Понятие видов и методов измерений

Преобразование измеряемой величины в процессе измерений. Измерение давления газа при помощи трубчатого манометра. Метод непосредственной оценки. Разностный или дифференциальный метод. Нулевой метод - один из первых в истории техники точных измерений.

Рубрика Производство и технологии
Вид реферат
Язык русский
Дата добавления 27.09.2012
Размер файла 21,6 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

Реферат

Понятие видов и методов измерений

Введение

Конкретные методы измерений определяются видом измеряемых величин, их размерами, требуемой точностью результата, быстротой процесса измерения, условиями, при которых проводятся измерения, и рядом других признаков.

Каждую физическую величину можно измерить несколькими методами, которые могут отличаться друг от друга особенностями как технического, так и методического характера. В отношении технических особенностей можно сказать, что существует множество методов измерения, и по мере развития науки и техники, число их все увеличивается. С методической стороны все методы измерений поддаются систематизации и обобщению по общим характерным признакам. Рассмотрение и изучение этих признаков помогает не только правильному выбору метода и его сопоставлению с другими, но и существенно облегчает разработку новых методов измерения.

Для прямых измерений можно выделить несколько основных методов: метод непосредственной оценки, дифференциальный метод, нулевой метод и метод совпадений.

При косвенных измерениях широко применяется преобразование измеряемой величины в процессе измерений.

Преобразование измеряемой величины в процессе измерений

Если мы проанализируем известные нам процессы измерений, то обнаружим, что в подавляющем большинстве случаев мы получаем числовое значение измеряемой величины, только после того, как тем или иным способом видоизменим ее. Рассмотрим в качестве примера измерение массы тела, которую мы измеряем с помощью обыкновенных равноплечих весов. Под действием земного притяжения создаются силы. Масса тела вместе с этими силами давит на одну чашку, а масса гирь - на другую. Подбирая гири, мы добиваемся равновесия, т.е. равенство этих сил. Это дает нам право сказать, что масса взвешиваемого тела равна массе гирь, принимая, что сила земного притяжения на расстоянии между чашками остается одной и той же. Как видим, для измерения массы нам пришлось преобразовать массы тела и гирь в силы, а для сравнения сил между собой преобразовать их действие в механическое перемещение рычагов весов.

Другой пример - измерение давления газа при помощи трубчатого манометра. Металлическая трубка манометра, изогнутая по дуге, одним концом соединяется с резервуаром, в котором необходимо измерить давление газа. Другой конец трубки запаян. Под действием давления газа трубка разгибается и тем больше, чем больше давление. Свободный конец трубки перемещается в пространстве. Так осуществляется первая ступень преобразования. Перемещение конца трубки при помощи системы рычагов и зубчаток преобразуется во вращение оси (вторая ступень преобразования). На оси находится стрелка, конец которой перемещется по дуге над шкалой с делениями. Эта третья ступень преобразования, позволяющая получить числовое значение измеряемого давления.

Приведенные примеры показывают, что даже простые измерения проводятся путем преобразования измеряемой величины.

Основным выводом из сказанного является то, что в подавляющем большинстве случаев измерения связаны с преобразованием измеряемой величины.

Метод непосредственной оценки

Метод непосредственной оценки дает значение измеряемой величины непосредственно без каких - либо дополнительных действий со стороны лица, проводящего измерение, и без вычислений, кроме умноженияего показаний на постоянную измерительного прибора или цену деления. Быстрота процесса измерения методом непосредственной оценки делает его часто незаменимым для практического использования, хотя точность измерения бывает обычно ограниченной. Наиболее многочисленной группой средств измерений, служащих для измерений методом непосредственной оценки, являются показывающие приборы и вот числе так называемые стрелочные приборы. Показывающие измерительные приборы нередко в течение длительного времени непосредственно контактируют с измеряемой величиной. Указатель их непрерывно следует за изменением этой величины, что имеет большое значение при осуществлении технологических процессов, наблюдении за явлениями природы и т.п.

К показывающим измерительным приборам непосредственной оценки относятся манометры, динамометры, барометры, амперметры, вольтметры, ваттметры, фазометры, расходомеры, тягомеры, напоромеры, жидкостные термометры и многие другие.

Измерение при помощи интегрирующего измерительного прибора - счетчика также является методом непосредственной оценки.

В ряде случаев средство измерений приводится в контакт с измеряемой величиной только в тот момент, когда возникает необходимость узнать значение этой величины. К такой разновидности метода непосредственной оценки относятся, например, взвешивание грузов на циферблатных весах, измерение длины при помощи линейки с делениями или рулетки, измерение электрических величин при помощи переносных приборов и т.п.

Разностный или дифференциальный метод

Этот метод характеризуется измерением разности между измеряемой величиной и величиной, значение которой неизвестно. Разностный метод позволяет получит результаты с высокой точностью даже при применении относительно грубых средств для измерения разности. Однако осуществление метода возможно только при условии воспроизведения с большой точностью известной величины, значение которой близко к значению измеряемой. Это во многих случаях оказывается легче, чем изготовить средство измерений высокой точности.

Проиллюстрируем сказанное на примере измерения длины как наиболее наглядном. На рис.1 рядом с телом, длину x которого следует измерить, помещена мера длины.

Таким образом, для достижения такой высокой точности мы можем воспользоваться сравнительно грубым прибором. Преимущества этого метода несомненны, так как изготовить точную меру и сравнительно грубый прибор для измерения небольших величин легче, чем средство измерений высокой точности для измерения всей величины в целом.

В области линейных и угловых измерений разностный метод измерения длины получил наименование “относительный метод”. Приведем пример разностного метода из области электрических измерений, применяемого при проверке измерительных трансформаторов тока. Для определения погрешности коэффициентов трансформации поверяемый трансформатор тока сравнивают с образцовым. Принципиальная электрическая схема поверки трансформаторов дифференциальным методом показана

Как видим, первичные обмотки обоих трансформаторов включены в цепь одного и того же тока I1. Вторичные обмотки включены таким образом, что их токи Ix и I0 направлены навстречу друг другу. Разность между этими токами, измеряемая при помощи того или иного прибора, пропопрциональна разности коэффициентов трансформации, т.е. погрешности коэффициента трансформации проверяемого трансформатора. Если погрешность коэффициента трансформации образцового трансформатора не равна нулю, в результат измерения вносят соответствующую поправку. Приведенная на рисунке схема является принципиальной, т.е. упрощенной. В конструкцию установок для проверки измерительных трансформаторов разностным методом введен ряд дополнений, которые позволяют определять не только погрешность коэффициента трансформации, но и погрешности угла сдвига фаз между токами в первичной и вторичной цепях. Аналогичная схема применяется и для проверки измерительных трансформаторов напряжения.

Разностный метод получает все более широкое распостранение во мнногих областях измерений.

Нулевой метод

В истории развития техники точных измерений нулевой метод является одним из первых. Взвешивание грузов на рычажных весах (как равноплечих, так и неравноплечих) - это характерный пример нулевого метода измерения.

В общем виде нулевой метод заключается в следующем. Измеряемую величину сравнивают с величиной, значение которой известно. Последнюю выбирают таким образом, чтобы разность между измеряемой и известной величинами равнялась 0. Совпадение значений этих величин отмечают при помощи нулевого указателя (нуль-индикатора).

При сравнении нулевого и разностного методов можно найти между ними нечто общее. Если в разностном методе мы измеряем разность между двумя величинами, то в нулевом мы практически приводим эту разность к нулю.

По сравнению с разностным методом недостаток нулевого метода заключается в необходимости иметь средство измерений, позволяющее воспроизводить любое значение известной величины без существенного понижения точности. В большинстве случаев это бывают меры переменного значения или наборы (магазины) мер, из которых составляются сочетания, воспроизводящие величины, равные измеряемым. Классическим примером таких мер являются наборы гирь.

Практически во многих случаях метод, относимый к нулевому, оказывается скорее разностным. Так, при взвешивании на точных равноплечих весах на чашку кладут гири в убывающем порядке значения их массы. В итоге достигается такое положение, когда наложение гири с наименьшей массой заставляет стрелку весов переходить через нуль и отклоняться в другую сторону от него. В этом случае прибегают к методу интерполяции.

Интреполяцию в данном случае можно рассматривать как разностный метод. При помощи шкалы, указателя и гирьки с наименьшим значением массы иы измеряем разность между измеряемой массой и суммарной массой гирь на другой чашке.

Однако нулевой метод обладает и существенным преимуществом по сравнению с разностным. При использовании разностного метода требуется мера, значение которой близко к значению измеряемой величины. Для измерения нулевым методом можно применять меры, во много раз меньшие этой величины. Например, в различных весах для взвешивания больших масс гиря 1 кг уравновешивается 100; 1000 кг и более. Достигается это с помощью неравноплечих рычагов, применение которых позволяет значительно расширить возможности нулевого метода.

Изменение известной величины, служащей для сравнения, не всегда удобно и возможно.Поэтому для осуществления нулевого метода поступают следующим образом. Используя постоянную по значению величину, изменяют эффект ее действия путем изменения плеча, к которому она приложена. Можно привести следующие примеры. Для взвешивания применяют безмен, на одном плече которого помещена гиря. Гиря передвигается вдоль плеча. Чем больше взвешиваемый груз, тем дальше от точки опоры следует отодвинуть гирю. На плече нанесена шкала, указывающая значение уравновешенного груза. Аналогичное устройство имеют многие так называемые шкальные весы: от небольших - почтовых и детских до больших - автомобильных и вагонных.

В электрических измерениях широко примненяются мосты для измерения сопротивления, индуктивности и емкости. На рис.3 показана схема моста для измерения сопротивления x. Схема состоит из трех сопротивлений с известными значениями r1; r2; r3, нулевого индикатора - гальванометра G и источника тока Б. Изменяя одно из сопротивлений r, добиваются, чтобы указатель гальванометра не смещался с нуля. Это может быть только тогда, когда между точками 2 - 4 нет разности потенциалов, или, другими словами, падение напряжения между точками 1 - 2 равно падению напряжения между точками 1 - 4. Как следствие падения напряжения между точками 2-3 и 3-4 также равны между собой. На основании этих равенств получают формулу x/r2=r1/r3 или x=(r1*r2)/r3. В таком мосте изменяется известное сопротивление.

дифференциальный нулевой манометр

Метод совпадения

Этот метод характеризуется использованием совпадения отметок шкал или периодических сигналов. Приложим линейку с миллиметровыми делениями к линейке с дюймовыми делениями и совместим их нулевые отметки. При этом обнаружим, что точно совпадают отметки, соответствующие 127 мм и 5 дюймам; 254 мм и 10 дюймам и т.д. Отсюда можно определить, что 1 дюйм=25,4 мм. По принципу метода совпадения построен нониус штангенциркуля и ряда других приборов. Шкала нониуса штангенциркуля имеет десять делений по 0,9 мм. Когда нулевая отметка шкалы нониуса окажется между отметками основной шкалы штангенциркуля, это будет означать, что к целому числу миллиметров следует прибавить некоторое число x десятых долей миллиметра (x*0,1). Для определения числа x находим отметку шкалы нониуса, совпадающую с какой-либо отметкой основной шкалы (Рис.4). Пусть такой отметкой будет n-я шкалы нониуса.

Следовательно, порядковый номер совпадающей отметки нониуса непосредственно дает число десятых долей миллиметра. На рисунке 4 n=7 и 0,1 x = = 0,7 мм.

Метод совпадения применяется также при приеме сигналов времени. По радио передаются ритмические сигналы ( имеются в виду не 6 сигналов), с которыми сравнивают удары хронометра. Если бы интервал между передававемыми ритмическими сигналами был равен 1 с, то они могли бы не совпадать с сигналами хронометра во всем промежутке времени передачи, а сравнение хода часов с передаваемыми сигналами было бы оченть неточно. Поэтому ритмические сигналы передаютя через интервалы времени 1/60 короче секунды. Другими словами, число сигналов в течение 1 минуты равно 61. Ритмические сигналы подаются в количестве 5 серий в течение 5 мин (всего 306 сигналов) и являются “нониусом” времени. При одновременном прослушивании ритмических сигналов и сигналов от часов с секундным маятником отмечают совпадающие сигналы. Погрешность часов вычисляют по интервалам времени между совпадающими сигналами. Принцип совпадения сигналов лежит также в основе методов измерений, в которых используются явления биений и интерференции, а также стробоскопический эффект.

Преобразование измеряемой величины как косвенные измерения

При косвенных измерениях результат определяется на основании измерений величин, связанных с измеряемой величиной известной зависимостью. При этом в качестве примеров рассматривались случаи, когда закономерная зависимость выражалась строго математически. Однако строгая закономерность зависимости между величинами может быть неизвестна, хотя и известно, что такая зависимость существует. Например, известно, что электродвижущая сила термопары зависит от температуры. Определить эту зависимость на основании известных нам законов физики мы не можем даже для одной и той же пары металлов. На эту зависимостиь влияют малейшие отклонения в составах сплавов и технология их обработки. В этих случаях нужную нам зависимость мы можем определить методом совместных измерений. И не только определить, но и исследовать, и изучить постоянство и воспроизводимость этой зависимости влияния на нее внешних воздействий. Когда зависимость одной величины от другой будет нам хорошо известна, мы имеем возможность измерять нужную нам величину на основании измерений других величин, связанных с измеряемой известной зависимостью. Описанные измерения следует также отнести к косвенным измерениям как одну из его разновидностей. Разновидностью косвенных измерений является также случай нахождения значения измеряемой величины путем прямых измерений компонентов известной формулы, определяющей ее зависимости от этих компонентов. Эта разновидность косвенных измерений относится к случаю нахождения значения измеряемой величины по ее зависимости от других величин, определяемой путем совместных измерений. Вторая разновидность косвенных измерений может рассматриваться так же, как измерение путем преобразования измеряемой величины в другую, по природе своей существенно отличающуюся от измеряемой, но связанную с ней устойчивой зависимостью.

Измерения методами преобразования

Преобразование измеряемых величин в электрические и магнитные. Рассмотрим некоторые типичные методы и отдельные физические явления или свойства веществ, позволяющие преобразовыввать измеряемые величины в электрические.

1. Нагревание места спая двух электродов из разнородных материалов (спая термопары) вызывает появление э.д.с., что позволяет измерять температуру. 2. Нагревание электрических проводников и полупроводников вызывает изменение их сопротивления (термометры сопротивления, термисторы) 3. Растяжение или сжатие некоторых металлов в пределах их упругости вызывает изменение их электрического сопротивления. Это явление дает возможность изготовлять электротензометры и измерять малые деформации тел и усилия в условиях, при которых измерение другими методами невозможно, например, деформации различных частей машин во время их работы. 4. В граничном слое между некоторыми полупроводниками и металлами при его освещении возникает э.д.с. Это явление называют фотоэлектрическим эффектом. На использовании его основаны фотоэлементы. 5. Электрическое сопротивление некоторых полупроводников под действием света весьма заметно изменяется. Это явление используется для изготовления фотосопротивлений. 6. Зависимость яркости свечения тела от температуры, которая в свою очередь зависит от силы тока, накаливающего нити, позволяет измерять температуру бесконтактным методом, например с помощью оптического пирометра. 7. На гранях некоторых кристаллов, когда к 2 граням приложена сила, сдавливающая или растягивающая их, возникает э.д.с. Это явление названо пьезоэлектрическим эффектом. Этот эффект получил самое разнообразное применение. Особое значение этот эффект имеет для стабилизации частоты высокочастотных генераторов. Для этой цели как правило применяются кристаллы кварца. Так, кварцевые часы, основанные на использовании пьезоэлектрического эффекта в кварце, были до недавнего времени наиболее точными приборами для измерения интервалов времени. 8. Магнитная проницаемость тел из ферромагнитных материалов изменяется в зависимости от приложенных к ним механических сил. Наблюдается и обратное явление: в ферромагнитном теле при внесении его в магнитное поле возникают механические деформации. Эти явления получили название магнитострикции. Магнитострикционные преобразователи применяются главным образом в технике измерения звуковых и ультразвуковых колебаний. 9. Как известно, электрическая емкость плоского конденсатора выражается формулой. Измерение электрической емкости используют для измерения малых размеров и малых перемещений. 10. Перемещение измеряют также по изменению индуктивности катушки с сердечником из магнитомягкого материала. 11. Существует еще ряд способов преобразования показаний того или иного измерительного прибора в электрическую величину, удобную для передачи на расстояние, т.е. для телеизмерений. Каналами передачи преобразованных показаний приборов являются электрические провода и каналы радиосвязи.

Используемая литература

Крылова Г. Д. Основы стандартизации, сертификации, метрологии: Учебник для вузов -- М.: ЮНИТИ-ДАНА, 1999

Лифиц И. М. Стандартизация, метрология и сертификация: Учебник -- М.: Юрайт-Издат, 2005

Размещено на Allbest.ru


Подобные документы

  • Общая характеристика объектов измерений в метрологии. Понятие видов и методов измерений. Классификация и характеристика средств измерений. Метрологические свойства и метрологические характеристики средств измерений. Основы теории и методики измерений.

    реферат [49,4 K], добавлен 14.02.2011

  • Исследование приемов сравнения измеряемой величины с ее единицей в соответствии с реализованным принципом измерений. Методы прямых измерений: оценки, противопоставления, полного замещения. Сертификат пожарной безопасности. Добровольная сертификация.

    контрольная работа [926,7 K], добавлен 07.01.2015

  • Статическая характеристика преобразования. Зависимость между выходным и входным информационными параметрами измеряемой величины. Порог чувствительности. Цена деления. Диапазон измерений. Погрешность меры и закономерность проявления погрешностей.

    презентация [148,9 K], добавлен 22.10.2013

  • Методика выполнения измерений. Особенности оценки объема и расхода газа с помощью сужающих устройств. Турбинные и ротационные счетчики газа. Узлы коммерческого учета. Принцип действия квантометра. Основы статистической обработки результатов измерений.

    курсовая работа [341,5 K], добавлен 06.04.2015

  • Сведения о методах и видах измерений. Описание теории и технологической схемы процесса искусственного охлаждения. Метрологическое обеспечение процесса. Выбор и обоснование системы измерений, схема передачи информации. Расчет погрешностей измерения.

    курсовая работа [437,4 K], добавлен 29.04.2014

  • Составление эскиза детали и характеристика средств измерений. Оценка результатов измерений и выбор устройства для контроля данной величины. Статистическая обработка результатов, построение гистограммы распределения. Изучение ГОСТов, правил измерений.

    курсовая работа [263,8 K], добавлен 01.12.2015

  • Этапы проведения измерений. Вопрос о предварительной модели объекта, обоснование необходимой точности эксперимента, разработка методики его проведения, выбор средств измерений, обработка результатов измерений, оценки погрешности полученного результата.

    реферат [356,6 K], добавлен 26.07.2014

  • Проведение измерений средствами измерений при неизменных или разных внешних условиях. Обработка равноточных, неравноточных и косвенных рядов измерений. Обработка многократных результатов измерений (выборки). Понятие генеральной совокупности и выборки.

    курсовая работа [141,0 K], добавлен 29.03.2011

  • Общие вопросы основ метрологии и измерительной техники. Классификация и характеристика измерений и процессы им сопутствующие. Сходства и различия контроля и измерения. Средства измерений и их метрологические характеристики. Виды погрешности измерений.

    контрольная работа [28,8 K], добавлен 23.11.2010

  • Однократное и многократное измерение физической величины. Определение среднего арифметического и среднеквадратического отклонения результатов серии измерений, их функциональные преобразования. Обработка экспериментальных данных при изучении зависимостей.

    курсовая работа [159,6 K], добавлен 03.12.2010

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.