Производство чугуна

Термическая обработка металлов. Отжиг второго рода. Построение кривых охлаждения и нагревания стали и чугунов. Структурные превращения стали, чугуна. Устройство доменной печи. Зависимость свободной энергии структурных составляющих сталей от температуры.

Рубрика Производство и технологии
Вид реферат
Язык русский
Дата добавления 15.12.2013
Размер файла 917,5 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

Содержание

Введение

Производство чугуна

Термическая обработка металлов. Отжиг второго рода

Построение кривых охлаждения и нагревания стали и чугунов. Структурные превращения стали и чугуна при С = 0, 4%

Заключение

Список используемых источников

Введение

Материаловедение - обширная область знаний, наука, которая, базируясь на основных положениях физики твёрдого тела, физической химии и электрохимии, исследует и направленно использует взаимосвязь структуры и свойств для улучшения свойств применяемых материалов или для создания новых материалов с заданными свойствами. Главное в материаловедении - это научно обоснованное предсказание поведения применяемых в технике материалов.

Материаловедение - научная дисциплина о структуре, свойствах и назначении материалов. Свойства технических материалов формируются в процессе их изготовления. При одинаковом химическом составе, но разной технологии изготовления, образуется разная структура, и вследствие - свойства.

Целью материаловедения является изучение закономерностей формирования структуры и свойств материалов методами их упрочнения для эффективного использования в технике.

Основная задача материаловедения - установить зависимость между составом, строением и свойствами, изучить термическую, химико-термическую обработку и другие способы упрочнения, сформировать знания о свойствах основных разновидностей материалов.

Началом развития материаловедения можно считать тот момент, когда человек впервые начал выбирать, что ему взять в руку - палку или камень, то есть зарождение материаловедения совпадает с началом каменного века. Следовательно материаловедение - это одна из старейших форм прикладной науки, прошедшая вместе с человечеством долгий путь от примитивной обработки камня и изготовления простейшей керамики и заканчивая современными сверхпопулярными нанотехнологиями. Долгое время металлургия и металловедение превалировали в материаловедении, то есть наука о материалах приравнивалась фактически к науке о металлах. Современное материаловедение также базируется на металловедении, однако помимо металлов и сплавов материаловедение изучает множество других разнообразных материалов как по назначению (пластики, полупроводники, биоматериалы), так и по составу (углеродные материалы, керамика, полимеры и т. д.).

Материаловедение в машиностроении изучает разделы: металловедение и термическая обработка металлов, а также неметаллические материалы.

Спектр существующих материалов чрезвычайно широк и выбор оптимального материала для тех или иных условий применения может быть достаточно сложной задачей. К машиностроительным материалам прежде всего относятся сплавы на основе железа (сталь и чугун), а также цветные металлы и сплавы. К металлическим материалам относятся и материалы порошковой металлургии. Неметаллические материалы различают по основным классам: резина, керамика, стекло, пластические массы, ситаллы. Композиционные материалы - сложные или составные материалы, состоящие из двух разнородных материалов (например: стекла и пластмассы - стеклопластики) принято классифицировать по типу структуры, материалу матрицы, назначению и способу изготовления.

Производство чугуна

Чугун - железоуглеродистый сплав, содержащий более 2% углерода. Кроме углерода, в нем всегда присутствуют кремний (до 4%), марганец (до 2%), а также фосфор и сера. Чугун является основным исходным материалом для получения стали, на что расходуется примерно 80-85% всего чугуна.

Железные руды - основной исходный материал для выплавки чугуна. По типу рудного минерала руды бывают следующих основных видов.

Красный железняк. Рудный минерал - гематит, безводная окись железа Fe2O3 (70% Fe). Руда обычно содержит 50-60% Fe. Это наиболее распространенный вид руды во всем мире.

Магнитный железняк. Рудный минерал - магнетит, магнитная окись железа Fe3O4 (72, 4% Fe), в руде 55-60% Fe.

Бурый железняк. Рудный минерал - водные окислы железа nFe2O3 · mH2O (52-66% Fe). В руде обычно содержится 30-50% Fe.

Шпатовый железняк. Рудный минерал - сидерит, карбонат железа FeCO3 (48, 3% Fe), в руде обычно 30-40% Fe.

Доменные флюсы необходимы для удаления из доменной печи тугоплавкой пустой породы руды и золы топлива. Сплавляясь с флюсом, они образуют легкоплавкий сплав - доменный шлак; в расплавленном состоянии он удаляется из печи через шлаковую летку. Кроме того, флюс должен обеспечить получение шлака с необходимым химическим составом и физическими свойствами, что в значительной мере определяет состав чугуна. Флюсы выбирают в зависимости от пустой породы руды. В отечественных железных рудах пустая порода, как правило, содержит избыток SiO2. Поэтому в качестве флюса используют сильноосновные материалы, главным образом известняк CaCO3.

Рисунок 1 - Устройство доменной печи

Доменная печь - вертикальная печь шахтного типа. Ее высота (до 35 м) примерно в 2, 5-3 раза больше диаметра.

Стенки печи выкладывают из огнеупорных материалов - в основном из шамота. Нижнюю часть горна и его основание (лещадь) выполняют из особо огнеупорных материалов - углеродистых (графитизированных) блоков. Для повышения стойкости огнеупорной кладки в ней устанавливают (примерно на 3/4 высоты печи) металлические холодильники, по которым циркулирует вода. Для уменьшения расхода воды (для крупных печей до 70000 м3 в сутки) применяют испарительное охлаждение, основанное на том, что поглощаемое тепло используется для парообразования.

Кладка печи снаружи заключена в стальной кожух толщиной до 40 мм. Для уменьшения нагрузки на нижнюю часть печи ее верхнюю часть (шахту) сооружают на стальном кольце, опирающемся на колонны.

Термическая обработка металлов. Отжиг второго рода

Свойства сплава зависят от его структуры. Основным способом, позволяющим изменять структуру, а, следовательно, и свойства является термическая обработка.

Основы термической обработки разработал Чернов Д. К.. В дальнейшем они развивались в работах Бочвара А. А., Курдюмова Г. В., Гуляева А. П.

Термическая обработка представляет собой совокупность операций нагрева, выдержки и охлаждения, выполняемых в определенной последовательности при определенных режимах, с целью изменения внутреннего строения сплава и получения нужных свойств (представляется в виде графика в осях температура - время, см. рис. 12. 1).

Рисунок 1 - Графики различных видов термообработки: отжига (1, 1а), закалки (2, 2а), отпуска (3), нормализации (4)

Различают следующие виды термической обработки:

1. Отжиг 1 рода - возможен для любых металлов и сплавов.

Его проведение не обусловлено фазовыми превращениями в твердом состоянии.

Нагрев, при отжиге первого рода, повышая подвижность атомов, частично или полностью устраняет химическую неоднородность, уменьшает внутреннее напряжения.

Основное значение имеет температура нагрева и время выдержки. Характерным является медленное охлаждение

Разновидностями отжига первого рода являются:

диффузионный;

рекристаллизационный;

отжиг для снятия напряжения после ковки, сварки, литья.

2. Отжиг II рода- отжиг металлов и сплавов, испытывающих фазовые превращения в твердом состоянии при нагреве и охлаждении.

Проводится для сплавов, в которых имеются полиморфные или эвтектоидные превращения, а также переменная растворимость компонентов в твердом состоянии.

Проводят отжиг второго рода с целью получения более равновесной структуры и подготовки ее к дальнейшей обработке. В результате отжига измельчается зерно, повышаются пластичность и вязкость, снижаются прочность и твердость, улучшается обрабатываемость резанием.

Характеризуется нагревом до температур выше критических и очень медленным охлаждением, как правило, вместе с печью (рис. 12. 1 (1, 1а)).

При отжиге 2-го рода в металле или сплаве происходят качественные или количественные изменения фазового состава при нагревании и обратные изменения при охлаждении.

Принципиальную возможность применения к сплаву отжига 2-го рода можно установить по диаграмме состояния.

В твердом состоянии протекают разнообразные фазовые превращения: полиморфное, эвтектоидное, перитектоидное, растворение одной фазы в другой при нагревании и обратное выделение при охлаждении и др.

Отжиг 2-го рода можно проводить с полным изменением фазового состава, когда фазы, существовавшие при комнатной температуре, исчезают при нагревании, а фазы, стабильные при повышенной температуре, исчезают при охлаждении.

Для этого металл или сплав следует нагреть выше критической точки, например сплавы Х1 нагревают до температуры t1 выше точки t0. Если сплавы Х1 на рисунке, а - в нагреть до температуры t2, которая ниже, чем t0, то фазовый состав неполностью изменится - при температуре отжига частично сохраняется низкотемпературная фаза б. (рис. 2)

Рисунок 2 - Системы с различными фазовыми превращениями в твердом состоянии

Если изменение фазового состава связано только с переменной растворимостью компонентов в твердом состоянии (сплав Х2), то при термообработке вообще невозможна полная фазовая перекристаллизация, так как основная фаза а, в которой растворяется избыточная фаза в, стабильна и при низких, и при высоких температурах.

В сплавах этого типа при нагревании и охлаждении изменяется только количественное соотношение фаз (включая полное исчезновение одной из них при нагревании выше 0). Неполное изменение фазового состава при отжиге происходит и в сплаве Х3, так как в нем высокотемпературная фаза стабильна при комнатной температуре.

Отжиг 2-го рода принципиально применим к любым металлам и сплавам, в которых в зависимости от температуры в твердом состоянии качественно или количественно изменяется фазовый состав. Практическая целесообразность отжига 2-го рода определяется тем, насколько сильно структурные изменения влияют на свойства металла или сплава.

3. Закалка - проводится для сплавов, испытывающих фазовые превращения в твердом состоянии при нагреве и охлаждении, с целью повышение твердости и прочности путем образования неравновесных структур (сорбит, троостит, мартенсит).

Характеризуется нагревом до температур выше критических и высокими скоростями охлаждения (рис. 12. 1 (2, 2а)).

4. Отпуск- проводится с целью снятия внутренних напряжений, снижения твердости и увеличения пластичности и вязкости закаленных сталей.

Характеризуется нагревом до температуры ниже критической А (рис. 12. 1 (3)). Скорость охлаждения роли не играет. Происходят превращения, уменьшающие степень неравновесности структуры закаленной стали.

Термическую обработку подразделяют на предварительную и окончательную.

Предварительная - применяется для подготовки структуры и свойств материала для последующих технологических операций (для обработки давлением, улучшения обрабатываемости резанием).

Окончательная - формирует свойство готового изделия.

Построение кривых охлаждения и нагревания стали и чугунов. Структурные превращения стали и чугуна при С = 0, 4%

сталь чугун металл

Превращения, протекающие в структуре стали при нагреве и охлаждении.

Любая разновидность термической обработки состоит из комбинации четырех основных превращений, в основе которых лежат стремления системы к минимуму свободной энергии (рис 12. 2).

Рисунок 12. 2. Зависимость свободной энергии структурных составляющих сталей от температуры: аустенита (FA), мартенсита (FM), перлита (FП)

1. Превращение перлита в аустенит , происходит при нагреве выше критической температуры А1, минимальной свободной энергией обладает аустенит.

2. Превращение аустенита в перлит, происходит при охлаждении ниже А1, минимальной свободной энергией обладает перлит:

3. Превращение аустенита в мартенсит, происходит при быстром охлаждении ниже температуры нестабильного равновесия

4. Превращение мартенсита в перлит ; - происходит при любых температурах, т. к. свободная энергия мартенсита больше, чем свободная энергия перлита.

Механизм основных превращений

1. Превращение перлита в аустетит

Превращение основано на диффузии углерода, сопровождается полиморфным превращением, а так же растворением цементита в аустените.

Для исследования процессов строят диаграммы изотермического образования аустенита (рис. 12. 3). Для этого образцы нагревают до температуры выше и выдерживают, фиксируя начало и конец превращения.

Рис. 12.3. Диаграмма изотермического образования аустенита: 1 - начало образования аустенита; 2 - конец преобразования перлита в аустенит; 3 - полное растворение цементита.

С увеличением перегрева и скорости нагрева продолжительность превращения сокращается.

Механизм превращения представлен на рис. 12. 4.

Рис. 12. 4. Механизм превращения перлита в аустенит.

Превращение начинаются с зарождения центров аустенитных зерен на поверхности раздела феррит - цементит, кристаллическая решеткаперестраивается в решетку.

Время превращения зависит от температуры, так как с увеличением степени перегрева уменьшается размер критического зародыша аустенита, увеличиваются скорость возникновения зародышей и скорость их роста.

Образующиеся зерна аустенита имеют вначале такую же концентрацию углерода, как и феррит. Затем в аустените начинает растворяться вторая фаза перлита - цементит, следовательно, концентрация углерода увеличивается. Превращение в идет быстрее. После того, как весь цементит растворится, аустенит неоднороден по химическому составу: там, где находились пластинки цементита концентрация углерода более высокая. Для завершения процесса перераспределения углерода в аустените требуется дополнительный нагрев или выдержка.

Величина образовавшегося зерна аустенита оказывает влияние на свойства стали.

Рост зерна аустенита. Образующиеся зерна аустенита получаются мелкими (начальное зерно). При повышении температуры или выдержке происходит рост зерна аустенита. Движущей силой роста является разность свободных энергий мелкозернистой (большая энергия) и крупнозернистой (малая энергия) структуры аустенита.

Стали различают по склонности к росту зерна аустенита. Если зерно аустенита начинает быстро расти даже при незначительном нагреве выше температуры, то сталь наследственно крупнозернистая. Если зерно растет только при большом перегреве, то сталь наследственно мелкозернистая.

Склонность к росту аустенитного зерна является плавочной характеристикой. Стали одной марки, но разных плавок могут различаться, так как содержат неодинаковое количество неметаллических включений, которые затрудняют рост аустенитного зерна.

Ванадий, титан, молибден, вольфрам, алюминий - уменьшают склонность к росту зерна аустенита, а марганец и фосфор - увеличивают ее.

Заэвтектоидные стали менее склонны к росту зерна.

При последующем охлаждении зерна аустенита не измельчаются. Это следует учитывать при назначении режимов термической обработки, так как от размера зерна зависят механические свойства. Крупное зерно снижает сопротивление отрыву, ударную вязкость, повышает порог хладоломкости.

Различают величину зерна наследственного и действительного.

Для определения величины наследственного зерна, образцы нагревают до 930oС и затем определяют размер зерна.

Действительная величина зерна - размер зерна при обычных температурах. полученный после той или иной термической обработки.

Неправильный режим нагрева может привести либо к перегреву, либо к пережогу стали.

Перегрев. Нагрев доэвтектоидной стали значительно выше температурыприводит к интенсивному росту зерна аустенита. При охлаждении феррит выделяется в виде пластинчатых или игольчатых кристаллов. Такая структура называется видманштеттовая структура и характеризуется пониженными механическими свойствами. Перегрев можно исправить повторным нагревом до оптимальных температур с последующим медленным охлаждением.

Пережог имеет место, когда температура нагрева приближается к температуре плавления. При этом наблюдается окисление границ зерен, что резко снижает прочность стали. Излом такой стали камневидный. Пережог - неисправимый брак.

2. Превращение аустенита в перлит при медленном охлаждении.

Превращение связано с диффузией углерода, сопровождается полиморфным превращением , выделением углерода из аустенита в виде цементита, разрастанием образовавшегося цементита.

В зависимости от степени переохлаждения различают три области превращения. Вначале, с увеличением переохлаждения скорость превращения возрастает, а затем убывает. При температуре 727oС и ниже 200oС скорость равна нулю. При температуре 200 С равна нулю скорость диффузии углерода.

Закономерности превращения

Образцы нагревают до температуры, при которой структура состоит из однородного аустенита (7700 С). Затем переносят в термостаты с заданной температурой (интервал 25 - 500 С). Превращение аустенита можно легко обнаружить с помощью наблюдений за изменением магнитных характеристик, так как аустенит парамагнитен, а феррит и цементит обладают магнитными свойствами.

Получают серию кинетических кривых (рис. 12. 5 а), которые показывают количество образовавшегося перлита в зависимости от времени, прошедшего с начала превращения.

Рис. 12. 5. Кинетические кривые превращения аустенита при охлаждении (а) ; диаграмма изотермического превращения аустенита (б)

В начале наблюдается инкубационный подготовительный период, время, в течение которого сохраняется переохлажденный аустенит. Превращение протекает с различной скоростью и достигает максимума при образовании50% продуктов распада.

Затем скорость начинает уменьшаться и постепенно затухает. С увеличением степени переохлаждения устойчивость аустенита уменьшается, а затем увеличивается.

Горизонтальная линия Мн показывает температуру начала бездиффузного мартенситного превращения. Такие диаграммы называются диаграммами изотермического превращения аустенита (рис. 12. 5 б).

При малых степенях переохлаждения, в области температур 727…550°С, сущность превращения заключается в том, что в результате превращения аустенита образуется механическая смесь феррита и цементита, состав которой отличается от состава исходного аустенита. Аустенит содержит 0, 8% углерода, а образующиеся фазы: феррит -0, 02%, цементит - 6, 67% углерола.

Время устойчивости аустенита и скорость его превращения зависят от степени переохлаждения.

Максимальная скорость превращения соответствует переохлаждению ниже температуры на 150…200o С, то есть соответствует минимальной устойчивости аустенита.

Механизм превращения представлен на рис. 12. 6.

Рис. 12. 6. Механизм превращения аустенита в перлит

При образовании перлита из аустенита ведущей фазой является цементит. Зарождение центров кристаллизации цементита облегчено на границе аустенитных зерен. Образовавшаяся пластинка цементита растет, удлиняется и обедняет соседние области углеродом. Рядом с ней образуются пластинки феррита. Эти пластинки растут как по толщине, так и по длине. Рост образовавшихся колоний перлита продолжается до столкновения с кристаллами перлита, растущими из других центров.

Свойства и строение продуктов превращения аустенита зависят от температуры, при которой происходит процесс его распада.

Толщина соседних пластинок феррита и цементита определяет дисперсность структуры и обозначается . Она зависит от температуры превращения. В зависимости от дисперсности продукты распада имеют различное название.

мм - перлит.

Образуется при переохлаждении до температуры Т = 650…700 oС, или при скорости охлаждения Vохл = 30…60 oС/ч. Твердость составляет 180…250 НВ.

мм - сорбит

Образуется при переохлаждении до температуры Т = 600…650 oС, или при скорости охлаждения Vохл = 60 oС/с. Твердость составляет 250…350 НВ. Структура характеризуется высоким пределом упругости, достаточной вязкостью и прочностью.

мм - троостит

Образуется при переохлаждении до температуры Т = 550…600 oС, или при скорости охлаждения Vохл = 150 oС/с. Твердость составляет 350…450 НВ. Структура характеризуется высоким пределом упругости, малой вязкостью и лпастичностью.

Твердость ферритно-цементитной смеси прямопропорциональна площади поверхности раздела между ферритом и цементитом..

Если температура нагрева незначительно превышала теипературу А и полученый аустенит неоднороден по составу, то при малой степени переохлаждения образуется зернистый перлит.

Промежуточное превращение

При температуре ниже 550 oС самодиффузия атомов железа практически не происходит, а атомы углерода обладают достаточной подвижностью.

Механизм превращения состоит в том, что внутри аустенита происходит перераспределение атомов углерода и участки аустенита, обогащенные углеродом превращаются в цементит.

Превращение обедненного углеродом аустенита в феррит происходит по сдвиговому механизму, путем возникновения и роста зародышей феррита. Образующиеся при этом кристаллы имеют игольчатую форму.

Такая структура, состоящая из цементита и феррита, называется бейнитом. Особенностью является повышенное содержание углерода в феррите (0. 1…0. 2%).

Дисперсность кристаллов феррита и цементита зависят от температуры превращения.

При температуре мм - верхний бейнит. Структура характеризуется недостаточной прочностью, при низких относительном удлинении () и ударной вязкости ().

При температуре 300oС - - нижний бейнит. Структура характеризуется высокой прочностью в сочетании с пластичностью и вязкостью.

Таким образом, основным фактором, определяющим свойства образующихся структур, является температура превращения.

Мартенситное превращение в отличие от перлитного имеет бездиффузионный характер. Мартенсит является основной структурой закаленной стали. Он имеет высокую твердость, зависящую от содержания углерода в стали. Чем больше содержится углерода в мартенсите, тем выше твердость в стали. Так, например, для стали с содержанием 0, 4% углерода твердость мартенсита составляет HRC 52-54. Мартенсит имеет совершенно отличную от других структур природу. При резком переохлаждении углерод не успевает выделиться из твердого раствора (аустенита) в виде частичек цементита, как это происходит при образовании перлита, сорбита и троостита. В этом случае происходит только перестройка решетки г-железа в решетку б-железа. Атомы углерода остаются в решетке б-железа (мартенсите) и поэтому сильно ее искажают.

Сталь с содержанием углерода 0, 4%. Структура стали представляет собой перлит и феррит. При температуре 723° в точке К1 перлит переходит в аустенит, и по мере повышения температуры происходит растворение свободного феррита в аустените.

Заключение

В первом вопросе данной работы рассмотрены процессы производство чугуна. Чугун - железоуглеродистый сплав, содержащий более 2% углерода. Кроме углерода, в нем всегда присутствуют кремний (до 4%), марганец (до 2%), а также фосфор и сера. Чугун является основным исходным материалом для получения стали, на что расходуется примерно 80-85% всего чугуна.

Во втором вопросе данной работы рассмотрены процессы термической обработка металлов в том числе отжиг второго рода.

Свойства сплава зависят от его структуры. Основным способом, позволяющим изменять структуру, а, следовательно, и свойства является термическая обработка.

Термическая обработка представляет собой совокупность операций нагрева, выдержки и охлаждения, выполняемых в определенной последовательности при определенных режимах, с целью изменения внутреннего строения сплава и получения нужных свойств.

Отжиг II рода- отжиг металлов и сплавов, испытывающих фазовые превращения в твердом состоянии при нагреве и охлаждении.

Проводится для сплавов, в которых имеются полиморфные или эвтектоидные превращения, а также переменная растворимость компонентов в твердом состоянии. Проводят отжиг второго рода с целью получения более равновесной структуры и подготовки ее к дальнейшей обработке. В результате отжига измельчается зерно, повышаются пластичность и вязкость, снижаются прочность и твердость, улучшается обрабатываемость резанием.

В третьем вопросе данной работы рассмотрено построение кривых охлаждения и нагревания стали и чугунов, а так же структурные превращения стали и чугуна при С = 0, 4%.

Основным фактором, определяющим свойства образующихся структур, является температура превращения. Мартенситное превращение в отличие от перлитного имеет бездиффузионный характер. Мартенсит является основной структурой закаленной стали. Он имеет высокую твердость, зависящую от содержания углерода в стали. Чем больше содержится углерода в мартенсите, тем выше твердость в стали. Так, например, для стали с содержанием 0, 4% углерода твердость мартенсита составляет HRC 52-54. Мартенсит имеет совершенно отличную от других структур природу. При резком переохлаждении углерод не успевает выделиться из твердого раствора (аустенита) в виде частичек цементита, как это происходит при образовании перлита, сорбита и троостита. В этом случае происходит только перестройка решетки г-железа в решетку б-железа. Атомы углерода остаются в решетке б-железа (мартенсите) и поэтому сильно ее искажают.

Сталь с содержанием углерода 0, 4%. Структура стали представляет собой перлит и феррит. При температуре 723° в точке К1 перлит переходит в аустенит, и по мере повышения температуры происходит растворение свободного феррита в аустените.

Список использованных источников

Металлургия и материаловедение: справочник / Циммерман Р., Гюнтер К. - М. : Металлургия, 1982. - 477с.

Гуляев А. П. Металловедение. - М. : Металлургия, 1977. - УДК669. 0 (075. 8)

Материаловедение: лекции / Мальцев И. М. - Ниж. Новгород: НГТУ, 1995 - 103с.

Основы материаловедения / Сажин В. Б. - М. : Теис, 2005. - 155с.

Технология конструкционных материалов и материаловедение: учебное пособие / Коротких М. Т. - Спб: СГПУ, 2004. - 104с.

Источник: Циммерман Р., Гюнтер К. Металлургия и материаловедение. Справ. изд. Пер. с нем. М. : Металлургия, 1982, 480 с.

Размещено на Allbest.ru


Подобные документы

  • Исходные материалы для выплавки чугуна. Устройство доменной печи. Выплавка стали в кислородных конвертерах, мартеновских, электрических печах. Продукты доменного производства. Производство меди, алюминия. Термическая и химико-термическая обработка стали.

    учебное пособие [7,6 M], добавлен 11.04.2010

  • Термическая обработка чугуна: понятие и виды. Микроструктура и свойства сталей после химико-термической обработки: цементация и азотирование. Зависимость твердости от содержания углерода по глубине цементованного слоя. Распределение азота по толщине слоя.

    реферат [541,9 K], добавлен 26.06.2012

  • Качественный и количественный состав чугуна. Схема доменного процесса как совокупности механических, физических и физико-химических явлений в работающей доменной печи. Продукты доменной плавки. Основные отличия чугуна от стали. Схемы микроструктур чугуна.

    реферат [768,1 K], добавлен 26.11.2012

  • Производство чугуна и стали. Конверторные и мартеновские способы получения стали, сущность доменной плавки. Получение стали в электрических печах. Технико-экономические показатели и сравнительная характеристика современных способов получения стали.

    реферат [2,7 M], добавлен 22.02.2009

  • Затратность процесса получения в доменной печи чистых по сере чугунов и разработка методов внедоменной десульфурации чугуна. Снижение затрат в сталеплавильном цехе в результате изменений технологии организации внепечной обработки стали магнием и содой.

    реферат [19,6 K], добавлен 06.09.2010

  • Сравнительная характеристика физико-химических, механических и специфических свойств продуктов черной металлургии - чугуна и стали. Виды чугуна, их классификация по структуре и маркировка. Производство стали из чугуна, ее виды, структура и свойства.

    реферат [36,1 K], добавлен 16.02.2011

  • Железоуглеродистые сплавы, физические и химические свойства, строение, полиморфные превращения; производство чугуна и доменный процесс. Термическая обработка стали: отжиг, отпуск, закалка. Медь и её сплавы, область применения, оксиды и гидрооксиды.

    курсовая работа [1,6 M], добавлен 17.10.2009

  • Термическая обработка металлов и ее основные виды. Превращения, протекающие в структуре стали при нагреве и охлаждении. Основы химико-термической обработки. Цементация, азотирование, нитроцементация и цианирование, борирование и силицирование стали.

    реферат [160,5 K], добавлен 17.12.2010

  • Расшифровка серого чугуна, характеризующегося пределом прочности в 20 МПа. Способ получения и термическая обработка материала. Схема доменной печи. Схема отливки чугуна методом литья в кокиль. Характеристика станка, инструментов и приспособлений.

    курсовая работа [4,2 M], добавлен 08.04.2011

  • Построение кривых охлаждения для сплавов с заданным количеством углерода с использованием диаграммы железо-цементит. Состав, свойства и примеры применения легированных сталей, чугуна, высокопрочного сплава. Термическая обработка деталей. Газовая сварка.

    контрольная работа [277,4 K], добавлен 01.03.2016

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.