Современные способы защиты металлов от коррозии
Сущность, функции, разновидности и классификация защитных покрытий. Защита металлов лакокрасочными покрытиями, их преимущества и недостатки. Процесс изготовления оксидных покрытий на металле. Особенности применения электрохимической защиты от коррозии.
Рубрика | Производство и технологии |
Вид | реферат |
Язык | русский |
Дата добавления | 14.11.2012 |
Размер файла | 27,7 K |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
Размещено на http://www.allbest.ru/
Реферат по теме:
Современные способы защиты металлов от коррозии
Выполнил: студент 2 курса
Группы 11Э
Соляник Алексей
2012 г.
Защитные покрытия
Защитное покрытие должно быть сплошным, равномерно распределенным по всей поверхности, непроницаемым для окружающей среды, иметь высокую адгезию (прочность сцепления) к металлу, быть твердым и износостойким. Коэффициент теплового расширения должен быть близким к коэффициенту теплового расширения металла защищаемого изделия.
Защитные покрытия подразделяются на металлические и неметаллические.
Металлические покрытия
Нанесение защитных металлических покрытий - один из самых распространенных методов борьбы с коррозией. Эти покрытия не только защищают от коррозии, но и придают их поверхности ряд ценных физико-механических свойств: твердость, износоустойчивость, электропроводность, паяемость, отражательную способность, обеспечивают изделиям декоративную отделку и т.д.
По способу защитного действия металлические покрытия делят на катодные и анодные.
Катодные покрытия имеют более положительный, а анодные - более электроотрицательный электродные потенциалы по сравнению с потенциалом металла, на который они нанесены. Так, например, медь, никель, серебро, золото, осажденные на сталь, являются катодными покрытиями, а цинк и кадмий по отношению к этой же стали - анодными покрытиями.
Необходимо отметить, что вид покрытия зависит не только от природы металлов, но и от состава коррозионной среды. Олово по отношению к железу в растворах неорганических кислот и солей играет роль катодного покрытия, а в ряде органических кислот (пищевых консервах) служит анодом. В обычных условиях катодные покрытия защищают металл изделия механически, изолируя его от окружающей среды. Основное требование к катодным покрытиям - беспористость. В противном случае при погружении изделия в электролит или при конденсации на его поверхности тонкой пленки влаги обнаженные (в порах или трещинах) участки основного металла становятся анодами, а поверхность покрытия катодом. В местах несплошностей начнется коррозия основного металла, которая может распространяться под покрытие.
Анодные покрытия защищают металл изделия не только механически, но главным образом электрохимически. В образовавшемся гальваническом элементе металл покрытия становится анодом и подвергается коррозии, а обнаженные (в порах) участки основного металла выполняют роль катодов и не разрушаются, пока сохраняется электрический контакт покрытия с защищаемым металлом и через систему проходит достаточный ток. Поэтому степень пористости анодных покрытий в отличие от катодных не играет существенной роли.
В отдельных случаях электрохимическая защита может иметь место при нанесении катодных покрытий. Это происходит, если металл покрытия по отношению к изделию является эффективным катодом, а основной металл склонен к пассивации. Возникающая анодная поляризация пассивирует незащищенные (в порах) участки основного металла и затрудняет их разрушение. Такой вид анодной электрохимической защиты проявляется для медных покрытий на сталях 12Х13 и 12Х18Н9Т в растворах серной кислоты.
Основной метод нанесения защитных металлических покрытий - гальванический. Применяют также термодиффузионный и механотермический методы, металлизацию распылением и погружением в расплав.
Неметаллические покрытия
Большинство металлов окисляется кислородом воздyxa с образованием поверхностных оксидных пленок. Однако эти пленки в силу незначительной толщины не обеспечивают надежной защиты от коррозии. Особенно слабы в этом отношении естественные пленки на железе.
Между тем в результате определенной химической или электрохимической обработки можно создать на поверхности металла искусственные пленки, которые обладали бы значительно более высокой коррозионной стойкостью, чем основной металл, и защищали бы его от разрушения.
Существуют различные методы получения таких неметаллических пленок, отличающихся химическим составом. Наиболее распространены оксидные и фосфатные пленки, хотя по защитным свойствам они уступают металлическим покрытиям. Процесс изготовления оксидных покрытий на металле получил название оксидирования, а фосфатных -- фосфатирования.
Оксидирование. Основное назначение этого процесса -- защита черных и цветных металлов от атмосферной коррозии.
Современный метод оксидирования -- химическая и электрохимическая обработка деталей в щелочных растворах.
Электрохимическое оксидирование ведут в растворе 4% едкого натра при 65--120°С и анодной плотности тока от 2,5 до 10 А/дм2. Продолжительность анодной обработки не превышает 60 минут.
Качественное покрытие состоит из магнитной окиси железа, получающейся в результате последовательных превращений:
Fe > Na2 Fe 02> Na2 Fe204> Fe3 O4
Оксидирование черных металлов носит также название «воронения». Его осуществляют в растворе состава, г/л: Na OH -- 600-700; Na NO2 -- 200-250; Na NO3 -- 50-100. Температура -- 135-145 °С, время 30-90 мин. В процессе происходит растворение железа с образованием соединений Na2FeO2 и Na2Fe204, из которых образуется поверхностная пленка оксида железа
Na2 Fe 02 + Na2 Fe2 04 + 2H2O = Fe3 O4 + 4 Na OH
Оксидная пленка на малоуглеродистой стали имеет глубокий черный цвет, а на высокоуглеродистых сталях -- черный с сероватым оттенком. Для повышения антикоррозионных свойств оксидированное изделие погружают на 2-3 мин в горячий 2-3% раствор мыла, а затем на 5-10 мин - в минеральное трансформаторное или машинное масло при температуре 105-120 °С. После этой операции поверхность покрытия становится блестящей, с равномерной черной окраской. Возможно оксидирование и магниевых сплавов -- в хромово-кислых электролитах с последующим нанесением лакокрасочных покрытий. Толщина оксидных пленок составляет 0,8-1,5 мкм.
Противокоррозионные свойства поверхностной пленки оксидов невысоки, поэтому область применения этого метода ограничена. Основное назначение его -- декоративная отделка. Почти все стрелковое оружие и ряд точных приборов подвергают воронению, в результате чего изделия приобретают красивый черный цвет. Воронение используют и в том случае, когда необходимо сохранить исходные размеры изделия, так как оксидная пленка составляет всего 1,0-1,5 микрона.
Анодирование. Особенно широко применяется оксидирование алюминия и его сплавов. Это наиболее простой и надежный метод защиты их от коррозионного разрушения. Процесс образования оксидных пленок на поверхности алюминия называют анодированием.
В обычных условиях на поверхности алюминия присутствует тонкая пленка оксидов Al2O3 или Al2O3 · nН2О, которая не может защитить его от коррозии. Под воздействием окружающей среды алюминий покрывается слоем рыхлых белых продуктов коррозии. Процесс искусственного образования толстых оксидных пленок может быть проведен химическим и электрохимическим способами.
Пленки, образующиеся при анодной обработке алюминия, обладают достаточной толщиной и рядом ценных свойств. Они защищают металл от коррозии и являются хорошим подслоем под лакокрасочные покрытия. Анодные пленки на алюминии обладают большим сопротивлением к истиранию, имеют высокое омическое сопротивление и хорошо окрашиваются, что позволяет придать изделиям из анодированного алюминия красивый вид. Для анодного окисления используют два типа электролитов.
В растворах слабых кислот (борная, винная, лимонная) и их солей оксидная пленка не растворяется. В этом случае получают беспористые, плотные, не проводящие электрический ток покрытия толщиной до 1 мкм. Такие пленки используют в качестве электроизоляционных покрытий в производстве конденсаторов.
Электролиты второго типа содержат растворы серной, хромовой и щавелевой кислот, в которых происходит частичное растворение оксидной пленки алюминия. В этих электролитах получают пористые пленки толщиной от 1 до 50 мкм.
На практике анодирование алюминия и его сплавов проводят в растворах серной кислоты концентрацией 180-200 г/л, хромового ангидрида (3 %) и щавелевой кислоты (3-10%) с плотностью тока 80-200 А/м2, при напряжении до 24В в течение 15-60 мин. Катоды выполняются из свинца или стали марки 12Х18Н9Т. Для повышения защитных свойств изделие после оксидирования обрабатывают паром или горячей водой и далее в горячих растворах хроматов и бихроматов. При обработке паром в порах пленки образуется гидроксид алюминия, а в хромовых растворах - более стойкие соединения типа (АlО)2СrO4.
Оксид образуется на поверхности алюминия в результате анодного окисления
2А1 + ЗН2О = А12О3 + 6Н+ + 6 е
Он состоит из двух слоев: плотного барьерного слоя толщиной 0,01-0,1 мкм, расположенного непосредственно на поверхности металла, и внешнего пористого слоя толщиной до 200-400 мкм.
Химическое оксидирование алюминия и его сплавов осуществляют в щелочных хромистых растворах состава, г/л: Na2 Cr O4 -- 15; Na OH -- 2,5 и Na2CO3 -- 50 при температуре 90-95 °С в течение 5-10 мин. Образуются пленки толщиной 3-4 мкм с невысокими механическими и диэлектрическими свойствами. Процесс простой, быстрый и не требует специального оборудования.
Защита металлов лакокрасочными покрытиями -- наиболее старый и один из самых распространенных способов защиты от коррозии.
Основными достоинствами лакокрасочных покрытий являются:
1. сравнительная дешевизна;
2. относительная простота нанесения;
3. легкость восстановления разрушенного покрытия;
4. сочетаемость с другими способами защиты, например протекторной защитой, фосфатными и оксидными покрытиями;
5. возможность получения покрытий любого цвета, обладающих наряду с защитными свойствами красивым внешним видом.
При соответствующем подборе материалов и способа нанесения эти покрытия обеспечивают достаточно надежную защиту металлических конструкций от коррозии в атмосфере и ряде коррозионных сред (окраска речных и морских судов, водонапорных баков и др.)
К недостаткам лакокрасочных покрытий следует отнести малую термостойкость (предельная температура наиболее термостойких красок 150 - 200 С), сравнительно невысокую механическую прочность, недостаточную стойкость в водной среде.
Ежегодно более 80 % металлоизделий, используемых в народном хозяйстве, подвергают окрашиванию. В 1999 г производство лакокрасочных материалов достигло 26,7 млн. т. Это свидетельствует об огромных масштабах средств, вовлеченных в сферу производства этого вида противокоррозионной защиты.
Эффективность применения лакокрасочных покрытий целесообразна при условии долговечности эксплуатации не более 10 лет и скорости коррозии металла до 0,05 мм/год. Если требуется повышение долговечности или скорость коррозии металла составляет 0,5-1,0 мм/год, то следует применять комбинированные покрытия. Например, цинковые плюс лакокрасочное покрытие. Такое покрытие позволяет увеличить срок защиты до 30 лет.
Защитные действия лакокрасочного покрытия заключаются в создании на поверхности металлического изделия сплошной пленки, которая препятствует агрессивному воздействию окружающей среды и предохраняет металл от разрушения.
Электрохимическая защита
Скорость электрохимической коррозии можно значительно уменьшить, если металлическую конструкцию подвергнуть поляризации. Этот метод получил название электрохимической защиты, В зависимости от вида поляризации различают катодную и анодную защиту.
Электрохимическую защиту применяют в том случае, если потенциал свободной коррозии uкор конструкционного материала располагается в области активного растворения u1 или перепассивации u2, то есть материал растворяется с высокой скоростью.
При катодной защите снижение скорости растворения металла происходит вследствие смещения потенциала в область значений, отрицательнее uкор. Например, если потенциал свободной коррозии u1 металла располагается в области активного растворения (скорость растворения i1), то сдвиг потенциала в отрицательную сторону до значения ц3 приводит к снижению скорости растворения до величины i3, оказывающейся ниже i1. Аналогичное снижение скорости растворения металла происходит и в случае, когда потенциал свободной коррозии u2 металла располагается в области перепассивации. При смещении потенциала в отрицательную сторону до величины u4 скорость растворения снижается до i4. Различие заключается в том, что в первом случае снижение скорости растворения металла достигнуто без изменения характера его растворения -- металл остался в активном состоянии. Во втором случае скорость растворения снизилась вследствие перехода металла из активного в пассивное состояние.
При анодной защите потенциал защищаемой конструкции смещают в область положительнее uкор. При этом происходит переход металла из активного в пассивное состояние. Так, если потенциал свободной коррозии u1 металла располагается в активной области и соответствующая ему скорость растворения равна i1, то при его смещении в положительную сторону до значения u4 скорость растворения снижается до величины i4.
Ингибиторы
защитное покрытие металл коррозия
Применение ингибиторов - один из самых эффективных способов борьбы с коррозией металлов в различных агрессивных средах. Ингибиторы - это вещества, способные в малых количествах замедлять протекание химических процессов или останавливать их. Название ингибитор происходит от латинскогоinhibere, что означает сдерживать, останавливать. Ещё по данным 1980 года, число известных науке ингибиторов составило более пяти тысяч. Ингибиторы дают народному хозяйству немалую экономию.
Ингибирующее воздействие на металлы, прежде всего на сталь, оказывает целый ряд неорганических и органических веществ, которые часто добавляются в среду, вызывающую коррозию. Ингибиторы имеют свойство создавать на поверхности металла очень тонкую пленку, защищающую металл от коррозии.
Ингибиторы в соответствии с Х. Фишером можно сгруппировать следующим образом:
· Экранирующие, то есть покрывающие поверхность металла тонкой пленкой. Пленка образуется в результате поверхностной адсорбции. При воздействии физических ингибиторов химических реакций не происходит;
· Окислители (пассиваторы) типа хроматов, вызывающие образование на поверхности металла плотно прилегающего защитного слоя окисей, которые замедляют протекание анодного процесса. Эти слои не очень стойки и при определенных условиях могут подвергаться восстановлению. Эффективность пассиваторов зависит от толщины образующегося защитного слоя и его проводимости;
· Катодные - повышающие перенапряжение катодного процесса. Они замедляют коррозию в растворах неокисляющих кислот. К таким ингибиторам относятся соли или окислы мышьяка и висмута.
Эффективность действия ингибиторов зависит в основном от условий среды, поэтому универсальных ингибиторов нет. Для их выбора требуется проведение исследований и испытаний.
Наиболее часто применяются следующие ингибиторы: нитрит натрия, добавляемый, например, к холодильным соляным растворам, фосфаты и силикаты натрия, бихромат натрия, различные органические амины, сульфоокись бензила, крахмал, танин и т. п. Поскольку ингибиторы со временем расходуются, они должны добавляться в агрессивную среду периодически. Количество ингибитора, добавляемого в агрессивные среды, невелико. Например, нитрита натрия добавляют в воду в количестве 0,01-0,05%.
Ингибиторы подбираются в зависимости от кислого или щелочного характера среды. Например, часто применяемый в качестве ингибитора нитрит натрия может использоваться в основном в щелочной среде и перестает быть эффективным даже в слабокислых средах.
Скорость коррозии можно снизить также изменением свойств коррозионной среды. Это достигается или соответствующей обработкой среды, в результате которой уменьшается ее агрессивность, или введением в коррозионную среду небольших добавок специальных веществ, так называемых замедлителей или ингибиторов коррозии. Согласно стандарту ISO 8044-1986 ингибиторами коррозии (ИК)называют химические соединения, которые, присутствуя в коррозионной системе в достаточной концентрации, уменьшают скорость коррозии без значительного изменения концентрации любого коррозионного реагента. Ингибиторами коррозии могут быть и композиции химических соединений. Содержание ингибиторов в коррозионной среде должно быть небольшим.
Эффективность ингибиторов коррозии оценивается степенью защиты Z (в %) и коэффициентом торможения ? (ингибиторный эффект) и определяется по формулам: где К1 и K2 [г/(м2*ч)] -- скорость растворения металла в среде без ингибитора и с ингибитором соответственно; i1 и i2 [А/см2] -- плотность тока коррозии металла в среде без ингибитора и с ингибитором коррозии соответственно. При полной защите коэффициент Z равен 100 %.
Коэффициент торможения показывает во сколько раз уменьшается скорость коррозии в результате действия ингибитора:
Ингибиторы коррозии подразделяются:
* по механизму своего действия -- на катодные, анодные и смешанные;
* по химической природе -- на неорганические, органические и летучие;
* по сфере своего влияния -- в кислой, щелочной и нейтральной среде.
Катодные и анодные ингибиторы замедляют соответствующие электродные реакции, смешенные ингибиторы изменяют скорость обеих реакций.
Неорганические ингибиторы коррозии.Способностью замедлять коррозию металлов в агрессивных средах обладают многие неорганические вещества. Ингибирующее действие этих соединений обуславливается присутствием в них катионов (Са2+, Zn2+, Ni2+ , As3+, Bi3+, Sb3+) или анионов (CrO2-4, Cr202-7, NO-2, SiO2-3, PO3-4).
Анодные неорганические ингибиторы коррозии образуют на поверхности металла тонкие (~ 0,01 мкм) пленки, которые тормозят переход металла в раствор.
Органические ингибиторы коррозии. Многие органические соединения способны замедлить коррозию металла. Органические соединения -- это ингибиторы смешанного действия, т.е. они воздействуют на скорость как катодной, так и анодной реакций.
В щелочных средах ингибиторы используются при обработке амфотерных металлов, защите выпарного оборудования, в моющих составах, для уменьшения саморазряда щелочных источников тока.
Летучие ингибиторы являются современным средством защиты от атмосферной коррозии металлических полуфабрикатов и готовых изделий на время их хранения и транспортировки. Принцип действия летучих ингибиторов коррозии заключается в образовании паров, которые диффундируют через слой воздуха к поверхности металла, и защищают ее.
Ингибирование - сложный способ защиты, и его успешное применение в различных условиях требует широких познаний.
Размещено на Allbest.ru
Подобные документы
Механизм коррозии металлов в кислотах, средах, имеющих ионную проводимость. Коррозионная активность серной кислоты. Применение противокоррозионных защитных покрытий. Выбор материала для изготовления емкости хранения. Расчет катодной защиты трубопровода.
курсовая работа [2,3 M], добавлен 08.04.2012Понятие, классификация и механизм атмосферной коррозии металлов. Описание основ процесса конденсации влаги на поверхности металла. Особенности и факторы влажной атмосферной коррозии металлов. Изучение основных методов защиты от влажной коррозии.
контрольная работа [422,9 K], добавлен 21.04.2015Химический состав чугуна, характеристика его элементов. Влияние значения марганцевого эквивалента на эксплуатационную стойкость чугунных изделий. Процесс кристаллизации металлов и сплавов. Способы защиты металлов от коррозии. Область применения прокатки.
контрольная работа [30,5 K], добавлен 12.08.2009Сущность и основные причины появления коррозии металла, физическое обоснование и этапы протекания. Ее разновидности и отличительные свойства: химическая, электрохимическая. Способы защиты от коррозии, используемые технологии и материалы, ингибиторы.
презентация [734,6 K], добавлен 09.04.2015Понятие и особенности применения защитных покрытий, порядок и правила их нанесения. Технологические режимы окраски поверхностей разными лакокрасочными материалами. Ингибиторы коррозии и специфика их применения в неорганической технологии, эффективность.
контрольная работа [19,5 K], добавлен 28.04.2011Эксплуатационные работы по защите газопроводов от коррозии. Требования к органическим изолирующим покрытиям. Типы и виды наиболее широко применяемых покрытий. Расчет катодной защиты, подбор катодной станции. Биокоррозия и средства защиты от неё.
курсовая работа [199,3 K], добавлен 24.03.2009Конструктивная защита от коррозии деревянных конструкций. Этапы нанесения поверхностной защиты, применяемые материалы. Средства, защищающие древесину от биологического воздействия, гниения, поражений насекомыми и возгорания. Выбор антисептика для защиты.
реферат [50,7 K], добавлен 19.12.2012Методы защиты металлических труб трубопровода от коррозии. Изоляционные покрытия, битумные мастики. Покрытия на основе эпоксидной порошковой краски и напыленного полиэтилена. Виды электрохимической защиты. Конструкция и действие машины для покрытий.
курсовая работа [770,8 K], добавлен 03.04.2014Состав гальванического покрытия и его использование для защиты деталей от коррозии и придания им красивого внешнего вида. Особенности применения и отличительные свойства анодных и катодных металлических покрытий. Сферы использования химических покрытий.
контрольная работа [930,4 K], добавлен 18.09.2009Основные направления деятельности НПО "Защита металлов". Диффузионное цинкование – один из наиболее перспективных способов нанесения защитных покрытий на стальные, чугунные или медные изделия. Технология, преимущества и экологическая чистота метода.
реферат [163,0 K], добавлен 06.02.2009