Моделирование в научных исследованиях

Понятие информационный продукт, информационный ресурс, их значимость. Теория подобия и моделирования, её методы и применение в научных исследованиях. Виды подобия. Методы моделирования и виды моделей. Физическое и аналоговое подобие в моделировании.

Рубрика Производство и технологии
Вид реферат
Язык русский
Дата добавления 20.01.2014
Размер файла 29,8 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

Содержание

1. Информационные ресурсы организации

2. Подобие и моделирование в научных исследованиях

3. Методы моделирования

4. Виды моделей

5. Физическое и аналоговое подобие в моделирование

Список литературы

1. Информационные ресурсы

В современных рыночных условиях акцент внимания и значимости смещается с традиционных видов ресурсов (материальные, трудовые, финансовые) на информационный ресурс.

Одним из ключевых понятий при информатизации общества стало понятие "информационные ресурсы", толкование и обсуждение которого велось с того момента, когда начали говорить о переходе к информационному обществу.

Информационные ресурсы - отдельные документы и отдельные массивы документов, документы и массивы документов в информационных системах (библиотеках, архивах, фондах, банках данных, других информационных системах).

Человечество занималось обработкой информации тысячи лет. Первые информационные технологии основывались на использовании счётов и письменности. Около пятидесяти лет назад началось исключительно быстрое развитие этих технологий, что в первую очередь связано с появлением компьютеров.

В настоящее время термин "информационная технология" употребляется в связи с использованием компьютеров для обработки информации. Информационные технологии охватывают всю вычислительную технику и технику связи и, отчасти, - бытовую электронику, телевидение и радиовещание.

Они находят применение в промышленности, торговле, управлении, банковской системе, образовании, здравоохранении, медицине и науке, транспорте и связи, сельском хозяйстве, системе социального обеспечения, служат подспорьем людям различных профессий и домохозяйкам.

Народы развитых стран осознают, что совершенствование информационных технологий представляет самую важную, хотя дорогостоящую и трудную задачу.

В настоящее время создание крупномасштабных информационно-технологических систем является экономически возможным, и это обусловливает появление национальных исследовательских и образовательных программ, призванных стимулировать их разработку.

Информационные ресурсы общества, если их понимать как знания, отчуждены от тех людей, которые их накапливали, обобщали, анализировали, создавали и т.п. Эти знания материализовались в виде документов, баз данных, баз знаний, алгоритмов, компьютерных программ, а также произведений искусства, литературы, науки.

В настоящее время не разработана методология количественной и качественной оценки информационных ресурсов, а также прогнозирования потребностей общества в них. Это снижает эффективность информации, накапливаемой в виде информационных ресурсов, и увеличивает продолжительность переходного периода от индустриального к информационному обществу. Кроме того, неизвестно, какой объем трудовых ресурсов должен быть задействован в сфере производства и распространения информационных ресурсов в информационном обществе.

Информационные ресурсы страны, региона, организации должны рассматриваться как стратегические ресурсы, аналогичные по значимости запасам сырья, энергии, ископаемых и прочим ресурсам.

Развитие мировых информационных ресурсов позволило:

1. превратить деятельность по оказанию информационных услуг в глобальную человеческую деятельность;

2. сформировать мировой и внутригосударственный рынок информационных услуг;

3. образовать всевозможные базы данных ресурсов регионов и государств, к которым возможен сравнительно недорогой доступ;

4. повысить обоснованность и оперативность принимаемых решений в фирмах, банках, биржах, промышленности, торговле и др. за счет своевременного использования необходимой информации.

Информационные ресурсы являются базой для создания информационных продуктов. Любой информационный продукт отражает информационную модель его производителя и воплощает его собственное представление о конкретной предметной области, для которой он создан. Информационный продукт, являясь результатом интеллектуальной деятельности человека, должен быть зафиксирован на материальном носителе любого физического свойства в виде документов, статей, обзоров, программ, книг и т.д.

Информационный продукт - совокупность данных, сформированная производителем для распространения в вещественной или невещественной форме.

Информационный продукт может распространяться такими же способами, как и любой другой материальный продукт, с помощью услуг.

Услуга - результат непроизводственной деятельности предприятия или лица, направленный на удовлетворение потребности человека или организации в использовании различных продуктов.

Информационная услуга - получение и предоставление в распоряжение пользователя информационных продуктов.

В узком смысле информационная услуга часто воспринимается как услуга, получаемая с помощью компьютеров, хотя на самом деле это понятие намного шире.

При предоставлении услуги заключается соглашение (договор) между двумя сторонами - предоставляющей и использующей услугу. В договоре указываются срок ее использования и соответствующее этому вознаграждение.

Перечень услуг определяется объемом, качеством, предметной ориентацией по сфере использования информационных ресурсов и создаваемых на их основе информационных продуктов.

моделирование подобие физическое аналоговое

2. Подобие и моделирование в научных исследованиях

Методы теории подобия и моделирования широко применяются в различных научных исследованиях.

Моделирование можно определить как практического или теоретического опосредованного оперирования объектом. При этом исследуется не сам объект, а промежуточный вспомогательный, находящийся в некотором объективном соответствии с самим познаваемым объектом и способный на отдельных этапах познания представлять в определенных отношениях изучаемый объект, а также давать по исследованию модели информацию об объекте.

При моделировании важна та помощь, которую оно оказывает при вскрытии качественных и количественных свойств явлений одинаковой физической природы и явлений, разнородных по своей физической сущности. В природе вследствие ее материального единства имеются некоторые общие соотношения и простейшие формы, что позволяет делать широкие практические обобщения, в ряде случаев отвлекаясь в процессе познания от деталей происходящих явлений. Таким образом, при моделировании всегда должны присутствовать некоторые соотношения, устанавливающие условия перехода от модели к исследуемому объекту (оригиналу). Такие соотношения носят название масштабов. Моделирование включает научные исследования, направленные на решение как общефилософских и общенаучных проблем (первый аспект), так и на решение конкретных научно-технических задач (второй аспект), где моделирование выступает как инструмент исследования. Приемы анализа и аппарат решения при этом различны, но метод одинаково требует установления критериев подобия, т. е. словесной или математической формулировки тех условий, при которых модель может считаться закономерно отражающей (в том или ином смысле) оригинал.

Подобие явлений, характеризующееся соответствием (в частном случае пропорциональностью) величин, участвующих в изучаемых явлениях, происходящих в оригиналах и в моделях, по степени соответствия параметров модели и оригинала может быть трех видов.

Абсолютное подобие, требующее полного тождества состояний или явлений в пространстве и времени, представляет собой абстрактное понятие, реализуемое только умозрительно.

Полное подобие - подобие тех процессов, протекающих во времени и пространстве, которые достаточно полно для целей данного исследования определяют изучаемое явление.

Неполное подобие связано с изучением процессов только во времени или только в пространстве. Так, электромеханические процессы в синхронном генераторе могут быть подобны во времени, без соблюдения геометрического подобия полей внутри машины.

Приближенное подобие реализуется при некоторых упрощающих допущениях, приводящих к искажениям, заранее оцениваемым количественно.

С точки зрения адекватности физической природы модели и оригинала моделирование может быть физическое, осуществляемое при одинаковой физической природе изучаемых явлений; аналоговое, требующее соответствия в том или ином смысле параметров сравниваемых процессов.

3. Методы моделирования

Весьма большие надежды возлагают прогнозисты на решение проблемы моделирования существенных процессов и явлений научного развития. Пристального внимания заслуживают некоторые существующие методы прогнозирования, использующие приемы моделирования. Наиболее давними традициями обладает в этом отношении группа методов прогнозирования по исторической аналогии. На основе изучения внутренней логики развития конкретной научной дисциплины исследователь конструирует соответствующую ее историко-логическую модель. Затем в соответствии с этой моделью прогнозируется разрешение определенных коллизий в ситуациях, обладающих с ней общностью свойств. Популярность логических моделей-образов, конструируемых с помощью метода исторической аналогии, держится не только на традициях, но и на многих хорошо известных историкам естествознания актах преемственности в развитии научных принципов и идей.

Если бы метод исторических аналогий был так универсален, как мы его нередко склонны воспринимать, то научно-техническую политику формировали бы историки, а не специалисты, знающие наилучшим образом современный опыт.

Вместе с тем для прогнозирования и планирования новой техники и новых научно-исследовательских работ весьма важно количественно определенно оценить объем, полноту и эффективность использования накопленного опыта, конкретные тенденции к поглощению данной отраслью техники новых научных результатов, в том числе и полученных фундаментальными науками. Актуальность этой проблемы обусловлена резко возросшими в современную эпоху темпами морального старения технических средств.

В ряде случаев непосредственному долгосрочному планированию научно-технического развития предшествует логическое моделирование комплексного образа будущей научно-технической политики, включающее в себя: сформулированные экономические, политические и другие цели данного государства, описание ряда научных и технических возможностей их достижения, характеристику ресурсов и потребностей, обусловливающих целесообразность принятия тех или иных государственных решений. Такой описательный документ в научной прогностике называется сценарием будущего. Обычно он составляется на основе обобщения данных предварительно выполненного качественного и количественного анализа общественных потребностей в развитии данной проблемной области; ее сложившихся внутренних возможностей и противоречий развития; фона научно-технической проблематики, определяющего внешние воздействия, стимулирующие и тормозящие развитие прогнозируемой области науки и техники.

Особую форму приобретают такого рода феноменологические модели, как сценарии будущего, в случае прогнозов в области теоретических и фундаментальных исследований.

В начале 70-х годов специалисты А.И. Покровский и Б.А. Старостин сформулировали важную для методологии прогнозирования такого рода объектов концепцию фундаментального научного эффекта (ФЭ) и недостающего для его получения базиса знаний. Эта концепция исходит из того, что предметом исследования в прогностике является не само будущее открытие как таковое, а фундаментальный научный эффект, понимаемый как системная целостность данных, которая может с некоторой вероятностью привести к сдвигам в научных представлениях значительного теоретического и потенциального прикладного масштаба.

Конечно, и само открытие может стать для ряда дальнейших открытий фундаментальным научным эффектом или важнейшим компонентом такового. В этом плане следует рассматривать, например, отношение между Периодическим законом Менделеева (1869) и предсказанными на его основе химическими элементами или между открытием электромагнитных волн Герцем (1889) и развитием радиотехники с ее разнообразными применениями, включая радиолокацию и т. д.

Совокупность целей, средств и предпосылок для разрешения тех или иных научных проблем может быть представлена и более строго интерпретированной моделью - прогнозным графом. Каждый полученный элемент модели (событие состоит из описания на языке соответствующего классификатора); системы количественных оценок данного события (условная вероятность, время свершения, значимость, стоимость); определителей причинно-следственных связей данного события с событиями верхнего и нижнего по отношению к нему уровней. Из такого рода элементов строится модель научно-технического прогресса, представляющая собой ориентированный граф.

Модель описанного вида реализована в практике прогнозных работ Института кибернетики. Она позволяет следить за ходом научно технического развития конкретной проблемной области, анализировать тенденции и оценивать совокупности задач (ситуации), синтезировать прогнозные варианты тех или иных изменений в ситуациях и оценивать следствия этих изменений. Математическое обеспечение модели базируется на вычислительных процедурах и алгоритмах (метода максимальных возможностей).

Специфически важная роль во всей излагаемой концепции прогнозирования принадлежит методам информационного моделирования. Характерные свойства массовых потоков научно-технической информации предопределяют ряд возможностей анализа тенденций прогресса науки и техники по информационным сигналам - по изменению количественных и структурных параметров этих потоков.

Известны попытки разработать методы анализа информационных сигналов, содержащихся в потоках выданных патентных документов о мировом техническом опыте. Закодировав информацию, содержащуюся в патентах по определенному классу технических средств, можно определить те элементы и типы технических решений, по которым ускорение прироста новых данных существенно отлично от средних значений. Это явление предложено рассматривать как сигнал о том, что через 5-8 лет такого рода решения будут обновлять соответствующие характеристики практически применяемых средств техники.

В дальнейшем предстоит проверить прогнозное значение инженерно технических выводов, вытекающих из подобного анализа патентных данных. Процедура классификации содержания патентов и оценки прироста данных нуждается в совершенствовании с учетом существующих принципиальных различий в национальных системах патентования и в побудительных мотивах к патентованию новых идей, а также влияния на этот процесс конъюнктуры мирового рынка.

Интересные идеи пришли в область информационных методов анализа развития науки в связи с появившейся возможностью автоматизированного составления индексов связей (ИНС) между различными научными публикациями.

Подобным образом составляются ежегодно издаваемые перекрестные библиографические указатели информации по важнейшим разделам науки. Однако, как это нередко бывает в науке, очень скоро выяснились и другие его возможности, специфически важные для науковедения. ИНС оказался мощным и перспективным инструментом анализа тенденций развития науки, диагноза состояния междисциплинарных связей и прогнозирования ряда явлений в жизнедеятельности организма науки. Исходная предпосылка этих ценных для науковедения свойств ИНС содержится в том факте, что сеть фактического взаимовлияния, построенная по данным ИНС, является информационным отображением - моделью историко-логической сети связей реального процесса развития науки.

Используя хорошо известные сейчас математические методы, можно производить анализ информационных сетей любой сложности, получая объективные данные о фактическом взаимовлиянии, тенденциях в перераспределении усилий исследователей, интенсивности и направленности миграции научной информации из одних областей исследований во многие другие и т. п.

В типичных для нашего времени условиях широкого фронта научно исследовательских работ, колоссальных объемов информации и все возрастающего значения взаимодействия наук даже хорошо информированному и компетентному исследователю трудно оперативно уследить за изменениями в тактике решения научной проблемы, происходящими в разных странах. Изменения в структуре потоков информации - их чувствительный индикатор. На основе анализа этих изменений можно прогнозировать предстоящие потребности в возникновении новых специализированных научных учреждений, необходимость в существующих и новых журналах, назревающее обособление новых относительно самостоятельных научных направлений. Структура, интенсивность и направленность сетей фактического взаимовлияния позволяют также прогнозировать ожидаемые в отдельных областях крупные научные сдвиги, а иногда дают материал для объяснения причин низкой результативности тех или иных направлений.

В последние годы внимание науковедов привлекают возможности использования для анализа опыта развития науки методов исследования операций. Применительно к задачам программных и организационных прогнозов подобный подход начинает складываться в попытки создания экономико-математических моделей выбора вариантов развития и целесообразного распределения ресурсов, что весьма актуально с точки зрения последующего использования прогнозных данных.

4. Виды моделей

Теория подобия и моделирования, являющаяся, в сущности, теорией постановки и обработки проводимых экспериментальных и аналитических исследований, способна в значительной мере разрешить многие возникающие при этом трудности. Однако подобие и моделирование не могут становиться и не стали отдельной (специальной) наукой, хотя в гносеологическом плане выделяют некоторые общие свойства, присущие всем моделям. Эти свойства заключаются в наличии некоторой структуры статической и динамической, которая подобна или рассматривается в качестве подобной структуры другой системы. Любая модель, таким образом, находящийся в соответствии с изучаемым объектом или какой-либо из его сторон. В процессе изучения модель служит относительно самостоятельным «квазиобъектом», позволяющим получить при его исследовании некоторые знания о самом изучаемом объекте.

Концептуальные модели предполагают разработку и использование моделей, формируемых наблюдение в процессе обучения и наблюдения за объектом во время его функционирования. Модели позволяют оценивать значимость свойств целостности, выявлять свойства системы и приходить в некоторые состояние, определяемое ее собственной структурой. Иногда выделяют логические модели, которые строятся с помощью аппарата математической логики, а формальное построение используется далее для содержательной их интерпретации.

Кибернетические модели основываются на получении соотношений между входными и выходными функциями для некоего черного или серого ящика, представляющего изучаемое явление, без раскрытия его внутренней структуры.

Квазианалоговые модели и электронные модели занимаются синтезом цепей, являющихся моделями различных объектов, имеют особенно большое значение в настоящее время при решении задач, возникающих при проектировании и эксплуатации больших систем технического назначения.

Электронное моделирование позволяет успешно решать задачи объектов и явлений путем создания модели из комбинированных операционных блоков и проведения синтеза моделей. Набор универсальных комбинационных операционных блоков позволяет создавать универсальные и специализированные аналоговые машины (АВМ), связанные с универсальными цифровыми вычислительными машинами (ЭВМ).

В последнее время много внимания уделяется задачам синтеза в отличие от задач анализа. Синтез требует не просто определения характера процесса при заданных его начальных условиях, но определения таких воздействии на систему (и такое ее моделирование), при которых удалось бы выявить характер и величину воздействии, обеспечивающих в данной системе такой характер процессов, который желательно придать процессам в проектируемой или уже функционирующей системе.

Модель открывает большие возможности проверять предпосылки различных соотношений и допущений, принятых при математическом описании различных процессов, возникающих в аварийных условиях, и воспроизводить все действия персонала в условиях, близких к естественным, необходимых для устранения аварийных ситуации, т. е. осуществить психологическое моделирование операции. Подобие и моделирование не только находятся в противоречии с аналитическими методами, применяющими цифровые вычислительные машины, но, напротив, подкрепляют их, обеспечивая проверку аналитических методов, способствуя уверенности в их применениях.

5. Физическое и аналоговое подобие в моделировании

Поставленная задача может быть осуществлена:

1) при натуральном моделировании, когда в объект, подлежащий исследованию, не вносят изменений и не создают специальных установок (производственный эксперимент); при моделировании, осуществляемом путем обобщения сведений о явлениях или отдельных процессах, происходящих в натуре, и т. д.;

2) на специальных моделях и стендах.

Физическая модель (например, энергосистемы) представляет собой миниатюрную копию физически реальной системы. Для всякой модели всегда четко формулируется круг задач, который будет решаться с ее помощью. Это выявляет те части системы, которые должны быть воспроизведены на модели с наибольшей полнотой и точностью, требуемыми теорией подобия (условия соблюдения критериев подобия) и практической необходимостью.

Если явления в двух сопоставляемых системах имеют различную физическую природу, но некоторые наиболее интересные для данного исследования процессы, происходящие в двух системах, описываются формально одинаковыми дифференциальными уравнениями, то можно сказать, что одна система является прямой моделью-аналогом другой (структурное моделирование является разновидностью аналогового моделирования, при котором дифференциальные уравнения, описывающие физический процесс, представляются отдельными элементами). Применение прямых моделей-аналогов ограничено, поскольку не для всех задач можно выявить аналогию и подобрать модель. В этом отношении структурные модели, поэлементно моделирующие отдельные математические операции, более универсальны и обеспечивают большую точность.

Список литературы

1. Основы научных исследований: Учеб. для техн. вузов / В. И. Крутов, И. М. Грушко, В. В. Попов и др.; Под ред. В. И. Крутова, В. В. Попова. - М.: Высш. шк., 2009. - 400 с.: ил.

2. Основы научных исследований: Учеб. пособие / И. Г. Анкудинов, А. М. Митрофанов, О. Л. Соколов. - СПб.: СЗТУ, 2002. - 67 с.

3. Моделирование в научно-технических исследованиях. / А. Н. Лебедев. - М.: Радио и связь, 2007.

4. Основы инженерного творчества: Учеб. пособие для студентов вузов / А. И. Половинкин. - М.: Машиностроение, 2006.

5. Моделирование в научном познании. / Р. А. Браже, А. А. Гришина. - Ульяновск: УлГТУ, 2007. - 58 с.

Размещено на Allbest.ru


Подобные документы

  • Математическое и физическое подобие. Теоремы подобия. Моделирование. Методы подобия в механике. Движение математического маятника. Истечение тяжелой жидкости через водослив. Методы подобия и размерности в механике. Методы исследования деформаций.

    реферат [182,6 K], добавлен 01.10.2004

  • Понятие модели системы. Принцип системности моделирования. Основные этапы моделирования производственных систем. Аксиомы в теории модели. Особенности моделирования частей систем. Требования умения работать в системе. Процесс и структура системы.

    презентация [1,6 M], добавлен 17.05.2017

  • Роль научных разработок в развитии производства, этапы их внедрения. Стимулирование внедрения научных разработок в производство в России. Анализ внедрения и стимулирования внедрения научных разработок на ЗАО "ЧЭАЗ". Перспективы развития предприятия.

    курсовая работа [89,5 K], добавлен 02.12.2011

  • Исследование моделирования медицинского аппарата пульсовой аналитической системы. Задача оценки степени объективности метода моделирования применительно к объекту. Использование метода декомпозиции. Рекомендации по применению алгоритма моделирования.

    статья [23,6 K], добавлен 06.09.2017

  • Классификация научных документов и изданий, их виды и функциональные особенности. Исследование и оценка экономической эффективности темы. Рекомендуемый список литературы в соответствии с требованиями ГОСТ по теме "Экспертиза пищевых концентратов".

    контрольная работа [21,9 K], добавлен 02.12.2014

  • Операции конструктивного моделирования, трансформация линий деталей одежды. Общие сведения о покрое одежды, сохранение гармоничности композиции модели и пластичности линий в местах сопряжений, изменение признаков формы при сохранении ее общих пропорций.

    контрольная работа [10,6 M], добавлен 18.08.2010

  • Рассмотрение основных особенностей моделирования адаптивной системы автоматического управления, характеристика программ моделирования. Знакомство со способами построения адаптивной системы управления. Этапы расчета настроек ПИ-регулятора методом Куна.

    дипломная работа [1,3 M], добавлен 24.04.2013

  • Изучение теоретических основ и методов моделирования одежды для разных возрастных групп. Характеристика процесса моделирования одежды методом наколки. Принципы и правила перевода вытачек на ткань. Муляжный метод обработки формы. Наколка готовой выкройки.

    курсовая работа [1,2 M], добавлен 06.08.2013

  • Изучение методов моделирования в металлургии, понятие эксперимента и условия его проведения. Основные уравнения современной вычислительной гидрогазодинамики. Проведение моделирования нагрева одной, двух, четырех заготовок в печи высокоточного нагрева.

    дипломная работа [11,6 M], добавлен 22.07.2012

  • Области применения математического моделирования. Открытая проточная емкость с вентилями на входе и выходе: физическое описание, уравнение баланса. Двухъячеечный рециркуляционный бак с обратным потоком. Модель смесительного бака идеального перемешивания.

    курсовая работа [1,3 M], добавлен 14.10.2012

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.