Основы материаловедения

Основные материалы, которые используются в энергетике. Анализ структуры стеклопластика. Характеристики композиционных материалов, вычисление их обобщенной проводимости. Расчет электрических характеристик гетерогенных систем. Взаимопроникающие структуры.

Рубрика Производство и технологии
Вид реферат
Язык русский
Дата добавления 11.10.2012
Размер файла 26,1 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

Материаловедение - наука, занимающаяся изучением состава, структуры, свойств материалов, поведением материалов при различных воздействиях: тепловых, электрических, магнитных и т.д., а также при сочетании этих воздействий. Стихийными материаловедами были еще древние люди, , например, научившиеся делать каменные наконечники или топоры из определенных камней со слоистой структурой. Технический прогресс человечества во многом основан на материаловедении. В свою очередь технический прогресс дает новые возможности, методы, приборы для материаловедения, позволяет создавать новые материалы.

Рассмотрим пример с компьютерной техникой. Первые компьютеры были на вакуумных электронных лампах и имели сравнительно скромные возможности. Размер их был примерно со спортивный зал, размер единичного элемента для хранения и обработки информации составлял несколько сантиметров. После открытия полупроводников размер элемента уменьшился примерно в 10 раз, размеры компьютера уменьшились также примерно в 10 раз. По мере исследования полупроводников их размер уменьшался, пока не произошел качественный скачок после открытия интегральных схем, когда несколько транзисторов соединили в одном элементе. В дальнейшем и этот элемент постоянно уменьшался и в нем соединяли все большее количество транзисторов. В настоящее время элементарный транзистор имеет размер примерно 0.5 мкм, в больших интегральных схемах соединяются тысячи элементов. Предполагается, что в ближайшем будущем будет постепенно осуществляться переход на масштаб 0.2 мкм и 0.18 мкм. Имеются идеи о создании элементов размером в молекулу!

Материал - это объект обладающий определенным составом, структурой и свойствами, предназначенный для выполнения определенных функций. Материалы могут иметь различное агрегатное состояние: твердое, жидкое, газообразное или плазменное. Функции, которые выполняют материалы - разнообразны. Это может быть обеспечение протекания тока - в проводниковых материалах, сохранение определенной формы при механических нагрузках - в конструкционных материалах, обеспечение непротекания тока, изоляция - в диэлектрических материалах, превращение электрической энергии в тепловую - в резистивных материалах. Обычно материал выполняет несколько функций, например диэлектрик обязательно испытывает какие-то механические нагрузки, а значит является конструкционным материалом.

Основные материалы, которые используются в энергетике, можно разделить на несколько классов - это проводниковые материалы, магнитные материалы, диэлектрические материалы. Общим для них является то, что они эксплуатируются в условиях действия напряжения, а значит и электрического поля. В них протекают электрические токи, выделяется тепловая энергия, происходят потери электрической энергии, происходит нагревание материалов. Более специфичны магнитные материалы, в них запасается магнитная энергия, в них также происходят ее потери, выделяется тепло при работе в переменном электрическом поле.

Здесь также следует выделить целый громадный класс материалов не по признаку их функционирования, а по составу. Это композиционные материалы.

Композиционные материалы - материалы, состоящие из нескольких компонент, выполняющих разные функции, причем между компонентами существуют границы раздела.

Примеры композиционных материалов - стеклопластик (стержни и трубы), стеклотекстолит листовой, материалы для контактов (смеси электропроводного и тугоплавкого металлов). Сочетание двух или более материалов позволяет использовать сильные стороны каждого из материалов. При этом свойства композита, далеко не всегда являются промежуточными между свойствами компонентов. В ряде случаев улучшаются характеристики, либо появляется материал с принципиально новыми характеристиками. Рассмотрим, например стеклопластик. Он состоит из волокон стекловолокна, пропитанных полимером, обычно эпоксидным полимером. Основное достоинство этого материала - высокая механическая прочность. Прочность эпоксидного компаунда недостаточно велика, этот материал достаточно хрупок. Прочность стеклянного волокна - значительна, но у него хрупкость также значительна. После пропитки волокон и последующей полимеризации прочность стеклопластикового стержня на разрыв не уступает прочности волокон, тогда как хрупкость у стержней в принципе отсутствует. Основными характеристиками материалов являются электропроводность или обратная величина - сопротивление, плотность, механическая прочность при различных нагрузках, теплоемкость, теплопроводность. Для диэлектрических материалов наиболее важны удельное электрическое сопротивление, диэлектрическая проницаемость, диэлектрические потери, электрическая прочность.

Большинство этих терминов вам неизвестно, в процессе изучения настоящего курса вы с ними подробно познакомитесь.

Характеристики композиционных материалов

Для начала введем понятие обобщенной проводимости.

Оказывается удельные теплопроводность, электропроводность, диэлектрическая проницаемость, коэффициент диффузии являются близкими характеристиками, в том смысле что они описывают потоки (зарядов, вещества, тепла, электрического поля) в зависимости от сил, вынуждающих эти потоки. Например плотность тока связана с градиентом потенциала через проводимость:

стеклопластик проводимость композиционный материал

Индукция связана с градиентом потенциала через диэлектрическую проницаемость:

Поток тепла связан с градиентом температуры через теплопроводность

Для композиционных материалов оказалось, что зависимость какого то параметра композиции (e, s, l??от аналогичных параметров компонентов (e, s, l? идентична для любого из параметров. Поэтому говорят об обобщенной проводимости, т.е. о зависимости обобщенной проводимости композиции от аналогичных проводимостей компонентов.

Существует достаточно большое количество выражений для вычислений обобщенной проводимости композиционных материалов (диэлектрической проницаемости, теплопроводности, диффузии и электропроводности) в различных случаях. Кроме того, теоретически получена группа оценок сверху и снизу, причем при использовании дополнительной информации о частицах, среде и характере их взаимодействия интервал между оценками можно сделать достаточно узким.

Для оценочных расчетов более удобен способ непосредственного вычисления обобщенной проводимости, исходя из характеристик компонентов. Поскольку нас интересует, в первую очередь, диэлектрическая проницаемость и электропроводность, при использовании известных выражений, полученных для расчета других видов проводимости будем заменять соответствующие физические характеристики на нужные.

Здесь нужно ввести еще два понятия о структуре. Существуют две принципиально различные структуры: матричная и взаимопроникающая.

Структура является матричной, если по одному из компонентов можно попасть в любую точку этого компонента, не пересекая границ раздела компонент.

Такая компонента называется дисперсионной фазой, или матрицей композиции. Компонента, частички которой окружены дисперсионной компонентой называется дисперсной фазой, или наполнителем.

Например, частички сажи в полиэтилене. Полиэтилен является матрицей, частички сажи - наполнителем. Другой пример - молоко. Вода является дисперсионной средой, микрокапельки жира в ней - дисперсной фазой.

Структура называется взаимопроникающей, если не выполняется условие матричности и геометрические характеристики обоих компонентов (форма частиц) одинаковы .

Например, материал, приготовленный методами порошковой металлургии, когда смешивают два, или несколько разных порошков и полученную смесь прессуют.

Матричные структуры. Расчет электрических характеристик гетерогенных систем достаточно точен в случае разбавленных суспензий. Для этих условий применимы известные формулы Максвелла, Вагнера-Винера, Оделевского. В случае малых концентраций они дают близкие значения. При достаточно больших концентрациях, и при большом различии параметров компонентов практически все известные выражения непригодны.

Наиболее правдоподобно описывает зависимости формула Нильсена, которая предложена для описания наполненных полимеров. Для случая наполнитель - керамика с диэлектрической проницаемостью eк, а матрица - жидкость с диэлектрической проницаемостью eж формулу Нильсена можно написать в виде

где Vк -объемная доля керамики, А - характеризует форму частиц, А=1.5 для сфер, А=3 для частичек нерегулярной формы с минимальной поверхностью, А=4 для пластинок и чешуек различной формы. Pm - максимально возможная объемная доля твердой фазы, характеризующая укладку и форму частиц.

Анализ зависимостей диэлектрической проницаемости от концентрации твердой фазы показывает, что при малых концентрациях все зависимости дают примерно одинаковые значения. Экспериментальные данные не противоречат расчетам. Однако при повышении концентрации до 25-30% все зависимости, кроме формулы Нильсена дают значительно меньшие значения чем эксперимент. До концентрации 50-55% формула Нильсена дает блестящее совпадение с экспериментом. Причем это проверено на ряде жидкостей, начиная с трансформаторного масла и заканчивая сульфоланом. После 50-55% формула Нильсена начинает давать значения, большие чем зарегистрировано в эксперименте.

Взаимопроникающие структуры. Для этого случая также предложено большое количество выражений. Наиболее популярна формула Лихтенеккера

e=e1v1Чe2(1-v1)

Видно, что в этой формуле оба компонента равноправны.

Размещено на Allbest.ru


Подобные документы

  • Общие сведения о композиционных материалах. Свойства композиционных материалов типа сибунита. Ассортимент пористых углеродных материалов. Экранирующие и радиопоглощающие материалы. Фосфатно-кальциевая керамика – биополимер для регенерации костных тканей.

    реферат [1,6 M], добавлен 13.05.2011

  • Типы композиционных материалов: с металлической и неметаллической матрицей, их сравнительная характеристика и специфика применения. Классификация, виды композиционных материалов и определение экономической эффективности применения каждого из них.

    реферат [17,4 K], добавлен 04.01.2011

  • Структура композиционных материалов. Характеристики и свойства системы дисперсно-упрочненных сплавов. Сфера применения материалов, армированных волокнами. Длительная прочность КМ, армированных частицами различной геометрии, стареющие никелевые сплавы.

    презентация [721,8 K], добавлен 07.12.2015

  • Особенности формирования структуры и свойств обжиговых керамических композиционных материалов из грубодисперсных непластичных компонентов. Теория и практика плотной упаковки частиц в полидисперных системах. Исследование процессов образования волластонита.

    диссертация [4,6 M], добавлен 12.02.2015

  • Производство изделий из композиционных материалов. Подготовительные технологические процессы. Расчет количества армирующего материала. Выбор, подготовка к работе технологической оснастки. Формообразование и расчет штучного времени, формование конструкции.

    курсовая работа [457,2 K], добавлен 26.10.2016

  • Влияние графитовых наполнителей на радиофизические характеристики композиционных материалов на основе полиэтилена. Разработка на базе системы полиэтилен-графит композиционного материала с наилучшими радиопоглощающими и механическими показателями.

    диссертация [795,6 K], добавлен 28.05.2019

  • Подготовительные технологические процессы для производства изделий из композиционных материалов. Схема раскроя препрегов. Расчет количества армирующего материала и связующего, необходимого для его пропитки. Формообразования и расчет штучного времени.

    курсовая работа [149,9 K], добавлен 15.02.2012

  • Подготовительные технологические процессы, расчет количества ткани и связующего для пропитки. Изготовление препрегов на основе тканевых наполнителей. Методы формообразования изделия из армированных композиционных материалов, расчёт штучного времени.

    курсовая работа [305,7 K], добавлен 26.03.2016

  • Классификация композиционных материалов, их геометрические признаки и свойства. Использование металлов и их сплавов, полимеров, керамических материалов в качестве матриц. Особенности порошковой металлургии, свойства и применение магнитодиэлектриков.

    презентация [29,9 K], добавлен 14.10.2013

  • Назначение и свойства электротехнических материалов, которые представляют собой совокупность проводниковых, электроизоляционных, магнитных и полупроводниковых материалов, предназначенных для работы в электрических и магнитных полях. Пермаллои и ферриты.

    реферат [41,3 K], добавлен 02.03.2011

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.