Эпюры внутренних усилий при прямом изгибе
Возникновение поперечной силы и внутреннего изгибающего момента при прямом изгибе в поперечном сечении на примере расчетной схемы консольной балки. Дифференциальные зависимости между внутренними усилиями при изгибе. Построение эпюр внутренних усилий.
Рубрика | Производство и технологии |
Вид | лекция |
Язык | русский |
Дата добавления | 30.07.2013 |
Размер файла | 207,6 K |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
Размещено на http://www.allbest.ru/
Лекция. Эпюры внутренних усилий при прямом изгибе
Прямым изгибом называется такой вид простого сопротивления, когда внешние силы приложены перпендикулярно продольной оси бруса (балки) и расположены в одной из главных плоскостей в соответствие с конфигурацией поперечного сечения балки.
Как известно, при прямом изгибе в поперечном сечении возникают два вида внутренних усилий: поперечная сила и внутренний изгибающий момент.
Рассмотрим пример расчетной схемы консольной балки с сосредоточенной силой Р, рис. 1 а., …
Рис.1. Построение эпюр поперечных сил и внутренних изгибающих моментов при прямом изгибе:
а) расчетная схема, б) левая часть, в) правая часть, г) эпюра поперечных сил, д) эпюра изгибающих моментов
Прежде всего вычислим реакции связи на базе уравнений равновесия:
После мысленного рассечения балки нормальным сечением 1--1 рассмотрим равновесие левой отсеченной части (рис.1 б), получим:
Таким образом, на первом участке поперечная сила отрицательная и постоянная, а внутренний изгибающий момент изменяется по линейному закону.
Для правой отсеченной части при рассмотрении ее равновесия результат аналогичен рис.1 в. А именно:
На основании полученных значений строятся эпюры поперечных сил (рис.1 г) и внутренних изгибающих моментов (рис.1 д).
Как следует из построенных эпюр , а в сечении жесткой связи. Именно это сечение и является наиболее опасным в данной расчетной схеме.
Продифференцируем выражение внутреннего изгибающего момента по координате х:
Как видим, после дифференцирования получено выражение для поперечной силы. Случайность это или закономерность? - Закономерность.
Дифференциальные зависимости между внутренними усилиями при изгибе.
Рассмотрим расчетную схему балки с произвольной распределенной нагрузкой (рис.2).
Рис.2. Схема изгиба балки: а) расчетная модель, б) фрагмент балки
Составим уравнение равновесия:
Таким образом, действительно: первая производная от внутреннего изгибающего момента по линейной координате равна поперечной силе в сечении.
Это известное свойство функции и ее первой производной успешно используется при проверке правильности построения эпюр. Так, для расчетной схемы консольной балки (рис.1) эта связь дает следующие проверочные результаты:
и М убывает от 0 до -Pl.
и М х.
Рассмотрим второй характерный пример изгиба двухопорной балки (рис.3).
Рис.3. Изгиб двухопорной балки:
а) расчетная схема, б) модель первого участка, в) модель второго участка, г) эпюра поперечных сил, д) эпюра изгибающих моментов
Очевидно, что опорные реакции RA = RB :
· < p>
· для второго участка (рис.3 в) -
Эпюры внутренних усилий представлены соответственно на рис.3 г и 3 д.
На основе дифференциальной связи Q и М, получим:
· для первого участка:
Q > 0 и М возрастает от нуля до .
Q = const и M x
· для второго участка:
Q < 0 и М убывает с до нуля.
Q = const и M также пропорционален х, т.е. изменяется по линейному закону.
Опасным в данном примере является сечение балки в центре пролета:
.
Третий характерный пример связан с использованием распределенной по длине балки нагрузки (рис.4). Следуя методике, принятой ранее, очевидно равенство опорных реакций: , а для искомого сечения (рис.4 б) выражения для внутренних усилий приобретают вид:
На обеих опорах изгибающий момент отсутствует. Тем не менее опасным сечением балки будет центр пролета при . Действительно, исходя из свойства функции и производной при , внутренний изгибающий момент достигает экстремума.
поперечный изгиб усилие
Рис.4 Двухопорная балка с равномерно распределенной нагрузкой:
а) расчетная схема, б) отсеченная часть, в) эпюра поперечных сил, г) эпюра внутренних изгибающих моментов
Для нахождения исходной координаты х0 (рис.4 в) в общем случае приравняем выражение поперечной силы к нулю. В итоге получим
После подстановки в выражение изгибающего момента получим:
Таким образом,
Необходимо отметить, что техника построения эпюр при изгибе наиболее трудно усваивается слушателями.
Размещено на Allbest.ru
Подобные документы
Эпюры внутренних усилий. Составление уравнения равновесия и определение опорных реакций. Определение внутренних усилий и построение эпюр. Расчетная схема балки. Значения поперечных сил в сечениях. Определение значений моментов по характерным точкам.
контрольная работа [35,9 K], добавлен 21.11.2010Рассмотрение теоретических вопросов, связанных с расчетом балки на прочность при прямом изгибе. Способы определения напряжения в поперечном сечении. Расчет балки с двусвязным поперечным сечением аналитическим способом и с помощью программы APM Beam.
курсовая работа [1,6 M], добавлен 19.05.2019Определение расчетной нагрузки и реакции опор. Построение эпюры поперечных сил методом характерных точек. Определение необходимого осевого момента сопротивления из условия прочности, оценка рациональной формы поперечного сечения в опасном сечении балки.
контрольная работа [290,8 K], добавлен 09.08.2010Физико-механические свойства материала подкрепляющих элементов, обшивок и стенок тонкостенного стержня. Определение распределения перерезывающей силы и изгибающего момента по длине конструкции. Определение потока касательных усилий в поперечном сечении.
курсовая работа [7,5 M], добавлен 27.05.2012Расчет подредукторной фермы вертолета. Ее геометрические параметры. Определение усилий в стержнях фермы и их проектировочный расчет. Расчет кругового кольца при плоском изгибе. Определение внутренних силовых факторов и поперечного сечения шпангоута.
курсовая работа [776,7 K], добавлен 17.04.2010Определение сил, действующих на зубчатые колёса (тангенсальной, осевой и радиальной). Расчет сосредоточенного момента и силы зацепления. Построение эпюр внутренних усилий. Поиск диаметров поперечных сечений вала. Подбор сечения вала по условию жесткости.
курсовая работа [938,7 K], добавлен 24.06.2015Геометрические характеристики плоских сечений, зависимость между ними. Внутренние силовые факторы; расчеты на прочность и жесткость при растяжении-сжатии прямого стержня, при кручении прямого вала. Определение прочности перемещений балок при изгибе.
контрольная работа [1,9 M], добавлен 20.05.2012Ознакомление с простыми видами деформаций. Определение значения реакции в заделке и построение эпюры нормальных сил. Определение скручивающего момента в заделке. Построение эпюры поперечных сил и изгибающих моментов. Определение опорных реакций.
курсовая работа [837,8 K], добавлен 30.11.2022Экспериментальное определение максимальных прогибов и напряжений при косом изгибе балки и их сравнение с аналогичными расчетными значениями. Схема экспериментальной установки для исследования косого изгиба балки. Оценка прочности и жесткости балки.
лабораторная работа [176,9 K], добавлен 06.10.2010Построение эпюр для консольных балок. Величина максимального изгибающего момента. Момент сопротивления круглого поперечного сечения относительно центральной оси и прямоугольника относительно нейтральной оси. Поперечные силы и изгибающие моменты.
курсовая работа [63,3 K], добавлен 13.03.2011