Магнитная дефектоскопия
Физические методы и средства неразрушающего контроля металлов и металлоизделий, позволяющие проверять качество продукции без нарушения ее пригодности к использованию. Обнаружение нарушений сплошности в деталях. Магнитное поле рассеяния над дефектом.
Рубрика | Производство и технологии |
Вид | реферат |
Язык | русский |
Дата добавления | 09.11.2012 |
Размер файла | 69,0 K |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
Размещено на http://www.allbest.ru/
Содержание
1. Методы неразрушающего контроля
2. Магнитный вид контроля
3. Магнитопорошковый метод
4. Магнитографический метод
Литература
1. Методы неразрушающего контроля
В настоящее время широко применяют различные физические методы и средства неразрушающего контроля (НК) металлов и металлоизделий, позволяющие проверять качество продукции без нарушения ее пригодности к использованию по назначению.
Все дефекты, как известно, вызывают изменение физических характеристик металлов и сплавов -- плотности, электропроводности, магнитной проницаемости, упругих свойств и т. д. Исследование изменений характеристик металлов и обнаружение дефектов, являющихся причиной этих изменений, составляет физическую основу методов неразрушающего контроля. Эти методы основаны на использовании проникающих излучений рентгеновских и гамма-лучей, ультразвуковых и звуковых колебаний, магнитных и электромагнитных полей, оптических спектров, явлений капиллярности и т. д.
К достоинствам методов неразрушающего контроля (МНК) относятся: сравнительно большая скорость контроля, высокая надежность (достоверность) контроля, возможность механизации и автоматизации процессов контроля, возможность применения МНК в пооперационном контроле изделий сложной формы, возможность применения МНК в условиях эксплуатации без разборки машин и сооружений и демонтажа их агрегатов, сравнительная дешевизна контроля и др.
По ГОСТ 18353--73 МНК классифицируются на виды (Вид неразрушающего контроля -- условная группировка методов НК, объединенная общностью физических характеристик.): визуально-измерительный контроль, радиационный, Акустический, магнитный, проникающими веществами, вихретоковый контроль, тепловой и оптический.
2. Магнитный вид контроля
Магнитный вид контроля применяется для обнаружения нарушений сплошности (трещин, немагнитных включений и др. дефектов) в поверхностных слоях деталей из ферромагнитных материалов и выявления ферромагнитных включений в деталях из неферромагнитных материалов. Для обнаружения нарушений сплошности материала ферромагнитных (главным образом стальных) деталей применяются методы, основанные на исследовании магнитных полей рассеяния вокруг этих деталей после их намагничивания. В местах нарушения сплошности происходит перераспределение магнитного потока и резкое изменение характера магнитного поля рассеяния. Характер магнитного поля рассеяния определяется величиной и формой дефекта, глубиной его залегания, а также его ориентацией относительно направления магнитного потока. Поверхностные дефекты типа трещин, ориентированные перпендикулярно магнитному потоку, вызывают появление наиболее резко выраженных магнитных полей рассеяния. Дефекты, ориентированные вдоль магнитного потока, практически не вызывают появления нолей рассеяния.
Все магнитные методы неразрушающего контроля сплошности металла основаны на обнаружении локальных возмущений поля, создаваемых дефектами в намагниченном ферромагнетике. При намагничивании объекта магнитный поток протекает по объекту контроля. В случае нахождения несплошности на пути магнитного потока, возникают поля рассеивания, форма и амплитуда которых несет информацию о размере, характере, и глубине залегания дефекта.
В подавляющем большинстве случаев при магнитном контроле приходиться иметь дело с измерением или индикацией магнитных полей вблизи поверхности изделий. Для этого применяют различные магнитные преобразователи, из которых наиболее широкое распространение получили индукционные, феррозондовые, датчик Холла и магниторезистивные. В магнитопорошковых и магнитографических установках применяют различные порошки и ленты.
3. Магнитопорошковый метод
Магнитопорошковый метод предназначен для выявления поверхностных и под поверхностных (на глубине до 1,5...2 мм) дефектов типа нарушения сплошности материала изделия: трещины, волосовины, расслоения, не проварка стыковых сварных соединений, закатов и т.д. Магнитопорошковый метод среди других методов магнитного контроля нашел наибольшее применение, благодаря легкости и простоты получения требуемого результата. Около 80% всех контролируемых деталей из ферромагнитных материалов проходят контроль качества именно этим методом. Высокая универсальность, чувствительность, относительно низкая трудоемкость контроля и простота - эти качества обеспечили ему довольно широкое применение в промышленности сфере и на транспорте. Для обнаружения магнитного поля рассеяния на контролируемые зоны детали наносят магнитный порошок. Процесс магнитного контроля в общем виде выглядит следующим образом. Исследуемое изделие намагничивают, после чего покрывают магнитным порошком. Затем порошок оседает в местах дефектов, формируя тем самым их четкие «следы». Притягиваясь друг к другу и ориентируясь по магнитным силовым линиям поля, порошинки выстраиваются в цепочки и образуют рисунки в виде валиков, по которым и судят о наличии и сложности дефектов. Наибольшая вероятность выявления дефектов возможна тогда, когда плоскость дефекта составляет угол в 90 градусов к направлению магнитного потока. С уменьшением данного угла чувствительность уменьшается, что снижает вероятность обнаружения дефектов. Известно два метода магнитопорошкового контроля - с применением порошка (сухой метод) и с применением специальной магнитной суспензии (мокрый метод). В зависимости от форм, размеров, магнитных свойств исследуемой детали и наличия на ней немагнитного покрытия возможен как контроль на остаточной намагниченности, так и контроль в приложенном поле. По обе стороны от трещин, то есть по краям дефекта, возникают местные магнитные полюсы N и S, создающие локальное магнитное поле рассеяния (рис.1).
Рис.1 Магнитное поле рассеяния над дефектом:
а - поверхностным; б - подповерхностным; в - внутренним
Этапы магнитопорошкового контроля:
1 - Подготовка детали к контролю
Подготовка детали к контролю заключается в очистке поверхности детали от отслаивающейся ржавчины, грязи, а также от смазочных материалов и масел, если контроль проводится с помощью водной суспензии или сухого порошка. Если поверхность детали темная и черный магнитный порошок на ней плохо виден, то деталь иногда покрывают тонким просвечивающим слоем белой контрастной краски.
2 - Намагничивание детали
Намагничивание детали является одной из основных операций контроля. От правильного выбора способа, направления и вида намагничивания, а также рода тока во многом зависит чувствительность и возможность обнаружения дефектов.
3 - Нанесение на поверхность детали магнитного индикатора (порошка или суспензии)
Оптимальный способ нанесения суспензии заключается в окунании детали в бак, в котором суспензия хорошо перемешана, и в медленном удалении из него. Однако этот способ не всегда технологичен. Чаще суспензию наносят с помощью шланга или душа. Напор струи должен быть достаточно слабым, чтобы не смывался магнитный порошок с дефектных мест. При сухом методе контроля эти требования относятся к давлению воздушной струи, с помощью которой магнитный порошок наносят на деталь. Время стекания с детали дисперсной среды, имеющей большую вязкость (например, трансформаторного масла), относительно велико, поэтому производительность труда контролера уменьшается.
4 - Осмотр детали. Расшифровка индикаторного рисунка и разбраковка
Контролер должен осмотреть деталь после стекания с нее основной массы суспензии, когда картина отложений порошка становится неизменной.
Детали проверяют визуально, но в сомнительных случаях и для расшифровки характера дефектов применяют оптические приборы, тип и увеличение которых устанавливают по нормативным документам. Увеличение оптических средств не должно превышать x10.Разбраковку деталей по результатам контроля должен производить опытный контроллер. На рабочем месте контроллера необходимо иметь фотографии дефектов или их дефектограммы (реплики с отложениями порошка, снятые с дефектных мест, с помощью клейкой ленты или другими способами), а также контрольные образцы с минимальными размерами недопустимых дефектов. Вид и форма валиков магнитного и люминесцентного магнитного порошка во многих случаях помогают распознать нарушения сплошности.
5 - Размагничивание и контроль размагниченности. Удаление с детали остатков магнитного индикатора
Применяют два основных способа размагничивания. Наиболее эффективный из них - нагрев изделия до температуры точки Кюри, при которой магнитные свойства материала пропадают. Этот способ применяют крайне редко, так как при таком нагреве могут изменяться механические свойства материала детали, что в большинстве случаев недопустимо.
Второй способ заключается в размагничивании детали переменным магнитным полем с амплитудой, равномерно уменьшающейся от некоторого максимального значения до нуля. В зависимости от материала изделия, его размеров и формы применяют переменные магнитные поля различных частот: от долей Гц до 50 Гц.
Магнитопорошковый метод обнаруживает дефекты следующих параметров:
* поверхностные с шириной раскрытия у поверхности 0,002 мм и более, глубиной 0,01 мм и более;
* подповерхностные, расположенные на глубине до 2 мм;
* внутренние (больших размеров), лежащие на глубине более 2 мм;
* под различного рода покрытиями, но при условии, что толщина немагнитного покрытия не более 0,25 мм.
Магнитопорошковый контроль нашел очень широкое применение на железнодорожном транспорте, в авиации, судостроении, химическом машиностроении, автомобилестроении, нефтедобывающей и газодобывающей отраслях (контроль трубопроводов). Магнитно порошковый контроль имеет очень высокую производительность, чувствительность, также удобную наглядность результатов контроля. При грамотном использовании данного метода могут быть обнаружены дефекты в даже начальной стадии их появления.
4. Магнитографический метод
металл магнитный дефект качество
Магнитографический метод - один из методов магнитной дефектоскопии, особенность которого состоит в том, что фиксация магнитного поля рассеяния производится с помощью магнитной ленты, используемой обычно для звукозаписи. Магнитная лента прикладывается к поверхности намагничиваемого (или уже намагниченного) изделия, в результате чего на ленте как бы «записывается» распределение магнитных полей в месте расположения ленты. Зафиксированные магнитпые поля воспроизводятся с помощью специального магнитографического дефектоскопа. Чувствительный элемент дефектоскопа (головка магнитофонного типа) совершает пилообразное движение относительно магнитной ленты, а электрические сигналы в обмотке этого элемента, появляющиеся при пересечении неоднородно намагниченных участков ленты, после соответствующего усиления подаются на осциллоскопическую трубку. По форме и величине изображения сигналов на экране судят о характерен размерах дефектов, вызвавших данные сигналы.
Магнитографический метод дефектоскопии широко применяется для контроля качества сварных швов магистральных трубопроводов. При толщине стенок труб от 5 до 12 мм четко выявляются трещины, нопровары глубиной более 10% от толщины стенки, цепочки газовых пор и крупные шлаковые включения. Особенно ясно обнаруживаются тонкие продольные трещины и узкие непровары. Острые выступы, наплывы и «усиления шва» высотой более 5 мм на поверхности сварного шва могут вызывать ложные сигналы, поэтому магнитографический метод наиболее успешно контролируются швы, выполненные автоматической сваркой под флюсом, имеющие наиболее ровную поверхность. Магнитографический метод дефектоскопии может найти применение при дефектоскопии также и др. изделий из ферромагнитных материалов.
Сварные соединения, подлежащие техническому диагностированию магнитографическим методом неразрушающего контроля, должны иметь:
* коэффициент формы усиления шва (отношение ширины валика усиления к его высоте)не менее 7;
* коэффициент формы сварного шва (отношение ширины валика усиления шва к толщине стенки трубы);
* не менее 2,5 для толщин стенок труб до 8 мм;
* не менее значений в пределах 2,5-2 для толщин от 8 до 16 мм;
* не менее 1,8 для толщин стенок труб свыше 16 мм;
* высоту неровностей (чешуйчатости) на поверхности шва не более 25% высоты валика усиления, но не свыше 1 мм;
Магнитографическому методу неразрушающего контроля подвергают также сварные стыки, имеющие ширину валика усиления шва меньшую, чем это обусловлено указанными выше коэффициентами формы сварного шва.
Для намагничивания сварных соединений применяют намагничивающие устройства, тип которых в зависимости от диаметра трубы выбирают в соответствии с ВСН 012-88 «Строительство магистральных и промысловых трубопроводов. Контроль качества и приемка работ».
Перед проведением технического диагностирования магнитографическим методом неразрушающего контроля сварных соединений с поверхности стыкового шва, особенно выполненного ручной электродуговой сваркой, и околошовных зон шириной не менее 20 мм с каждой стороны валика усиления должны быть устранены грубые неровности (чрезмерная чешуйчатость, затвердевшие брызги расплавленного металла и шлака, а также наплывы), высота которых превышает нормы, указанные в ВСН 012-88 «Строительство магистральных и промысловых трубопроводов. Контроль качества и приемка работ». Кроме того, с поверхности контролируемых сварных швов и околошовных зон должны быть удалены грязь, снег, лед и другие посторонние наслоения, затрудняющие плотное прилегание магнитной ленты и ухудшающие условия магнитной записи на ней полей дефектов.
Методика магнитографического контроля включает следующие операции:
1) Осмотр и подготовку поверхности контролируемого изделия. При этом с поверхности контролируемых швов должны быть удалены остатки шлака, брызги расплавленного металла, грязь и т. д.
2) Наложение на шов отрезка магнитной ленты. Прижим ленты ко шву плоских изделий производят специальной эластичной «подушкой». При контроле кольцевых швов труб, сосудов и других изделий магнитную ленту к поверхности шва прижимают по всему периметру эластичным резиновым поясом.
3) Намагничивание контролируемого изделия при оптимальных режимах в зависимости от типа намагничивающего устройства, толщины сварного шва и его магнитных свойств.
4) Расшифровку результатов контроля, для чего магнитную ленту устанавливают в считывающее устройство дефектоскопа и по сигналам на экранах дефектоскопа производят расшифровку результатов контроля и оценку качества изделия.
Литература
1.Современные методы контроля материалов без разрушения. Об. ст., М., 1961;
2. Приборостроение и средства автоматизации контроля, под ред. С.И. Фрейберга, JKH. 1, М., 1961 (ВИНИТИ);
3.Дефектоскопия металлов. Сб. ст., под ред. Д.С. Шрайбера, М., 1959
Размещено на Allbest.ru
Подобные документы
Понятие и методики неразрушающего контроля качества, его значение в производстве изделий и используемый инструментарий. Разновидности дефектов металлов, их классификация и возможные последствия. Неразрушающий контроль качества методами дефектоскопии.
контрольная работа [155,9 K], добавлен 29.05.2010Понятие, классификация и сущность неразрушающего контроля, его использование, физические принципы и технические средства. Основные элементы автоматических устройств. Принципы и методы ультразвуковой дефектоскопии, безопасность и экологичность проекта.
дипломная работа [885,1 K], добавлен 25.07.2011Определение понятия неразрушающего контроля качества в металлургии. Изучение дефектов металлов, их видов и возможных последствий. Ознакомление с основными методами неразрушающего контроля качества материалов и продукции с разрушением и без разрушения.
реферат [185,0 K], добавлен 28.09.2014Понятие и характеристика методов неразрушающего контроля при проведении мониторинга технического состояния изделий, их разновидности и отличительные черты. Физические методы неразрушающего контроля сварных соединений, определение их эффективности.
курсовая работа [588,2 K], добавлен 14.04.2009Общая характеристика магнитных методов неразрушающего контроля, подробная характеристика магнитопорошкового метода. Выявление поверхностных и подповерхностных дефектов типа нарушения сплошности материала изделия (непроварка стыковых сварных соединений).
реферат [26,6 K], добавлен 31.07.2009Ультразвуковые методы контроля позволяют получить информацию о дефектах, расположенных на значительной глубине в различных материалах, изделиях и сварных соединениях. Физические основы ультразвуковой дефектоскопии. Классификация методов контроля.
реферат [4,7 M], добавлен 10.01.2009Методы и средства неразрушающего теплофизического контроля полимерных покрытий на металлических основаниях. Свойства материалов, применяемых для изготовления полимерно-металлических изделий. Имитационное исследование метода неразрушающего контроля.
дипломная работа [1,3 M], добавлен 25.06.2017Реализация процессного подхода к организации неразрушающего контроля (НК) изделий в машиностроении. Совершенствование системы НК на примере предприятия ОАО "Тяжпромарматура": основные виды и характеристики дефектов, факторы, влияющие на качество НК.
магистерская работа [110,0 K], добавлен 26.11.2010Основные методы и средства для измерения размеров в деталях типа "вал" и "корпус". Расчет исполнительных размеров калибров для контроля шлицевого соединения с прямобочным соединением. Схема измерительного устройства для контроля радиального биения.
курсовая работа [2,8 M], добавлен 27.08.2012Исследование структуры металла: выявление нарушения его сплошности, распределения примесей и неметаллических включений, формы и расположения кристаллитов. Понятие твердости металлов, ликвации, методической печи. Классификация металлорежущих станков.
контрольная работа [88,9 K], добавлен 15.08.2009