притяжку по ширине.

Отрицательное значение усадки заключается не только в том, что она приводит к уменьшению размеров изделий, но и в том, что они из-за различной усадки в длину и ширину теряют форму и часто становятся непригодными для использования. Кроме того, после усадки изменяются линейная плотность нитей в полотнах, удлинение при разрыве, а также поверхностная плотность.

В процессе создания и особенно отделки и крашения текстильные материалы подвергаются значительным растягивающим нагрузкам, под действием которых в их структуре накапливаются эластические деформации, проявляющиеся в удлинении волокон и нитей и перестройке структуры материала. Эти деформации в условиях текстильного производства не успевают полностью исчезнуть и при мокрых обработках и последующих сушках в отделочном производстве частично фиксируются. При хранении материалов в сухом состоянии релаксационный процесс имеет замедленный характер, однако для трикотажных полотен его результат (усадка и притяжка) может быть весьма заметным. Поэтому предусматривается выдерживание полотен перед раскроем из них деталей изделий.

Изменения линейных размеров после мокрых обработок в значительной степени зависят от волокнистого состава материала. Наиболее склонны к усадке материалы из натуральных и гидратиел - люлозных волокон, так как они хорошо впитывают влагу и сильно набухают. Усадка большинства материалов из химических волокон в меньшей степени зависит от действия влаги, но она возможна при действии повышенной температуры (тепловая усадка), особенно если волокна при их изготовлении подвергались значительной вытяжке. Помимо указанных выше причин усадка шерстяных материалов может возникать в процессе постепенного сваливания (сцепление, перепутывание и уплотнение) шерстяных волокон при носке и многократных стирках.

Тепловая усадка возрастает с увеличением количества тепловых воздействий на материал. При изготовлении изделий отдельные детали (полочки, воротник) многократно подвергаются влажно-тепловой обработке. С увеличением числа обработок от одной до семи усадка материалов может увеличиваться в 1,4-6 раз.

Предельные режимы влажно-тепловой обработки устанавливают в зависимости от вида ткани и технологической операции. Превышение установленных параметров режима приводит к появлению лас, пятен, опалов, тепловой усадки, чрезмерному утонению рыхлых пушистых тканей. Для отдельных материалов, например объемных, ворсовых, синтетических, трикотажных и нетканых полотен, следует по возможности исключать влажно-тепловую обработку для получения объемной формы деталей. Объемная форма деталей должна создаваться путем конструкторских решений.

С целью уменьшения усадки материалов в текстильной промышленности в процессе отделки проводятся ширение, декатировка, обработка на специальных усадочных машинах, противоусадочное пропитывание, термофиксация тканей из синтетических волокон и смешанных тканей, содержащих синтетические волокна. В швейном производстве для придания усадки всему полотну производится декатировка.

Размещено на Allbest.ur


Подобные документы

  • Обоснование выбора переплетения. Структура пряжи и нитей хлопчатобумажных тканей. Свойства, влияющие на срок службы ткани. Разработка трикотажного полотна ажурных переплетений для изготовления блузона на котонной машине. Технологический расчет рисунка.

    курсовая работа [2,0 M], добавлен 14.04.2015

  • Основные тенденции сезона в женской верхней одежде. Перечень материалов для изготовления швейного изделия, установление требований к ним. Структурные характеристики и физико-механические свойства материалов. Выбор режимов влажно-тепловой обработки тканей.

    курсовая работа [48,2 K], добавлен 05.12.2013

  • Производство полипропиленовых волокон и перспектива использования для текстильной промышленности полиэфирных нитей малой линейной плотности. Использование текстурированных нитей разной степени растяжимости для шелкоподобных тканей с креподобным эффектом.

    реферат [41,0 K], добавлен 16.11.2010

  • Строение ацетатных и триацетатных волокон. Основные элементы структуры швейных изделий. Свойства волокон и область их использования. Текстурированные нити, их виды, получение, свойства и использование. Штопорность швейных ниток и методы ее определения.

    контрольная работа [59,2 K], добавлен 26.01.2015

  • Технология придания объемно-пространственной формы деталям швейных изделий, влажно-тепловая обработка тканей: виды, стадии, режимы, технические условия выполнения работ; оборудование и приспособления, история утюга. Уход за изделиями из различных тканей.

    презентация [622,2 K], добавлен 14.09.2011

  • Технология получения тканей. Основные признаки определения направления основной нити. Строение, состав и свойства тканей. Способы переработки длинных волокон шерсти, хлопка и натурального шелка. Основные стандарты на определение сортности тканей.

    тест [19,6 K], добавлен 04.04.2010

  • Роль химии в химической технологии текстильных материалов. Подготовка и колорирование текстильных материалов. Основные положения теории отделки текстильных материалов с применением высокомолекулярных соединений. Ухудшение механических свойств материалов.

    курсовая работа [43,7 K], добавлен 03.04.2010

  • Основные свойства древесины как конструкционного материала. Структура древесины и ее химический состав. Органические вещества: целлюлоза, лигнин и гемицеллюлозы. Показатели механических свойств текстильных материалов: растяжение, изгиб, драпируемость.

    контрольная работа [25,2 K], добавлен 16.12.2011

  • Строение и свойства швейных материалов, применяемые для изготовления мужских сорочек, их изменение под влиянием высокоэффективного производства и условий эксплуатации. Научно-обоснованный выбор тканей и существенное улучшение качества швейных изделий.

    курсовая работа [369,8 K], добавлен 24.06.2015

  • Получение поликапроамида. Структурная формула капролактама. Свойства полиамидных нитей и волокон. Нормы технологического режима. Расчет количества прядильных машин, расхода замасливателя. Обоснование и выбор технологического процесса и оборудования.

    дипломная работа [503,4 K], добавлен 26.05.2015

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.