Свойства сталей

Механические свойства (прочность, пластичность, упругость, вязкость, твердость, хрупкость) как основные характеристики конструкционных материалов. Сущность и значение процесса нормализации. Коррозия металла. Требования к сталям для режущего инструмента.

Рубрика Производство и технологии
Вид контрольная работа
Язык русский
Дата добавления 14.03.2013
Размер файла 23,5 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

Размещено на http://www.allbest.ru/

1. Механические свойства - прочность, пластичность, упругость, вязкость, твердость, хрупкость - являются основными характеристиками конструкционных материалов, так как отражают способность материала (детали) сопротивляться воздействию внешних механических сил (нагрузок). Механические свойства определяют и технологичность материалов при обработке давлением, резанием и др.

Прочность - это способность материала сопротивляться деформации и разрушению под действием внешних нагрузок. Чем выше прочность материала, тем меньше могут быть рабочие сечения детали и тем больше экономия металла. Следует учитывать и конкретные условия эксплуатации детали, так как конструктивная прочность (проявляющаяся в эксплуатации) зависит не только от природы материала, т.е. сил межатомного взаимодействия, но и от вида напряженного состояния, окружающей среды, температурно-скоростных условий приложения и величины нагрузки и т.д. К тому же одновременно с ростом прочности материала зачастую повышается его хрупкость и чувствительность к концентраторам напряжения.

Важной практической характеристикой конструкционного материала является удельная прочность - отношение предела прочности материала к его плотности. Благодаря низкой плотности сплавам титана и алюминия может быть отдано предпочтение перед многими сталями в авиационной, ракетной технике и др.

Пластичность - это способность материала остаточно, не разрушаясь, изменять свою форму и размеры под действием внешних сил.

Вязкость - способность материала, пластически деформируясь, необратимо поглощать энергию внешних сил. Зная вязкость, можно оценить склонность материала к переходу в хрупкое состояние.

Упругость - свойство твердого тела восстанавливать свою форму и объем после снятия нагрузки, вызвавшей деформацию.

В конструкциях упругость проявляет себя в жесткости - способности сопротивляться деформации. Жесткость является одной из важнейших практических характеристик, которая позволяет рассчитать деформацию детали (конструкции) с учетом согласованности деформации её отдельных элементов под действием рабочей нагрузки. Жесткость конструкции определяется модулем упругости материала при растяжении E (либо модулем упругости при сдвиге G), её формой и размерами. Металлы обладают сравнительно высокой жесткостью, а пластмассы, даже армированные стеклопластики, имеют низкие значения E и G, и их применение для изготовления конструкций большого размера ограничено.

Твердость - способность материала сопротивляться упругой и пластической деформации или разрушению при местных контактных воздействиях со стороны другого, более твердого и не получающего остаточной деформации тела (индентора) определенной формы и размера. Как видно из определения, оно отражает не физический смысл понятия, а основные методы испытания. Выра-ботка общего определения твердости как механического свойства затруднена разнообразием методов определения твердости и разным физическим смыслом чисел твердости. В разных методах и при разных условиях проведения испытаний числа твердости могут характеризовать: упругие свойства, сопротивление малым или большим пластическим деформациям, сопротивление материала разрушению.

Хрупкость - способность материала разрушаться под действием внешних сил практически без пластической деформации.

Определяют механические свойства материалов при проведении испытаний в исследовательских и заводских лабораториях при статическом или динамическом нагружении, при циклическом приложении нагрузки и др

2. Нормализация - термообработка, при которой сталь охлаждается не в печи, как при отжиге, а на воздухе в цехе. Нагревание ведется до полной перекристаллизации (на 30-50 o выше точек Аc3 и Аст), в результате сталь приобретает мелкозернистую, однородную структуру. Твердость, прочность стали после нормализации выше, чем после отжига.

Структура низкоуглеродистой стали после нормализации феррито-перлитная, такая же, как и после отжига, а у средне- и высокоуглеродистой стали - сорбитная; нормализация может заменить для первой - отжиг, а для второй - закалку с высоким отпуском. Часто нормализацией подготавливают сталь для закалки. Термообработку некоторых марок углеродистой, легированных сталей заканчивают нормализацией.

Нагрев заготовки начинается с поверхности и благодаря теплопроводности металла распространяется в глубь него. При слишком быстром нагреве могут возникнуть трещины. При недостаточно высокой температуре нагрева пластичность металла для осуществления его деформации будет недостаточна. При слишком высокой температуре нагрева может получиться перегрев или даже пережог. В первом случае будет чрезмерный рост зерен металла, а при пережоге - окисление по границам зерен и расплавление межкристаллического вещества. В результате этого ослабляется связь между зернами металла. При ковке пережженного металла он разрушается. Температура окончания процесса горячей обработки металла давлением не должна быть слишком высокой, чтобы в результате не возникла крупнокристаллическая структура. Эта температура не должна быть и слишком низкой, чтобы не возник наклеп.

Для различных металлов температурные интервалы ковки различны. Например, для углеродистой, стали в зависимости от марки стали верхний предел нагрева 1200-1000° С, а нижний 800-850° С; для алюминиевых сплавов соответственно - 490-470° С и 350 - 400° С.

Ориентировочное определение минимального времени на нагрев стальных заготовок толщиной свыше 150 мм или слитков в пламенных печах до температуры начала обработки давлением, т.е. до 1200° С, можно приближенно произвести по формуле Н.Н. Доброхотова, В.Ф. Копытова:

T = бk*DvD,

где Т - время нагрева в часах;

б - коэффициент, учитывающий способ укладки заготовок на под печи;

k - коэффициент, учитывающий степень легирования стали (10 для углеродистых и 20 для легированных);

D - диаметр (сторона квадрата) или толщина заготовки в м.

3. Коррозия - процесс химического или электрохимического разрушения металлов под действием окружающей среды. Установлено, что от коррозии ежегодно теряется безвозвратно около 10% производимых металлов, т.е. годовая продукция крупного металлургического завода.

В процессе химического разрушения на поверхности металла образуется пленка из продуктов коррозии, обычно оксидов. В некоторых случаях эта пленка может защищать лежащий под ней металл от дальнейшей коррозии. Сравнительно плотные оксиды пленки образуются на поверхности алюминия, свинца, олова, никеля, хрома. При окислении железа в сухом воздухе или в атмосфере сухого кислорода образуется также достаточно плотная пленка, но она по мере роста растрескивается и отслаивается от металла. Чаще всего химическая коррозия происходит в среде сухих газов при высокой температуре (металлическая арматура печей, клапаны двигателей, лопатки газовых турбин и т.п.) или в жидкостях неэлектролитов (окисление металла в спирте, бензине, нефти, мазуте и т.п.).

При электрохимической коррозии металл разрушается вследствие его растворения в жидкой среде, являющейся электролитом. Сущность процесса электрохимической коррозии заключается в том, что атомы, находящиеся в узлах кристаллической решетки металла, при контакте с раствором электролита переходят в раствор в форме ионов, оставляя эквивалентное количество электронов в металле. Переход атомов металла в ионы и растворение их в жидком электролите определяется величиной нормального электродного потенциала. Он характеризует то напряжение электрического тока, которое надо приложить к границе раздела твердого металла с жидким электролитом, чтобы воспрепятствовать переходу иона металла в раствор. Чем отрицательнее нормальный электродный потенциал, тем более резко выражено стремление металла к растворению в электролитах (например, свинец растворяется значительно медленнее, чем железо). Данный вид коррозии может также возникнуть при контакте двух разнородных металлов в присутствии электролита, когда между этими металлами возникает гальванический ток. В гальванической паре любых двух металлов будет растворяться тот металл, который обладает более отрицательным электродным потенциалом. Например, железо имеет более низкий отрицательный электродный потенциал, чем цинк, и более высокий, чем медь. Следовательно, при контакте железа с цинком будет разрушаться цинк, а при контакте железа с медью - железо. Гальванические пары при коррозии образуются не только между отдельными участками контактирующих металлов, но также и между микроскопически малыми кристалликами одного и того же сплава, если они различаются по химическому составу и физическим свойствам. В результате возникает коррозионное разрушение, которое может проникнуть очень глубоко и идти по границам раздела зерен (межкристаллическая коррозия). Например, в перлите феррит более электроотрицателен, чем цементит, он и будет разрушаться в соответствующих условиях.

Таким образом, электрохимическая коррозия - это разрушение сплава, сопровождающееся появлением электрического тока в результате работы множества микрогальванических элементов на корродирующей поверхности металла.

На скорость растворения металла в электролите влияют примеси, способы обработки металла, концентрация электролитов. Металл, находящийся под нагрузкой, корродирует значительно быстрее ненагруженного, так как нарушается целостность защитной пленки и образуются микротрещины (коррозионное растрескивание). Разрушение металла одновременным воздействием знакопеременных нагрузок и коррозионной среды называют коррозионной усталостью.

В зависимости от характера окружающей среды электрохимическая коррозия может быть подводной, атмосферной, почвенной, вызванной блуждающими токами. Электрохимическая коррозия металлов в воде обусловливается присутствием в ней растворенного кислорода. При атмосферной коррозии электролитом служит тонкая пленка влаги, сам же процесс коррозии ничем не отличается от коррозии в воде.

В результате коррозии стали на ее поверхности появляется смесь различных гидратированных оксидов железа, имеющих состав «FeO-pH2O+mFe2O3-<? H2O (ржавчина).

Активному протеканию процесса коррозии способствует углекислый и в особенности сернистый газы, хлористый водород, различные соли.

Защиту от коррозии следует начинать с правильного подбора химического состава и структуры металла. При конструировании необходимо избегать форм, способствующих задержке влаги. Для защиты металла от коррозии применяют различные способы.

Легирование стали повышает ее антикоррозионные свойства. Например, совершенную стойкость к атмосферной коррозии показывают нержавеющие легированные стали, содержащие в большом количестве хром, который, образуя на поверхности оксидные пленки, приводит сталь в пассивное состояние. Существенно повышается (в 1,5…3 раза) коррозионная стойкость строительных сталей при введении в их состав меди (0,2…0,5%). Повышенной стойкости нержавеющих сталей против коррозии способствуют также их однородность и небольшое содержание вредных примесей.

Защитные покрытия представляют собой пленки (металлические, оксидные, лакокрасочные и т.п.).

Металлические покрытия бывают двух типов - анодные и катодные. Для анодного покрытия используют металлы, обладающие более отрицательным электродным потенциалом, чем основной металл (например, цинк, хром). Для катодного покрытия выбирают металлы, имеющие меньшее отрицательное значение электродного потенциала, чем основной металл (медь, олово, свинец, никель и др.). Металлические покрытия наносят горячим методом, гальваническим и металлизацией.

При горячем методе покрытия изделия погружают в ванну с расплавленным защитным металлом, температура которого ниже, чем температура плавления изделия (цинк, олово, свинец).

Гальванический метод защиты состоит в том, что на поверхности изделия путем электролитического осаждения из растворов солей создается тонкий слой защищаемого металла. Покрываемое изделие при этом служит катодом, а осаждаемый металл - анодом.

Металлизация - покрытие поверхности детали расплавленным металлом, распыленным сжатым воздухом. Преимуществом этого метода защиты металла является то, что покрывать расплавом можно уже собранные конструкции. Недостаток заключается в том, что получается шероховатая поверхность.

Металлические покрытия можно наносить также посредством диффузии металла покрытия в основной металл - алитирование, силицирование, хромирование (см. с. 316), а также способом плакирования, т.е. наложения на основной металл тонкого слоя защитного металла (биметалл) и зарепления его путем горячей прокатки (например, железо - медный сплав, дюралюминий - чистый алюминий).

Оксидирование - защита оксидными пленками. Для этого естественную оксидную пленку, всегда имеющуюся на металле, делают более прочной путем обработки сильным окислителем, например концентрированной азотной кислотой, растворами марганцевой или хромовой кислот и их солей. Частным случаем оксидирования является воронение стали. В этом случае на поверхности также создается оксидная пленка, но более сложными приемами, связанными с многократной термической обработкой при температуре ЗО0…40О°С в присутствии древесного угля.

Фосфатирование состоит в получении на изделии поверхностной пленки из нерастворимых солей железа или марганца в результате погружения металла в горячие растворы кислых фосфатов железа или марганца.

Лакокрасочные покрытия основаны на механической защите металла пленкой из различных красок и лаков. Ванны, раковины, декоративные изделия для защиты от коррозии покрывают эмалью, т.е. наплавляют на металл при температуре 750…800°С различные комбинации силикатов.

При временной защите металлических изделий от коррозии (транспортировании, складировании) используют для покрытия металла невысыхающие масла (технический вазелин, лак этиноль), а также ингибиторы, т.е. вещества, замедляющие протекание реакции (нитрит натрия с углекислым аммонием, с уротропином, ингибитор ную бумагу и др.).

4. Стали для режущего инструмента после закалки и низкого отпуска должны иметь высокую твердость в режущей кромке (HRC62-68), значительно превышающую твердость обрабатываемого материала; высокую износостойкость, необходимую для сохранения размеров и формы режущей кромки при резании; достаточную прочность при некоторой вязкости для предупреждения поломки инструмента в процессе работы и теплостойкости, когда резание выполняется повышенной скоростью.

Углеродистые стали небольшой прокаливаемости, не обладающие теплостойкостью. Углеродистые инструментальные стали У8 (У8А), У10 (У10А), У11 (У11А), У12 (У12А) и У13 (У13А) вследствие мало устойчивости переохлажденного аустенита имеют небольшую прокаливаемость, и поэтому эти стали применяют для инструментов небольших размеров.

Для режущего инструмента (фрезы, зенкеры, сверла, спиральные пилы, шаберы, ножовки ручные, напильники, бритвы, острый хирургический инструмент) обычно применяют заэвтектоидные стали (У10, У11, У12 и У13), у которых после термической обработки структура - мартенсит и карбиды. Деревообрабатывающий инструмент, зубила, кернеры, бородки, отвертки топоры изготовляют из сталей У7 и У8, имеющих после термообработки трооститную структуру.

Легированные стали по сравнению с углеродистыми обладают большой устойчивостью переохлажденного аустенита, а следовательно и большой прокаливаемостью. Инструменты из этих сталей можно охлаждать при закалке в масле и горячих средах, что уменьшает деформацию и коробление инструмента. Низколегированные стали 11ХФ и 13Х рекомендованы для инструментов диаметром до 15 мм, закаливаемых в масле или в горячих средах для уменьшения деформации по сравнению с получаемой в углеродистых сталях, закаливаемых в воде. Ванадий тормозит рост зерна при нагреве под закалку.

Стали повышенной прокаливаемости (60-80 мм) 9ХС ХВСГ имеют большую теплостойкость (250-2600С), хорошие режущие свойства и сравнительно мало деформируются при закалке. Однако сталь 9ХМС склонна к обезуглероживанию при нагреве, в отожженном состоянии имеет повышенную твердость187-241 НВ, что ухудшает ее обработку резанием и давлением.

Вольфрамовые стали В2Ф и ХВ4 после закалки в водных растворах имеют очень высокую твердость и применяются для пил по металлу, граверных инструментов и обработки твердых металлов.

Быстрорежущие стали. В отличии от других инструментальных сталей быстрорежущие стали обладают высокой теплостойкостью (красностойкостью), т.е. способностью сохранять мартенситную структуру и соответственно высокую твердость, прочность и износостойкость при повышенных температурах, возникающих в режущей кромке при резании с большой скоростью. Эти стали сохраняют мартенситную структуру при нагреве до 600-6500С, поэтому применение их позволяет значительно повысить скорость резания (в 2 - 4 раза) и стойкость инструментов (в 10 - 30 раз) по сравнению со сталями, не обладающими теплостойкостью.

Основными легирующими элементами быстрорежущих сталей, обеспечивающими их теплостойкость, является в первую очередь вольфрам и его химический аналог - молибден. Сильно повышает теплостойкость (до 645 - 6500С) и твердость после термической обработки (67 - 70 HRC) кобальт и в меньшей степени ванадий. Ванадий, образуя очень твердый карбид VC, повышает износостойкость, но ухудшает шлифуемость.

Наиболее часто применяют сталь Р6М5.

Для обработки высокопрочных, коррозионостойких и жаропрочных сталей и сплавов применяют стали, содержащие кобальт Р18К5Ф2, Р9К5, Р6М5К5, Р9М4К8, Р2АМ9К5, Р2М9К5 с повышенной красно стойкостью.

Для чистовых инструментов при обработке вязкой аустенитной стали и материалов, обладающих абразивными свойствами. нашла применение сталь Р12Ф3 с высоким содержанием ванадия.

Применяются стали с повышенным содержанием углерода и азота при низком содержании вольфрама и молибдена (11Р3АМ3Ф2)) для инструментов простой формы при обработке углеродисты и низколегированных сталей (красностойкость 6200С).

Быстрорежущие стали относятся к карбидному классу. Основным карбидом является М6С, в котором так же растворен ванадий. При недостаточной деформации наблюдается карбидная ликвация, которая представляет собой участки не разрушенной эвтектики, вытянутые в направлении деформации.

Для снижения твердости (250-300 НВ), улучшения обработки резанием и подготовки структуры стали к закалке, после ковки быстрорежущую сталь подвергают отжигу при 840 - 8800С. Если отжиг проведен неудовлетворительно, то при последующей закалки возможен брак стали вследствие образования «нафталинового» излома. Этот излом крупнозернистый, чешуйчатый, похожий на нафталин. Сталь с таким изломом обладает высокой хрупкостью.

Для придания стали теплостойкости инструменты подвергают закалке и многократному отпуску. Закалка для Р18 - 12700С, а для Р6М5 - 12200С. Во избежании образования закалочных трещин инструмент подогревают.

Структура быстрорежущей стали после закалки представляет собой высоколегированный мартенсит, содержащий 0,3-0,4% С, нерастворенные избыточные карбиды и остаточный аустенит (рис. 68). Чем выше температура закалки, тем ниже температура мартенситных точек Мн и Мк и тем больше количество остаточного аустенита, который понижает режущие свойства, и поэтому его присутствие в готовом инструменте не допустимо. После закалки следует отпуск при 550 - 5700С, вызывающий превращение остаточного аустенита в мартенсит и дисперсионное твердение в результате частичного распада мартенсита и выделения дисперсных карбидов. Чтобы весь аустенит перешел в мартенсит, применяют многократный отпуск (чаще трехкратный). Иногда инструменты, для уменьшения остаточного аустенита непосредственно после закалки охлаждают до -800С, с последующим двукратным отпуском. Твердость после закалки 62-63 HRC, а после отпуска 63-65 HRC. коррозия нормализация сталь режущий

Выбор стали для режущего инструмента. В таблице указаны рекомендуемые стали для металлорежущего инструмента, нетеплостойкие материалы применяются редко. Подавляющее число инструментов изготовляют из быстрорежущей стали.

Все шире применяются быстрорежущие стали, полученные методом порошковой металлургии, В этих сталях карбидная фаза очень мелкая, что способствует более полному растворению карбидов в аустените и повышению теплостойкости. Основные порошковые стали, предложенные для замены сталей Р18 Р6М5 - Р0М2Ф3-МП, М6Ф1-МП, М6Ф3-МП мало содержат дефицитного вольфрама. Несмотря на высокое содержание ванадия, стали хорошо шлифуются. Применяются и другие порошковые стали, например 10Р6М5-МП, Р6М5К5-МП и Р12М3К8.

Размещено на Allbest.ru


Подобные документы

  • Назначение и особенности эксплуатации инструментальных сталей и сплавов, меры по обеспечению их износостойкости. Требования к сталям для измерительного инструмента. Свойства углеродистых и штамповых сталей для деформирования в различных состояниях.

    контрольная работа [432,5 K], добавлен 20.08.2009

  • Механические свойства строительных материалов: твердость материалов, методы ее определения, суть шкалы Мооса. Деформативные свойства материалов. Характеристика чугуна как конструкционного материала. Анализ способов химико-термической обработки стали.

    контрольная работа [972,6 K], добавлен 29.03.2012

  • Классификация металлов: технические, редкие. Физико-химические свойства: магнитные, редкоземельные, благородные и др. Свойства конструкционных материалов. Строение и свойства сталей, сплавов. Классификация конструкционных сталей. Углеродистые стали.

    реферат [24,1 K], добавлен 19.11.2007

  • Требования к свойствам инструментальных материалов. Перечень марок нескольких основных нетеплостойких сталей для режущего инструмента. Закалка доэвтектоидных сталей. Быстрорежущие стали: маркировка, структура, технология термической обработки и свойства.

    контрольная работа [19,8 K], добавлен 20.09.2010

  • Принципы обозначения стандартных марок легированных сталей, их механические свойства. Влияние вредных примесей, величины зерна на свойства. Виды закалки, структура сплава после нее. Понятие свариваемости стали. Коррозионные повреждения нержавеющей стали.

    курсовая работа [5,1 M], добавлен 18.03.2010

  • Зависимость работоспособности машин и агрегатов от свойств материалов. Прочность, твердость, триботехнические характеристики. Внедрение в материал более твердого тела – индентора. Температурные, электрические и магнитные характеристики материалов.

    реферат [56,6 K], добавлен 30.07.2009

  • Многослойные и комбинированные пленочные материалы. Адгезионная прочность композиционного материала. Характеристика и общее описание полимеров, их свойства и отличительные признаки от большинства материалов. Методы и этапы испытаний полимерных пленок.

    дипломная работа [1,7 M], добавлен 21.11.2010

  • Механические свойства сталей. Основные механические свойства, определяемые для низкоуглеродистых сталей. Статические и динамические нагрузки. Влияние азота, кислорода и водорода. Легирующие элементы и примеси. Машиностроительные стали и сплавы.

    презентация [1,6 M], добавлен 12.09.2015

  • Классификация, маркировка, состав, структура, свойства и применение алюминия, меди и их сплавов. Диаграммы состояния конструкционных материалов. Физико-механические свойства и применение пластических масс, сравнение металлических и полимерных материалов.

    учебное пособие [4,8 M], добавлен 13.11.2013

  • Обзор состава простых конструкционных сталей. Получение чугуна и легированных сталей. Характерные особенности медно-никелевых сплавов. Применение алюминиевых бронз, нейзильбера, мельхиора в народном хозяйстве. Механические свойства сплавов меди с цинком.

    презентация [3,3 M], добавлен 06.04.2014

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.