Процесс каталитического риформинга
Обоснование назначения каталитической ароматизации водородсодержащего газа. Характеристика сырья и продуктов используемых для риформинга в современной промышленности. Особенности технологических параметров процесса глубокой переработки нефти и газа.
Рубрика | Производство и технологии |
Вид | реферат |
Язык | русский |
Дата добавления | 28.10.2013 |
Размер файла | 15,9 K |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
Размещено на http://www.allbest.ru/
Назначение процесса каталитического риформинг.
Процесс каталитического риформинга предназначен для повышения детонационной стойкости бензинов и получения индивидуальных ароматических углеводородов, главным образом бензола, толуола ксилолов - сырья нефтехимии.
Важное значение имеет получение в процессе дешевого водородсодержащего газа для использования в других гидрокаталитических процессах. Значение процессов каталитического риформинга в нефтепереработке существенно возросло в 90-е гг., в связи с необходимостью производства неэтилированного высокооктанового автобензина.
Сырье и продукты каталитического риформинга.
Бензиновые фракции большинства нефтей содержат 60-70% парафиновых, 10% ароматических и 20-30% пяти и шестичленных нафтеновых углеводородов. Среди парафиновых преобладают углеводороды нормального строения их изомеры. Нафтены представлены преимущественно алкилгомологами циклогексана и пентана, а ароматические - алкил- бензолами. Такой состав обусловливает низкое октановое число прямогонного бензина, обычно не превышающего 50 пунктов.
Помимо прямогонных бензинов, как сырье каталитического риформинга используют бензины вторичных процессов - коксования и термического крекинга после их глубокого облагораживания, а также гидрокрекинга.
Выход прямогонных бензинов относительно невелик (около 15-20% от нефти). Кроме того, часть бензинов используется и для других целей (сырье пиролиза, производств водорода, получение растворителей и т. д.).
Поэтому общий объем сырья, перерабатываемого на установках каталитического риформинга, не превышает обычно потенциального содержания бензиновых фракций в нефтях.
В процессе каталитического риформинга образуются газы и жидкие продукты (риформат). Риформат можно использовать как высокооктановый компонент автомобильных и авиационных бензинов или направлять на выделение ароматических углеводородов, а газ, образующийся при риформинге, подвергают разделению.
Технологические параметры проведения процесса.
Температура. Применительно к каталитическому риформингу повышение температуры способствует образованию ароматических углеводородов и препятствует протеканию обратной реакции, а также превращению некоторых изомеров нафтеновых углеводородов в парафиновые, которые легче подвергаются гидрокрекингу, С повышением температуры в процессе каталитического риформинга уменьшается выход стабильного бензина и снижается концентрация водорода в циркулирующем газе. Это объясняется тем, что при более высоких температурах увеличивается роль гидрокрекинга. С увеличением температуры возрастает выход более легких углеводородов - пропана, бутана и изобутана.
Объемная скорость. Объемную скорость можно повысить, увеличив расход свежего сырья или уменьшив загрузку катализатора в реакторы. В результате уменьшается время контакта реагирующих и промежуточных продуктов с катализатором.
С повышением объемной скорости увеличивается выход стабильного продукта и содержание водорода в циркулирующем газе, снижается выход водорода и легких углеводородов и, что особенно важно, уменьшается выход ароматических углеводородов. Таким образом, с повышением объемной скорости ресурсы ароматических, углеводородов при каталитическом риформинге снижаются, а выход бензина, хотя и увеличивается, но октановое число его становится меньше; давление насыщенных паров бензина и содержание в нем ароматических углеводородов и фракций, выкипающих до 100°С, также уменьшаются.
Давление. Высокое давление способствует более длительной работе катализатора, частично это происходит вследствие того, что закоксовывание катализатора (в особенности платины) и чувствительность его к отравлению сернистыми и другими ядами значительно уменьшаются с повышением давления.
Повышение давления увеличивает скорость реакций гидрокрекинга, при этом равновесие сдвигается в сторону образования парафинов. Снижение рабочего, а следовательно, и парциального давления водорода способствует увеличению степени ароматизации парафиновых и нафтеновых углеводородов.
Соотношение циркулирующий водородсодержащий газ: сырье можно регулировать в широких пределах. Нижний предел определяется минимально допустимым количеством газа, подаваемого для поддержания заданного парциального давления водорода, а верхний - мощностью газокомпрессорного оборудования.
Увеличение соотношения водородсодержащий газ: сырье проявляется в двух противоположных направлениях. Повышение парциального давления водорода подавляет реакции дегидрирования, но, с другой стороны, увеличение количества газа, циркулирующего через реактор, уменьшает падение в них температуры, в результате чего средняя температура катализатора повышается, и скорость протекающих реакций увеличивается.
Катализаторы каталитического риформинга.
Процесс каталитического риформинга осуществляют на функциональных катализаторах, сочетающих кислотную и дегидрирующую функции. Реакции гидрирования и дегидрирования протекают на металлических центрах платины или платины, промотированной добавками рения, иридия, олова, галлия, германия и др., тонко диспергированных на носителе. Кислотную функцию в промышленных катализаторах риформинга выполняет носитель, в качестве которого используют оксид алюминия. Для усиления и регулирования кислотной функции носителя в состав катализатора вводят галоген: фтор или хлор. В настоящее время применяют только хлорсодержащие катализаторы. Содержание хлора составляет от 0,4-0,5 до 2,0% масс.
Функциональный механизм доказан на примере использования катализаторов, содержащих только кислотные центры или только металлические центры, которые оказались исключительно малоактивными, в то время как даже механическая их смесь была достаточно активна. Благодаря функциональному катализу удается коренным образом преобразовать углеводородный состав исходного бензина и повысить его октановую характеристику на 40-50 пунктов.
Платина на катализаторе риформинга не только ускоряет реакции гидрирования-дегидрирования, но и замедляет образование кокса на его поверхности. Обусловливается это тем, что адсорбированный на платине водород сначала диссоциируется, затем активный (атомарный) водород диффундирует на поверхности катализатора к кислотным центрам, ответственным за образование коксовых отложений. Коксогены гидрируются и десорбируются с поверхности. В этой связи скорость образования кокса при прочих равных условиях зависит от давления водорода. Поэтому минимальная концентрация платины в катализаторах риформинга определяется необходимостью прежде всего поддерживать их поверхность в «чистом» виде, а не только с целью образования достаточного числа активных металлических центров на поверхности носителя.
В монометаллических алюмоплатиновых катализаторах риформинга содержание платины составляет 0,3-0,8% масс. Очень важно, чтобы платина была достаточно хорошо диспергирована на поверхности носителя. С увеличением дисперсности платины повышается активность катализатора.
Прогресс каталитического риформинга в последние годы был связан с разработкой и применением сначала биметаллических и затем полиметаллических катализаторов, обладающих повышенной активностью, селективностью и стабильностью.
Используемые металлы можно разделить на две группы. К первой из них принадлежат металлы VIII ряда: рений и иридий, известные как катализаторы гидро-дегидрогенизации и гидрогенолиза. К другой группе модификаторов относятся металлы, практически неактивные в реакциях риформинга, такие, как германий, олово и свинец (IV группа), галлий, индий и редкоземельные элементы (III группа) и кадмий (из II группы). К биметаллическим катализаторам относятся платинорениевые и иридиевые, содержащие 0,3-0,4% масс, платины и примерно столько же Re и 1 г. Рений или иридий образуют с платиной биметаллический сплав, точнее кластер, типа Pt-Re, который препятствует рекристаллизации - укрупнению кристаллов платины при длительной эксплуатации процесса. Биметаллические кластерные кристаллизаторы (получаемые обычно нанесением металлов, обладающих каталитической активностью, особенно благородных, на носитель с высокоразвитой поверхностью) характеризуются, кроме высокой термостойкости, еще одним важным достоинством - повышенной активностью по отношению к диссоциации молекулярного водорода и миграции атомарного водорода (спилловеру). В результате отложение кокса происходит на более удаленных от биметаллических центров катализатора, что способствует сохранению активности при высокой его закоксованности (до 20% масс, кокса на катализаторе). Из биметаллических катализаторов иридиевый превосходит по стабильности и активности в реакциях дегидроциклизации парафинов не только монометаллический, но и платинорениевый катализатор. Применение биметаллических катализаторов позволило снизить давление риформинга (от 3,5 до 2-1,5 МПа) и увеличить выход бензина с октановым числом по исследовательскому методу до 95 пунктов примерно на 6%.
Полиметаллические кластерные катализаторы обладают стабильностью биметаллических, но характеризуются повышенной активностью, лучшей селективностью и обеспечивают более высокий выход риформата. Срок их службы составляет 6-7 лет. Эти достоинства их обусловливаются, по-видимому, тем, что модификаторы образуют с платиной (и промоторами) поверхностные тонко диспергированные кластеры с кристаллическими структурами, геометрически более соответствующими и энергетически более выгодными для протекания реакций ароматизации через хемосорбцию. Среди других преимуществ полиметаллических катализаторов следует отметить возможность работы при пониженном содержании платины и хорошую регенерируемость.
Успешная эксплуатация полиметаллических катализаторов возможна лишь при выполнении определенных условий:
- содержание серы в сырье риформинга не должно превышать 1-Ю"4% масс, что требует глубокого облагораживания сырья в блоке предварительной гидроочистки;
- содержание влаги в циркулирующем газе не должно превышать 2-103 - 3-Ю-3% мольных;
- пуск установки на свежем и генерированном катализаторе требует использования в качестве инертного газа чистого азота (полученного, например, ректификацией жидкого воздуха);
- для восстановления катализатора предпочтительно использование электролитического водорода.
В настоящее время отечественной промышленностью вырабатываются три типа катализаторов риформинга монометаллические (АП-56 и АП-64), биметаллические (КР-101 и КР-102) и полиметаллические (КР-104, КР-106, КР-108 и платиноэрионитовый СГ-ЗП).
Список использованной литературы
каталитический ароматизация риформинг
1. Ахметов С.А. Технология глубокой переработки нефти и газа: Учебное пособие для вузов. Уфа, - 2002. 627 с.
2. Магарил Р.З. Теоретические основы процессов переработки нефти. М., - 1967. 312 с.
Размещено на Allbest.ru
Подобные документы
Общая схема и этапы переработки нефти. Процесс атмосферно-вакуумной перегонки. Реакторный блок каталитического крекинга. Установка каталитического риформинга, ее назначение. Очистка и переработка нефти, этапы данного процесса, его автоматизация.
презентация [6,1 M], добавлен 29.06.2015Понятие каталитического риформинга. Влияние замены катализатора на увеличение мощности блока каталитического риформинга секции 200 на установке ЛК-6У Павлодарского нефтехимического завода после модернизации производства. Технологическая схема установки.
презентация [2,3 M], добавлен 24.05.2012Характеристика вакуумных дистилляторов и их применение. Выбор и обоснование поточной схемы глубокой переработки нефти. Расчет основных аппаратов (реактора, колонны разделения продуктов крекинга, емкости орошения) установки каталитического крекинга.
курсовая работа [95,9 K], добавлен 07.11.2013Технико-экономическая характеристика нефтехимического производства: сырье, продукты. Технологический процесс промышленной установки каталитического риформинга предприятия ОАО "Уфанефтехим". Информационные системы и экологическая политика организации.
отчет по практике [284,6 K], добавлен 20.05.2014Назначение и описание процессов переработки нефти, нефтепродуктов и газа. Состав и характеристика сырья и продуктов, технологическая схема с учетом необходимой подготовки сырья (очистка, осушка, очистка от вредных примесей). Режимы и стадии переработки.
контрольная работа [208,4 K], добавлен 11.06.2013Аппаратура технологического процесса каталитического риформинга. Особенности рынка средств автоматизации. Выбор управляющего вычислительного комплекса и средств полевой автоматики. Расчет и выбор настроек регуляторов. Технические средства автоматизации.
дипломная работа [1,6 M], добавлен 23.05.2015Схема переработки нефти. Сущность атмосферно-вакуумной перегонки. Особенности каталитического крекинга. Установка каталитического риформинга с периодической регенерацией катализатора компании Shell. Определение качества бензина и дизельного топлива.
презентация [6,1 M], добавлен 22.06.2012Характеристика современного состояния нефтегазовой промышленности России. Стадии процесса первичной переработки нефти и вторичная перегонка бензиновой и дизельной фракции. Термические процессы технологии переработки нефти и технология переработки газов.
контрольная работа [25,1 K], добавлен 02.05.2011Значение процесса каталитического риформинга бензинов в современной нефтепереработке и нефтехимии. Методы производства ароматических углеводородов риформингом на платиновых катализаторах в составе комплексов по переработке нефти и газового конденсата.
курсовая работа [556,9 K], добавлен 16.06.2015Адиабатический реактор установки каталитического риформинга для превращения исходных бензиновых фракций. Принцип работы реактора риформинга. Приемка фундамента, оборудования и транспортировка. Расчет и выбор грузоподъемных средств и такелажной оснастки.
курсовая работа [851,1 K], добавлен 01.06.2010