Конструкторско-технологическая подготовка мелкосерийного производства шестерней агрегатов авиационных двигателей на специализированном участке

Формирование облика и расчет на прочность элементов компрессора высокого давления турбореактивного двухконтурного двигателя для самолетов. Анализ рабочего чертежа, технологичности, расчет потребного количества переходов для формообразования поверхностей.

Рубрика Производство и технологии
Вид дипломная работа
Язык русский
Дата добавления 07.06.2012
Размер файла 3,7 M

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

Размещено на http://www.allbest.ru/

МІНІСТЕРСТВО ОСВІТИ І НАУКИ, МОЛОДІ ТА СПОРТУ УКРАЇНИ

Національний аерокосмічний університет ім. М.Є. Жуковського

“ХАІ”

ФАКУЛЬТЕТ АВІАЦІЙНИХ ДВИГУНІВ

До захисту допускаю:

Завідувач кафедри доктор техн.наук, професор

___________ А.І. Долматов

КОНСТРУКТОРСЬКО-ТЕХНОЛОГІЧНА ПІДГОТОВКА ДРІБНОСЕРІЙНОГО ВИРОБНИЦТВА ШЕСТЕРНЕЙ АГРЕГАТІВ АВІАЦІЙНИХ ДВИГУНІВ НА СПЕЦІАЛІЗОВАНІЙ ДІЛЬНИЦІ

Розрахунково-пояснювальна записка до випускної роботи бакалавра

за напрямом: 6.051102 - “ Двигуни та енергетичні установки ЛА ”.

Спеціальність: 8.090260 - “Технологія будування авіаційних двигунів”

ХАІ.204.244.12В.6.0511.02.08002096 ПЗ

Виконавець: студент гр.244 _____ Д.А.Ворошилов

Керівник: доцент каф. 204 А.П. Петренко

Консультант технологічної частини доцент А.П.Петренко

Консультант конструкторської частини доцент О.І.Гаркуша

Харків 2012

Содержание

Введение

1. Конструкторская часть

1.1 Основные сведения о проектируемом двигателе и краткое описание конструкции

1.2 Термогазодинамический расчет двигателя

1.2.1 Выбор и обоснование параметров

1.2.2 Термогазодинамический расчет на ЭВМ

1.2.3 Формирование облика ГТД

1.3 Расчет на прочность элементов конструкции АД

1.3.1 Расчёт на прочность пера лопатки 1-й ступени КНД

1.3.2 Расчёт на прочность диска первой ступени КНД

1.3.3 Расчет динамической частоты первой формы изгибных колебаний лопатки компрессора и построение частотной диаграммы

2. Технологическая часть

2.1 Анализ рабочего чертежа и определение показателей технологичности шестерни

2.1.1 Технологичность по материалу

2.1.2 Технологичность по точности, шероховатости поверхностей шестерни

2.2 Выбор и обоснование метода, оборудования и параметров формообразования заготовки

2.3 Расчёт, оптимизация и обоснование потребного количества технологических операций (переходов) формообразования поверхностей-представителей шестерни

2.4 Выбор и технико-экономическое обоснование этапов технологического процесса изготовления, комплектов технологических баз, методов и последовательности обработки поверхностей шестерни

2.5 Разработка, обоснование, оптимизация и оформление предварительного плана технологического процесса изготовления шестерни

2.6 Расчеты припусков на обработку и операционных размеров-диаметров всех цилиндрических поверхностей шестерни нормативным методом

2.7 Расчеты припусков на обработку и операционных размеров-диаметров заданных цилиндрических поверхностей вращения шестерни расчетно-аналитическим методом

2.8 Разработка, расчеты и анализ размерной схемы формообразования и схем размерных цепей плоских торцевых поверхностей шестерни

2.8.1 Расчеты припусков на обработку и операционных размеров-координат плоских торцевых поверхностей шестерни расчетно-аналитическим методом

2.8.2 Расчеты и оптимизация припусков на обработку операционных размеров-координат плоских торцевых поверхностей с использованием прикладной теории графов размерных цепей

2.9 Проектирование и выполнение чертежа заготовки шестерни

2.10 Проектирование механических операций технологического процесса

2.10.1 Расчет режимов резания и разработка, оформление комплекта технологической документации

2.10.1.1 Токарная черновая операция

2.10.1.2 Сверлильная операция

2.10.1.3 Шлицефрезерная операция

2.10.1.4 Круглошлифовальная операция

2.10.1.5 Шлицефрезерная операция

2.11 Формирование и оформление окончательного плана маршрутно-операционного технологического процесса

3. Охрана труда

3.1 Выявление и анализ опасных и вредных производственных факторов, действующих в рабочей зоне на специализированном участке по производству деталей типа шестерня

3.1.1 Краткое описание прототипа объекта проектирования

3.1.2 Выявление опасных и вредных производственных факторов, действующих в рабочей зоне проектируемого объекта

3.1.3 Характеристика источников опасных и вредных производственных факторов

3.1.4 Анализ возможных последствий воздействия негативных факторов на работающих

3.2 Разработка мероприятий по предотвращению возможного воздействия опасных и вредных производственных на работающих

3.2.1 Обоснование возможностей устранения из состава проектируемого объекта источников опасных и вредных производственных факторов

3.2.2 Анализ возможных методов и устройств ослабления воздействия на работающих опасных и вредных производственных факторов

3.2.3 Обоснование и расчет наиболее целесообразных технических систем и устройств защиты работающих от воздействия опасных и вредных производственных факторов

3.3 Обеспечение экологической безопасности функционирования проектируемого объекта при воздействии опасных и вредных производственных факторов

Заключение

Список использованной литературы

Введение

Выпускная работа бакалавра состоит из трёх разделов: конструкторского, технологического и раздела по охране труда.

Целью конструкторского раздела является формирование облика и расчет на прочность элементов первой ступени компрессора высокого давления турбореактивного двухконтурного двигателя для грузовых самолетов. В качестве прототипа был выбран ТРДД Д-18Т, который обладает необходимыми параметрами по тяговооруженности и расходу топлива. Для формирования облика двигателя необходимо выполнить термогазодинамический расчет двигателя и согласование параметров компрессора и турбины роторов высокого и низкого давления. Для расчета диска и пера лопатки первой ступени компрессора высокого давления, а также расчета частоты первой формы изгибных колебаний лопатки будем использовать программное обеспечение, разработанное на кафедре 203.

Целью технологической части является конструкторско-технологическая подготовка мелкосерийного производства шестерней на специализированном участке. Для проектирования технологического процесса изготовления шестерни необходимо выполнить анализ рабочего чертежа данного изделия, анализ технологичности, выполнить расчет потребного количества переходов для формообразования поверхностей-представителей шестерни. На основании этого анализа, а также на основании материала изделия, видов потребной термической и химико-термической обработки его поверхностей необходимо разработать предварительный план технологического процесса. Предварительный план технологического процесса включает в себя собственно последовательность формообразующих и вспомогательных операций, а также назначение схем базирования, комплекта технологических баз. Далее необходимо выполнить расчет припусков на обработку для наружных и внутренних поверхностей вращения, а также для торцевых поверхностей. Для решения этой задачи будем использовать расчетно-аналитический и нормативный метод. Расчет припусков на обработку неоднократно обрабатываемых противолежащих торцевых поверхностей посредством расчетно-аналитического или нормативного метода является затруднительным. Поэтому для определения припусков на обработку торцевых поверхностей выполним анализ топографии технологических размеров-координат, для чего составим размерную схему формообразования торцевых поверхностей шестерни и выявим технологические размерные цепи. Определив расчетно-аналитическим методом

Целью раздела охраны труда является выявление и анализ вредных и опасных факторов, действующих на проектируемом участке по производству шестерней. Также необходимо проанализировать возможность уменьшения влияния этих факторов на рабочих и окружающую среду.

1. КОНСТРУКТОРСКАЯ ЧАСТЬ

1.1 Основные сведения о проектируемом двигателе и краткое описание конструкции

В качестве прототипа двигателя принят ТРДД Д-18Т - трёхвальный турбореактивный двухконтурный двигатель. Особенность трёхвальной схемы-разделение ротора компрессора на три самостоятельных ротора, каждый из которых приводится во вращение своей турбиной.

Параметры прототипа:

- Рmax = 229850 Н

- Суд = 0,0395 кг/кгс*ч

- Gв = 765 кг/с

- рК = 24

- ТГ = 1600 К

- m=5,8

Конструкция двигателя выполнена с учетом обеспечения принципа модульной (блочной) сборки. Двигатель состоит из 12-ти модулей, каждый из которых - законченный конструктивно-технологический узел и может быть (кроме главного 12-го модуля) демонтирован и заменен на двигателе без разборки соседних модулей в условиях авиационно-технических баз, имеющихся на всех крупных аэродромах. Модульность конструкции двигателя обеспечивает возможность восстановления его эксплуатационной пригодности заменой деталей и узлов в условиях эксплуатации, а высокая контролепригодность способствует переходу от планово-предупредительного обслуживания к обслуживанию по состоянию.

Компрессор двигателя

Компрессор двигателя - осевой, трехкаскадный, состоит из сверхзвукового вентилятора, околозвукового КНД и дозвукового КВД.

Одноступенчатый вентилятор не имеет ВНА и состоит из рабочего колеса, статора со спрямляющим аппаратом, вала с подшипниковым узлом и вращающегося обогреваемого воздухом кока.

Соединение диска рабочего колеса с валом - болтовое, лопатки крепятся к дискам хвостовиками типа «ласточкин хвост».

Рабочие лопатки вентилятора имеют бандажные антивибрационные полки, расположенные в тракте наружного контура.

Спрямляющий аппарат - разборной конструкции. Внутренняя поверхность наружного кольца спрямляющего аппарата имеет акустическую облицовку. К переднему фланцу корпуса вентилятора крепится самолетный воздухозаборник.

Вал вентилятора соединен с валом турбины вентилятора шлицами. Вентилятор и турбина вентилятора образуют ротор вентилятора, установленный на 2-х подшипниках. Оба подшипниковых узла ротора вентилятора имеют масляные демпферы.

Компрессор низкого давления - семиступенчатый, состоит из статора и ротора. Статор своим обтекателем разделяет поток воздуха за рабочим колесом вентилятора по контурам. В статоре смонтированы неподвижный и поворотный ВНА, узлы передних подшипников роторов вентилятора и КНД, спрямляющие аппараты ступеней, рабочие кольца и клапаны перепуска воздуха из КНД. Наличие поворотных лопаток ВНА КНД позволяет производить отладку двигателя в стендовых условиях. После отладки лопатки ВНА фиксируются в выбранном положении. Ротор компрессора - барабанно-дисковой конструкции, соединен с передним и задним валами с помощью болтов, рабочие лопатки соединены с венцами дисков хвостовиками типа «ласточкин хвост». Ротор КНД соединен с турбиной НД с помощью шлицев и образует ротор низкого давления. Ротор НД установлен на 2-х подшипниковых узлах, имеющих масляные демпферы.

Компрессор высокого давления - семиступенчатый, состоит из ВНА, ротора, статора и клапанов перепуска воздуха. Ротор КВД - барабанно-дисковой конструкции. Сварной барабан, диски последних ступеней, поставки и валы соединены между собой болтами, лопатки с дисками соединены хвостовиками «ласточкин хвост». КВД соединяется с турбиной ВД с помощью болтов и образует ротор высокого давления, установленный на 2-х подшипниках.

Передний шариковый подшипник установлен в упругой опоре с жестким ограничителем хода. Задний роликовый подшипник ротора ВД установлен на масляном демпфере.

Поворотные лопатки ВНА КВД позволяют производить отладку двигателя в стендовых условиях. После отладки лопатки ВНА фиксируются в выбранном положении. Промежуточный корпус служит для формирования переходного тракта от КНД к КВД и тракта наружного контура, размещения агрегатов и приводов к ним, а также размещения передней опоры ротора КВД и переднего пояса подвески двигателя. Кольцевые оболочки, формирующие тракт внутреннего и наружного контуров, соединены между собой 8-ю полыми рёбрами, внутри которых проходят коммуникации. Промежуточный корпус состоит из корпуса, центрального привода, коробки приводов и колонки приводов. Все приводные агрегаты двигателя получают вращение от ротора ВД. К заднему фланцу наружной оболочки промежуточного корпуса крепится болтами выходное сопло наружного контура, являющееся элементом конструкции самолетной мотогондолы, или реверсивное устройство. К внутреннему силовому корпусу спереди крепится корпус КНД, а сзади - корпус КВД.

В трехвальном турбореактивном двухконтурном двигателе Д-18Т весь воздух, поступающий на вход двигателя через самолетный воздухозаборник, проходит через вентилятор, в котором происходит некоторое повышение давления и температуры воздуха. Это повышение температуры и давления различно по длине лопатки вентилятора: у хвостовика оно меньше, на периферии рабочего колеса - больше.

За вентилятором поток воздуха делится на два: наружный и внутренний. По наружному контуру проходит около 85% всего воздуха, который, расширяясь и увеличивая свою скорость в канале и сопле наружного контура, создает приблизительно 77% общей тяги.

Во внутреннем контуре воздух дополнительно сжимается в компрессорах низкого и высокого давления и попадает в камеру сгорания, где, перемешиваясь с тонкораспыленным топливом, создает топливно-воздушную смесь. Газ поступает на турбину, где происходит преобразование энергии газового потока в механическую энергию, используемую для привода компрессора высокого и низкого давления и вентилятора. При прохождении газа через проточную часть турбины его энергия уменьшается, при этом температура и давление газа понижаются. В реактивном сопле внутреннего контура происходит расширение газа с падением давления до атмосферного, сопровождающееся увеличением скорости газового потока, создающего тягу внутреннего контура.

Промежуточный корпус

Промежуточный корпус служит для формирования переходного канала от КНД к КВД и проточной части наружного контура, размещения агрегатов и приводов к ним, а также размещения передней опоры ротора КВД и узлов переднего пояса подвески двигателя. Кольцевые оболочки промежуточного корпуса, формирующие проточную часть внутреннего и наружного контуров, соединены между собой восемью полыми стойками, внутри которых проходят коммуникации систем двигателя. Промежуточный корпус состоит из собственно промежуточного корпуса, центрального привода, коробки приводов и промежуточного привода.

Все приводные агрегаты двигателя установлены на коробке приводов и получают вращение от ротора ВД через систему зубчатых передач и шлицевых рессор. К переднему фланцу наружной оболочки промежуточного корпуса крепится корпус СА вентилятора. К внутренней кольцевой оболочке, спереди, крепится корпус КНД, а сзади - корпус КВД. На промежуточном корпусе установлены также элементы капота газогенератора, формирующие внутреннюю поверхность наружного контура между стойками промежуточного корпуса.

Камера сгорания

Камера сгорания состоит из корпуса, входного диффузора со спрямляющим аппаратом седьмой ступени КВД, жаровой трубы, топливного коллектора, топливных форсунок и пусковых воспламенителей. Жаровая труба кольцевого типа, с восемнадцатью топливными форсунками, имеет сварную конструкцию, состоит из отдельных, сваренных встык, колец, имеющих ряд отверстий для прохода вторичного воздуха.

Топливные форсунки _ центробежного типа, одноканальные, четыре из них - аэрофорсунки (с пневмораспылом топлива), которые обеспечивают устойчивое горение при обеднении топливовоздушной смеси.

Топливный коллектор и трубки подвода топлива к форсункам имеют защитный кожух, предотвращающий попадание топлива на горячие корпусные детали в случае нарушения герметичности коллектора и трубок подвода топлива. На корпусе камеры сгорания установлены два воспламенителя факельного типа со свечами зажигания.

В передней части корпуса камеры сгорания установлены два клапана перепуска воздуха из-за КВД при запуске двигателя; на одном из клапанов установлен патрубок для отбора воздуха из-за КВД на нужды самолета.

Турбина

Турбина _ трехкаскадная, шестиступенчатая, реактивная, состоит из одноступенчатой турбины высокого давления (ТВД), одноступенчатой турбины низкого давления (ТНД) и четырехступенчатой турбины вентилятора (ТВ).

Каждая из турбин приводит во вращение соответствующий ротор компрессора: ТВД _ ротор КВД, ТНД _ ротор КНД, ТВ _ ротор вентилятора.

ТВД состоит из соплового аппарата (СА) и ротора. СА набирается из десяти отдельных секторов. В секторах по три (в одном секторе две) сопловые лопатки соединены между собой с помощью пайки. Сопловые лопатки пустотелые, охлаждаемые воздухом из-за КВД, имеют дефлекторы для поджатия охлаждающего воздуха к внутренним стенкам лопаток и систему перфорационных отверстий в стенках профиля и трактовых полок лопаток, через которые охлаждающий воздух выходит на наружную поверхность лопатки и защищает ее от горячих газов.

Ротор ТВД состоит из рабочего колеса (диска с рабочими лопатками), лабиринтного диска, вала ТВД.

Рабочая лопатка ТВД _ охлаждаемая, состоит из хвостовика, ножки, пера и бандажной полки с гребешками. Воздух на охлаждение подводится к хвостовику, проходит по радиальным каналам в теле пера лопатки и выходит через отверстия в передней и задней части пера лопатки в проточную часть. В каждом пазу диска устанавливается по две лопатки. Соединяются лопатки с диском замками «елочного» типа. Лабиринтный диск и диск ТВД охлаждается воздухом из-за КВД.

Турбина низкого давления состоит из ротора и корпуса опор турбин с сопловым аппаратом ТНД. Ротор ТНД состоит из рабочего колеса (диска с рабочими лопатками) и вала ТНД, соединённых между собой болтами. Рабочие лопатки ротора ТНД неохлаждаемые, соединяются с диском замками «елочного» типа. Диск охлаждается воздухом, отбираемым из КВД.

В корпусе опор турбин наружная и внутренняя оболочки соединены между собой стойками, проходящими внутри полых лопаток соплового аппарата второй ступени турбины. Через лопатки проходят также трубопроводы масляных и воздушных коммуникаций. В корпусе опор турбин имеются узлы задних подшипников опор роторов низкого и высокого давления.

Сопловые лопатки, отлитые в виде секторов по три лопатки в секторе, охлаждаются воздухом, отбираемым из-за четвертой ступени КВД.

Турбина вентилятора состоит из ротора и статора. Статор турбины вентилятора состоит из корпуса и пяти сопловых аппаратов, набранных из отдельных литых секторов, по пять лопаток в секторе. Ротор турбины вентилятора дисково-барабанной конструкции. Диски соединяются между собой и с валом турбины вентилятора болтами. Лопатки, как сопловые, так и рабочие, неохлаждаемые; диски турбины вентилятора охлаждаются воздухом, отбираемым из КВД. Рабочие лопатки всех ступеней ротора ТВ бандажированы, соединены с дисками замками «елочного типа».

Выходное устройство турбины состоит из корпуса задней опоры, реактивного сопла внутреннего контура и стекателя.

На корпусе задней опоры турбины имеются места крепления узлов заднего пояса подвески двигателя к самолету. Задний узел подвески двигателя установлен на силовом кольце, которое является частью внешней оболочки корпуса задней опоры. Внутри корпуса расположен подшипниковый узел ротора вентилятора.

В стойках, соединяющих внутреннюю и наружную оболочки корпуса, расположены коммуникации задней опоры ротора вентилятора.

1.2.2 Термогазодинамический расчет на ЭВМ

Расчет выполняем по методике [1].

Целью термогазодинамического расчета двигателя является определение основных удельных параметров (Руд - удельной мощности, Суд - удельного расхода воздуха и расхода воздуха Gв).

С помощью программы rdd.exe выполняем термогазодинамический расчет ГТД с использованием ЭВМ.

Исходными данными для расчета являются параметры, выбранные в разделе 1.

Исходными данными для расчета являются следующие величины, определяющие расчетный режим двигателя:

ь Gв - величина расхода воздуха через двигатель;

ь рк1*, Т*г - параметры, определяющие термогазодинамический цикл двигателя на расчетном режиме;

ь , , , - КПД компрессора, турбин компрессора и вентилятора;

ь , - механический КПД двигателя;

ь - коэффициент полноты сгорания топлива;

ь ,,, - коэффициенты восстановления полного давления в элементах проточной части двигателя.

Так как основной целью термогазодинамического расчета является определение удельных параметров двигателя Р и С, то данный расчет обычно выполняют для Gв=1 кг/с. При этом вычисляют значения параметров рабочего тела в характерных сечениях проточной части двигателя. Эти данные будут использованы в согласовании параметров компрессора и турбины, а также при общей компоновке проточной части двигателя.

В таблице 1.2 представлены данные термогазодинамического расчета двухконтурного двигателя для двух значений рвйй* (оптимального и расчетного).

Таблица 1.2 - Термогазодинамический расчет ТРДД при и

По результатам термогазодинамического расчета видно, что параметры двигателя принимают наиболее приемлемые значения при. При относительно небольшом ухудшении удельных параметров ( удельная тяга понижается на 1,8%, удельный расход топлива повышается на 1,77%), работа турбины вентилятора уменьшается на 1,83% по сравнению с работой турбины вентилятора.

Полученные удельные параметры соответствуют современному уровню значений для ТРДД.

1.2.3 Формирование облика ГТД

Расчет выполняется по методике [3].

Увязка параметров турбокомпрессорной части ВРД является одним из важнейших этапов проектирования двигателя. Качественное выполнение этого этапа позволяет обеспечить оптимальные геометрические и газодинамические соотношения в определяющих облик двигателя расчетных сечениях, обеспечить нормальную загрузку ступеней турбины и допустимые напряжения в лопатках турбины.

В качестве расчетных сечений при увязке параметров приняты:

1) входные сечения каскадов компрессора, определяющие габариты и частоту вращения ротора;

2) выходные сечения компрессора, определяющие ограничения по относительному диаметру втулки .

3) выходные сечения каскадов турбины, определяющие средний коэффициент нагрузки ступеней турбин, величину скорости на выходе, относительную длину лопаток, величину напряжений в лопатках;

В расчете предполагается осевое течение во всех расчетных сечениях и равенство расходов воздуха и газа во внутреннем контуре, т.е. .

Для упрощения перехода к следующим этапам расчета двигателя, дополнительно определяются КПД и параметры на входе для каждого каскада компрессора.

Формирование облика двигателя на ЭВМ представлено в таблице 3.1.

Формирование облика ТРДД-3

При выполнении расчетов по формированию облика ГТД определяются: форма проточной части , частоты вращения роторов и число ступеней каскадов лопаточных машин.

Графическое изображение проточной части ТРДД , соответствует данным пункта 3 , приведено на рисунке1.2.3.

Рисунок 1.2.3 - Схема проточной части ТРДД

В РГР сформирован облик турбореактивного двухконтурного двигателя (на базе прототипа Д-36). Основные параметры соответствуют современному уровню значений для ТРДД:

Р=228735 Н

Руд =296.1 Н/кг

Суд = 0,0397 кг топл/кг

Gв = 772,37 кг/с

= 24

= 1620 К

m=5,8

= 1,760

Двигатель выполнен по трехвальной схеме. Вентилятор - одноступенчатый трансзвуковой, КПД*=0,87, =0.3196, n=3766 об/мин. Компрессор низкого давления - шестиступенчатый, КПД*=0.885, =0.2361, n=11671 об/мин. Компрессор высокого давления - семиступенчатый, КПД*=0,871, n=7067 об/мин, =0.2361 .

КВД приводится в движение турбиной высокого давления, одноступенчатой, КПД*=0.8624, µ=1.5265 - средненагруженной. КНД приводится в движение турбиной низкого давления - одноступенчатой, КПД*=0,8913, µ=1.5020 - средненагруженной. Вентилятор приводится в движение трехступенчатой турбиной вентилятора, КПД*=0,91, µ=9,1531- средненагруженной. Результаты выполненных расчетов будут являться базой для дальнейших более детальных расчетов (газодинамических и прочностных).

1.3 Расчет на прочность элементов конструкции АД

1.3.1 Расчёт на прочность пера лопатки 1-й ступени КВД

Рабочие лопатки осевого компрессора являются ответственными деталями газотурбинного двигателя, от надежной работы которых зависит надежность работы двигателя в целом.

Нагрузки, действующие на лопатки

При работе газотурбинного двигателя на рабочие лопатки действуют статические, динамические и температурные нагрузки, вызывая сложную картину напряжений.

Расчет на прочность пера лопатки выполняем, учитывая воздействие только статических нагрузок. К ним относятся центробежные силы масс лопаток, которые появляются при вращении ротора, и газовые силы, возникающие при обтекании газом профиля пера лопатки и в связи с наличием разности давлений газа перед и за лопаткой.

Центробежные силы вызывают деформации растяжения, изгиба и кручения, газовые - деформации изгиба и кручения.

Напряжения кручения от центробежных, газовых сил слабозакрученных рабочих лопаток компрессора малы, и ими пренебрегаем.

Напряжения растяжения от центробежных сил являются наиболее существенными.

Напряжения изгиба обычно меньше напряжений растяжения, причем при необходимости для уменьшения изгибающих напряжений в лопатке от газовых сил ее проектируют так, чтобы возникающие изгибающие моменты от центробежных сил были противоположны по знаку моментам от газовых сил и, следовательно, уменьшали последние.

Допущения, принимаемые при расчете

При расчете лопатки на прочность принимаем следующие допущения:

ь лопатку рассматриваем как консольную балку, жестко заделанную в ободе диска;

ь напряжения определяем по каждому виду деформации отдельно;

ь температуру в рассматриваемом сечении пера лопатки считаем одинаковой, т.е. температурные напряжения отсутствуют;

ь лопатку считаем жесткой, а деформацией лопатки под действием сил и моментов пренебрегаем;

ь предполагаем, что деформации лопатки протекают в упругой зоне, т.е. напряжения в пере лопатки не превышают предел пропорциональности.

Рисунок 1.3.1 - Расчетная схема действия сил на перо лопатки

Цель расчета на прочность лопатки - определение статических напряжений и запасов прочности в различных сечениях по длине пера лопатки.

Расчёты проводятся в такой последовательности: в расчётных сечениях лопатки определяют напряжения растяжения от центробежных сил и напряжения изгиба от газовых и центробежных сил. Максимальные напряжения находят суммированием в точках, наиболее удалённых от нейтральных осей сечения лопатки. Далее вычисляют запасы прочности по длине лопатки, которые не должны быть меньше значений, предусмотренных нормами прочности. Согласно нормам прочности минимальный запас по статической прочности профильной части лопаткирабочего колеса может быть равным не менее 1,5.

Расчет рабочих лопаток на растяжение от центробежных сил

Напряжение растяжения в расчетном сечении пера лопатки определяется по формуле

,

где - центробежная сила части пера лопатки, расположенной выше расчетного сечения; - угловая скорость вращения ротора.

Определение напряжений изгиба.

Напряжения изгиба в каждой точке расчетного сечения определяются по формуле

В целях упрощения расчета значения изгибающих моментов и моментов сопротивления берут без учета знаков (по модулю).

Так в точке А

в точке В

в точке С

Вместе с тем знак при определении напряжения изгиба характеризует вид деформации волокон лопатки. Так, если волокна лопатки растянуты, то напряжение изгиба имеет знак "+", если же они сжаты, то "-". Заметим, что от действия газовых нагрузок на кромках профиля (в точках А и В) всегда возникают напряжения растяжения, а на спинке профиля (в точке С) - напряжения сжатия.

Определение запасов прочности лопаток

При определении запасов прочности следует учитывать напряжения как растяжения, так и изгиба лопатки. Суммарное напряжение в каждой точке расчетного сечения профильной части лопатки
.

Для компрессорных лопаток запас статической прочности в каждой точке расчетного сечения

,

где - предел прочности.

Для компрессорных лопаток последних ступеней запас прочности определяют по формуле

,

где - предел длительной точности материала лопатки с учетом температуры в данном сечении и длительность работы.

Согласно нормам прочности минимальный запас по статической прочности профильной части рабочей лопатки компрессора должен быть не менее 1,5.

Исходные данные

1. Материал лопатки: ВТ3;

2. Длина лопатки =0,190 м;

3. Радиус корневого сечения =0,364 м;

4. Объем бандажной полки =0 м;

5. Хорда профиля сечения пера

- в корневом сечении =0,05 м;

- в среднем сечении =0,05 м;

- в периферийном сечении =0,05 м;

6. Максимальная толщина профиля:

- в корневом сечении =0,0046 м;

- в среднем сечении =0,0033 м;

- в периферийном сечении =0,0023м;

7. Максимальная стрела прогиба профиля e:

- в корневом сечении =0,0036 м;

- в среднем сечении =0,0028 м;

- в периферийном сечении =0,0020 м;

8. Угол установки профиля

- в корневом сечении =1,15 рад;

- в среднем сечении =0,92рад;

- в периферийном сечении =0,75 рад;

9. Интенсивность газовых сил на среднем радиусе в окружном направлении:

10. Интенсивность газовых сил в осевом направлении

;

В формулах: - радиус сечения; - число лопаток; - плотность газа - осевая составляющая скорости газа перед лопаткой; - окружные составляющие скорости газа перед и за лопаткой;- давление газа (воздуха) перед и за лопаткой.

=590Н/м, =850 Н/м

11. Частота вращения рабочего колеса =7067 об/мин;

12. Плотность материала лопатки =4500 кг/м;

13. Предел длительной прочности =1000 МПа;

Расчет проводим по методике [2]. Вычисления делаем по программе Statlop.exe.

Результаты расчета приведены в Табл. 1.3.1.

Табл. 1.3.1

РАСЧЕТ НА ПРОЧНОСТЬ ПЕРА РАБОЧЕЙ ЛОПАТКИ КОМПРЕССОРА (ТУРБИНЫ)

--------------------------------------------------------------------------------

ВЫПОЛНИЛ(А) : Prichodko

УЗЕЛ ДВИГАТЕЛЯ: компрессор МАТЕРИАЛ: BK-3

Рисунок 1.3.2 - Распределение напряжение по высоте лопатки

Рисунок 1.3.3 - Распределение коэффициентов запаса прочности

Вывод

Произведен расчет статической прочности пера рабочей лопатки первой ступени компрессора. Полученные значения запасов прочности во всех сечениях удовлетворяют нормам прочности и являются даже завышенными.

Из графиков видно, что запас прочности лопатки в самом напряженном месте соответствует требованиям (для рабочих лопаток компрессора K - не менее 1,5).

1.3.2 Расчёт на прочность диска первой ступени КВД

Диски компрессора - это наиболее ответственные элементы конструкций газотурбинных двигателей. От совершенства конструкций дисков зависит надежность, легкость конструкций авиационных двигателей в целом.

Диски находятся под воздействием инерционных центробежных сил, возникающих при вращении от массы рабочих лопаток и собственной массы дисков. Эти силы вызывают в дисках растягивающие напряжения. От неравномерного нагрева дисков турбин возникают температурные напряжения, которые могут вызывать как растяжения, так и сжатие элементов диска.

Кроме напряжений растяжения и сжатия, в дисках могут возникать напряжения кручения и изгиба. Напряжения кручения появляются, если диски передают крутящий момент, а изгибные - возникают под действием разности давлений и температур на боковых поверхностях дисков, от осевых газодинамических сил, действующих на рабочие лопатки, от вибрации лопаток и самих дисков.

Из перечисленных напряжений наиболее существенными являются напряжения от центробежных сил собственной массы диска и лопаточного венца, а также температурные (в случае неравномерного нагрева диска). Напряжения изгиба зависят от толщины диска и способа соединения дисков между собой и с валом и могут быть значительными лишь в тонких дисках. Напряжения кручения обычно невелики и в расчетах в большинстве случаев не учитываются.

При расчете принимаем следующие допущения:

ь диск считается симметричным относительно серединной плоскости, перпендикулярной оси вращения;

ь диск находится в плосконапряженном состоянии;

ь температура диска меняется только по его радиусу и равномерна по толщине;

ь напряжения на любом радиусе не меняются по толщине;

ь наличие отверстий и бобышек на полотне диска, отдельных выступов и проточек на его частях не принимается во внимание.

Целью расчета является определение напряжений и запасов прочности в различных сечениях по радиусу диска.

Метод конечных разностей основан на приближенном расчете дифференциальных уравнений:

,

,

где уR и уТ - радиальные и окружные напряжения;

b, R - текущее значение толщины и радиуса;

- угловая скорость вращения диска;

- плотность материала диска;

Е - модуль упругости первого рода;

t - температура элемента диска на радиусе R;

- коэффициент линейного расширения материала диска;

- коэффициент Пуассона.

Замена дифференциалов на конечные разности производится по таким формулам:

, ,

, , ,

где индексы n, принимающие значения от 0 до k, указывают номер кольцевого сечения диска.

Окончательные расчетные формулы:

, ,

где , ,

, .

Значения n, n, n, Cn, n и n определяются так:

, , ,,

, .

Особенностью расчета диска со скачкообразным изменением толщины является то, что в случае скачка в толщине диска следует ожидать скачкообразного изменения напряжений. Величину скачка в напряжениях можно определить из условия равенства радиальных сил, действующих в сечениях на границе смыкания участков диска с разными толщинами, и равенства окружных удлинений кольцевых элементов диска, выделенных там же.

Отличие в расчетах состоит в том, что при расчете диска со скачкообразным изменением толщины в месте скачка проводится два совпадающих сечения с разными толщинами диска.

Расчетные формулы для вычисления напряжений в сечении после скачка при использовании метода конечных разностей имеют такой вид:

, ,

где R`n1 и Tn1 _ радиальные и окружные напряжения в диске на радиусе Rn после скачка в толщине диска;

0 _ напряжение в центре диска.

Коэффициенты A/n, B/n, N/n и Q/n находятся по формулам:

; , ,

,

где b/n, bn _ толщина диска на радиусе Rn до и после скачка в диске.

Значения коэффициентов А0, В0, N0, Q0 равны:

А0 = 0, В0 = 0, N0 = 1, Q0 = 0.

При разбивании диска на расчетные сечения должны выполнятся следующее условия:

? отношения радиусов: ;

? отношения толщин: .

? Для первых трех ступеней диска с центральным отверстием:

В качестве нагружающего фактора рассматривается нагрузка от лопаточного венца и замочной части, которая учитывается величиной Rn:

,

где z - число лопаток;

Rk _ напряжения в корневом сечении лопатки от растяжения центробежными силами (из расчета лопатки на прочность);

Fk - площадь корневого сечения лопатки (из расчета лопатки на прочность);

- плотность материала диска (материал диска ВТ-8);

f - площадь радиального сечения разрезной части обода;

Rf- радиус центра тяжести площади f;

Rk - наружный радиус неразрезанного обода диска;

bk - ширина обода диска на радиусе Rk.

Исходные данные.

1. Частота вращения диска =7067 об/мин;

2. Материал диска - титановый сплав ВТ3;

3. Плотность материала = 4500 кг/м;

4. Напряжение в корневом сечении пера лопатки от растяжения центробежными силами на расчетном режиме = 152.430 МПа;

5. Площадь корневого сечения лопатки = 0.322E-09 м;

6. Число лопаток на рабочем колесе = 37;

Рисунок 1.3.2 - Расчетная схема диска

Ниже приведены результаты расчета диска на ЭВМ (см.Табл.4) и изменение радиального и окружного напряжения, и запасов прочности по сечениям диска.

РАCЧЕТ НА ПРОЧНОCТЬ ДИCКОВ КОМПРЕССОРОВ И ТУРБИН

*************************************************************

ВЫПОЛНИЛ(А) : Prichodko

ИСХОДНЫЕ ДАННЫЕ:

DP= 0 DT= 0

Частота вращения = 7067.0 об/мин

Количество расчетных сечений = 15

Количество скачков на контуре = 0

Контурная нагрузка = 39.780 МПа

AZ= 0 BZ= 0 NZ= 1 QZ= 0

Коэффициент Пуассона = .30

R( 1)= .2389 R( 2)= .2510 R( 3)= .2610 R( 4)= .2710

R( 5)= .2790 R( 6)= .2840 R( 7)= .2870 R( 8)= .2913

R( 9)= .2950 R(10)= .3150 R(11)= .3180 R(12)= .3220

R(13)= .3260 R(14)= .3300 R(15)= .3330

B( 1)= .4500 B( 2)= .4250 B( 3)= .3720 B( 4)= .2790

B( 5)= .2210 B( 6)= .1840 B( 7)= .1620 B( 8)= .1310

B( 9)= .1050 B(10)= .1310 B(11)= .1630 B(12)= .2030

B(13)= .2540 B(14)= .3120 B(15)= .3600

Плотность материала = 4500.00

Предел длит. прочности материала= 1.300

РЕЗУЛЬТАТЫ РАСЧЕТА:

Рисунок 1.3.2.2 - Изменение напряжений по сечениям

Рисунок 1.3.2.3 - Изменение запасов прочности по сечениям

Вывод

В данной расчетной работе был проведен расчет диска первой ступени компрессора высокого давления АД. Были получены значения радиального, окружного и эквивалентного напряжений в различных радиальных сечениях диска. Также были посчитаны значения запасов прочности в радиальных сечениях диска.

Значения запасов прочности по сечениям диска удовлетворяют нормам прочности, по которым запас прочности должен быть не менее 1,3….1,5. В нашем случае минимальный запас прочности 8.048, что обеспечивает безопасную работу диска, компрессора и двигателя в целом.

1.3.3 Расчет динамической частоты первой формы изгибных колебаний лопатки компрессора и построение частотной диаграммы

При работе авиационного газотурбинного двигателя на рабочие лопатки компрессора действуют периодически изменяющиеся газовые силы, что связанно с неравномерностью газовоздушного потока по окружности в проточной части двигателя. Эти силы вызывают вынужденные колебания лопаток. При совпадении частот собственных колебаний лопатки с частотами вынужденных колебаний наступают резонансные колебания, при которых амплитуда колебаний резко возрастает, что может привести к разрушению лопатки. Опасных резонансных колебаний можно избежать путем изменения частоты собственных колебаний лопаток или частоты и величины возбуждающей силы.

Колебания лопаток могут быть изгибными, крутильными, сложными (изгибно-крутильными) и высокочастотными пластиночными.

Особенно легко возбуждаются колебания по основной (первой) изгибной форме. Нередко возникают колебания по второй или третьей изгибной, первой или второй крутильной формам.

Целью данного расчета является определение частоты собственных изгибных колебаний рабочей лопатки первой ступени компрессора по первой форме, построение частотной диаграммы и нахождение резонансных режимов работы двигателя.

Для определения частоты собственных изгибных колебаний лопаток по первой форме воспользуемся энергетическим методом Релея, который основан на законе сохранения энергии свободно колеблющейся упругой системы. Согласно этому закону для свободных колебаний упругой системы без учета сил сопротивления сумма кинетической и потенциальной энергий сохраняется все время неизменной. Сущность метода состоит в том, что вычисляются максимальные значения потенциальной энергии лопатки в ее крайнем положении, а кинетической энергии в среднем.

Вращение лопатки совместно с диском, на котором она закреплена, оказывает влияние на ее колебания, так как центробежная сила стремится вернуть колеблющуюся лопатку в положение равновесия. Действие центробежной силы лопатки приводит к тому же результату, что и увеличение жесткости, поэтому частота собственных колебаний вращающейся лопатки (динамическая частота) повышается с увеличением частоты вращения ротора.

Динамическую частоту собственных изгибных колебаний вращающейся лопатки определяем по формуле:

,

где - собственная частота лопатки; - частота вращения ротора, об/c; - коэффициент пропорциональности, зависящий от геометрии лопатки и формы упругой линии.

Определив коэффициент и задавшись несколькими значениями частот в диапазоне рабочих частот вращения двигателя, находим соответствующие величины динамических частот собственных колебаний лопатки и строим зависимость

.

Построение частотной диаграммы.

Для построения частотной диаграммы необходимо нанести на график диапазон рабочих частот вращения двигателя от оборотов малого газа до максимальных оборотов. За частоту вращения ротора на режиме малого газа принимаем для ТРДД

.

Для определения резонансных режимов работы двигателя с учетом принятого масштаба нанести на график пучок прямых линий, выходящих из начала координат, которые представляют собой частоты колебания гармоник возбуждающих сил, описываемых уравнением

,

где - порядок гармоник возбуждающих сил; на графике он равен тангенсу угла наклона прямой. Для проектируемого двигателя= 22 - количество стоек; =36 - число лопаток направляющего аппарата .

Точки пересечения лучей с кривой изменения дадут резонансные частоты вращения двигателя.

Расчет проводим по методике [3]. Вычисления делаем по программе кафедры 203 Dinlop.exe. Результаты расчета приведены в таблице 5 и на рисунке 9.

Результаты расчёта представлены в Табл.5.

РАСЧЕТ ДИНАМИЧЕСКОЙ ЧАСТОТЫ - 1 ФОРМЫ

ИЗГИБНЫХ КОЛЕБАНИЙ ЛОПАТКИ КОМПРЕССОРА (ТУРБИНЫ) ЭНЕРГЕТИЧЕСКИМ МЕТОДОМ РЕЛЕЯ

----------------------------------------------------------------------

ВЫПОЛНИЛ(А) : Prichodko

УЗЕЛ ДВИГАТЕЛЯ: компрессор МАТЕРИАЛ: BK3

По результатам расчёта строим частотную диаграмму.

Принимаем:

Проектируемый двигатель имеет 33 лопаток вентилятора, а также возбудителями вынужденных колебаний будут являться направляющие лопатки перед ступенью, то есть K1=22, k2=36.

Частотная диаграмма представлена на рис.1.3.2.3.

Рисунок 1.3.2.3. - Частотная диаграмма

Вывод

Проведя данный расчет, мы получили значения динамических частот первой формы изгибных колебаний лопатки компрессора, возможных при вращении ротора компрессора на различных оборотах рабочего режима.

Построили частотную диаграмму, из которой видно, что в рабочем диапазоне частот вращения ротора компрессора низкого давления резонанс не возникает.

Резонансные режимы не попадают в область рабочих оборотов.

2. ТЕХНОЛОГИЧЕСКАЯ ЧАСТЬ

2.1 Анализ рабочего чертежа и определение показателей технологичности вала

Рабочий чертеж детали является основным документом для контроля и приемки изготовленных деталей. На рабочем чертеже указывается материал детали, проставляются допуски на изготовление, шероховатость поверхностей, в технических условиях указывается группа контроля, термообработка и твердость материала, покрытия и прочие специфические требования. Для ответственных деталей в технических условиях указываются также физико-механические свойства сердцевины и поверхностного слоя, применяемые методы улучшения прочностных свойств с целью повышения надежности и долговечности детали. Указываются также методы и способы контроля, как наружных поверхностей, так и внутренней структуры материала детали.

В качестве исходной информации для выполнения домашнего задания был задан чертеж детали «шестерня» на листе формата А3. Он представляет чертеж шестерни, выполненный в двух проекциях, с дополнительными видами, поясняющими конструкцию обоймы (в частности конфигурация канавок для выхода инструмента).

Данная деталь - шестерня ГП 23,415.

Деталь представляет собой осесимметричную фигуру с пазом.

Одним из заданий было перевод чертежа в электронный вид и его выполнение в соответствии с требованиями ГОСТов.

2.1.1 Технологичность по материалу

Материал детали - сталь 38ХА по ГОСТ 4543-71. Сталь конструкционная лигированная.

Применение: Для изготовления силовых деталей ракетных двигателей, в том числе азотируемых, работающих при температурах до 700 С, азотируемых деталей авиастроения.

Химический состав, механические характеристики и физические, свойства приведены в таблицах 2.1.1, 2.1.2 и 2.1.3.

Таблица 2.1.1 - Химический состав в % материала 38ХА

C

Si

Mn

Ni

S

P

Cr

Cu

0.35 - 0.42

0.17 - 0.37

0.5 - 0.8

до 0.3

до 0.025

до 0.025

0.8 - 1.1

до 0.3

Таблица 2.1.2 Механические свойства при Т=20oС материала 38ХА .

Сортамент

Размер

Напр.

sT

d5

y--

KCU

Термообр.

-

мм

-

МПа

МПа

%

%

кДж / м2

-

Трубы, ГОСТ 21729-76

588

 

14

 

 

Пруток, ГОСТ 4543-71

Ш 25

930

780

12

50

880

Закалка 860oC, масло, Отпуск 550oC, вода,

Пруток калиброван., ГОСТ 10702-78

590

 

 

60

 

Отжиг

Твердость 38ХА после отжига , ГОСТ 4543-71

HB 10 -1 = 207 МПа

Твердость 38ХА , Пруток горячекатан. ГОСТ 10702-78

HB 10 -1 = 187 МПа

Таблица 2.1.3- Физические свойства материала 38ХА .

T

E 10- 5

a 10 6

l

r

C

R 10 9

Град

МПа

1/Град

Вт/(м·град)

кг/м3

Дж/(кг·град)

Ом·м

20

1.96

7850

290

100

12.7

50

200

13.1

46

7800

300

13.5

42

400

13.8

40

500

14.2

37

600

14.6

35

7650

700

31

T

E 10- 5

? 10 6

?

?

C

R 10 9

Таблица 2.1.4 Температура критических точек материала 38ХА.

Ac1 = 740 , Ac3(Acm) = 780 , Ar3(Arcm) = 730 , Ar1 = 693 , Mn = 250

2.1.2 Технологичность по точности, шероховатости поверхностей вала

Уровень технологичности конструкции по точности обработки:

;

;

Тср - средний квалитет точности обработки изделия;

- число размеров соответствующего квалитета точности.

Так как > 0,82, деталь считается технологичной.

Уровень технологичности конструкции по шероховатости поверхности:

;

;

Шср - средняя шероховатость поверхности изделия,

- число поверхностей соответствующей шероховатости,

Ш - шероховатость конструкции.

Одним из важнейших показателей технологичности деталей является коэффициент использования материала - КИМ, представляющий собой отношение массы обработанной детали к массе исходной заготовки. В наиболее прогрессивных технологических процессах это отношение приближается к единице и зависит от способов получения заготовок и масштабов производства.

Коэффициент использования материала:

Масса детали:mд=0,037г;

Масса заготовки: mз=0,089 кг;

;

По КИМ деталь технологична.

2.2 Выбор и обоснование метода, оборудования и параметров формообразования заготовки

Процесс получения заготовки является одним из первых этапов преобразования материала в готовое изделие. Однако именно он определяет в дальнейшем не только способы и режимы обработки, но и эксплуатационные характеристики детали, её ресурс. Неправильно выбранный способ получения заготовки может сделать полностью невозможным получение кондиционной детали или себестоимость её будет настолько высока, что использование изделия в узле будет нерентабельным.

При выборе способа получения заготовки необходимо учитывать конфигурацию, размеры, массу и материал заготовки; количество получаемых заготовок; требуемую точность получения заготовки; шероховатость и качество ее поверхностных слоев; желательное направление волокон металла.

Для получения заготовки детали «шестерня» будем использовать штамповку на ГКМ. Преимущества штамповки на ГКМ: высокая производительность 200 и более паковок в час, возможность штамповки паковок с боковыми выступами и кольцевых заготовок, собственно говоря из-за колцевых заготовок и был выбран способ штаповки на ГКМ. Этим методом мы достигнем получения сравнительно точных заготовок по точности и шероховатости, а также меньшего отхода материла , при учёте припусков на штамповку. Технологические особенности штамповки - наличие прошивных операций, в том числе одной сквозной прошивки и возможность в известной мере произвольного выбора диаметра заготовки.

Вследствии выше указанного КИМ получится удоволитворительным, т.к. снимаемый припуск для получения конечной детали небольшой.

Рисунок заготовки после штамповки

Рисунок 2.2.1 - Эскиз заготовки.

2.3 Расчёт, оптимизация и обоснование потребного количества технологических операций (переходов) формообразования поверхностей-представителей шестерня

В связи с тем, что выбранный способ окончательной обработки отдельных поверхностей не всегда может обеспечить получение требуемых точности и качества поверхности непосредственно из исходной заготовки возникает необходимость создания промежуточных операций или переходов, по мере выполнения которых достигается постепенное повышение точности заготовки до требуемой в готовой детали.

Выполним расчет потребного количества операций формообразования элементарных цилиндрических и плоских поверхностей-представителей шестерни. Для этого будем использовать расчетный метод, основанный на оценке коэффициентов уточнения (по точности) и (по шероховатости). Указанные коэффициенты показывают, насколько увеличилась точность либо повысился показатель шероховатости как за один переход (), так и в целом после всех этапов обработки поверхности (). Для оценки потребного количества операций формообразования будем использовать общий коэффициент уточнения - .

, [8,c.31-33].

Определим количество переходов, необходимое для достижения заданной точности и шероховатости. Окончательно примем большее из полученных значений.

, [8,с.31-33].

Результаты расчета заносим в таблицу 1.

Конструктивные элементы типа фасок, канавок и т.п., получаемые за один проход, к которым не предъявляются специфические требования по точности или шероховатости, также не подлежат расчету. Данные о формообразующих операциях для получения указанных поверхностей заносим в таблицу 2.3.1.

Таблица 2.3.1 Расчёт и оптимизация потребного количества операций формообразования поверхностей-представителей детали

Характеристики

Количество переходов

Характеристики по операциям

Операция

Деталь

Заготовка

1

2

3

4

Наименования

1

9.4Js15( ±0.350)

Rz 6.3

32…37 HRCэ

12h10(-0.700)

Rz 200

207 HB

0

1.25

1

1

Js15

Rz20

Токарная

Js15

Rz10

Шлифовальная

Предварительная

Js15

Rz6.3

Шлифовальная

Окончательна

2

5.7Js15(±0.240)

Rz 6.3

32…37 HRCэ

0

207 HB

0

0

2

2

Js15

Rz20

Токарная

Js15

Rz10

Шлифовальная

Предварительно

Js15

Rz6.3

Шлифовальная

Окончательно

3

32.26 h10(-0.100)

Rа 0,64

32…37 HRCэ

Ш35h12(-0.250)

Rz 200

207 HB

0,6

0,7

2

2

h10

Rz20

Токарная

h10

Rz3.2

Зубо фрезерная

4

5,157Н10(+0,048)

Rz 3,2

32…37 HRCэ

0

207 HB

2

2

H13

Rz20

Сверлильная

H10

Rz3,2

Расточная

5

1,55 Н13 (+0,140)

Rz 20

30…38.5 HRCэ

0

207 HB

0

0

1

1

H13

Rz20

Сверлильная

6

Ш3,4Н11(0,075)

Rz 10

30…38.5 HRCэ

0

207 HB

H13

Rz20

Сверлильная

H11

Rz10

Зенкерная

7

Ш25 Js16(±0,65)

Rz 6,3

30…38.5 HRCэ

0

207 HB

0

0

1

1

Js16

Rz20

Токарная

Js16

Rz10

Шлифовальная

Предварительно

Js16

Rz6,3

Шлифовальная

Окончательно

50

49

Рисунок 2.3.1- Схема нумерации поверхностей детали

2.4 Выбор и технико-экономическое обоснование этапов технологического процесса изготовления, комплектов технологических баз, методов и последовательности обработки поверхностей шестерни

В основу разработки технологических процессов положены три принципа: технический, экономический и организационный.

В соответствии с техническим принципом проектируемый технологический процесс должен полностью обеспечить выполнение требований чертежа и технических условий на изготовление данного изделия. К ним относят точность детали, качество ее поверхностей, технологичность и конструкций.

Деталь характеризуют: точность размеров, формы и взаимного положения в пространстве отдельных ее конструктивных элементов [4, с.117]. Под точностью понимают степень соответствия фактических размеров, формы и правильности взаимного положения элементов заданным на чертеже или оговоренным техническими условиями. В зависимости от требования конечной точности и условий работы деталей в узле назначают точность изготовления отдельных деталей, т.е. обеспечивают математическую связь между замыкающим звеном в той или иной сборочной единицей и ее составляющими звеньями. При этом, чем выше требуемая точность замыкающего звена, тем с более высокой точностью должны быть выполнены размеры деталей - звеньев размерной цепи.


Подобные документы

  • Расчет на прочность элементов первой ступени компрессора высокого давления турбореактивного двухконтурного двигателя со смешением потоков для боевого истребителя. Расчет припусков на обработку для наружных, внутренних и торцевых поверхностей вращения.

    дипломная работа [2,0 M], добавлен 07.06.2012

  • Термогазодинамический расчет двигателя, расчет на прочность и колебания пера лопатки и диска первой ступени компрессора. Проектирование маршрутно-операционного технологического процесса изготовления шестерни, комплекта технологической документации.

    курсовая работа [2,4 M], добавлен 29.07.2012

  • Описание конструкции двигателя. Термогазодинамический расчет турбореактивного двухконтурного двигателя. Расчет на прочность и устойчивость диска компрессора, корпусов камеры сгорания и замка лопатки первой ступени компрессора высокого давления.

    курсовая работа [352,4 K], добавлен 08.03.2011

  • Основные сведения о проектируемом двигателе и краткое описание конструкции. Термогазодинамический расчет двигателя. Анализ рабочего чертежа и определение показателей технологичности вала. Выбор и обоснование оборудования формообразования заготовки.

    дипломная работа [812,4 K], добавлен 14.06.2012

  • Расчет на длительную статическую прочность элементов авиационного турбореактивного двигателя р-95Ш. Расчет рабочей лопатки и диска первой ступени компрессора низкого давления на прочность. Обоснование конструкции на основании патентного исследования.

    курсовая работа [2,2 M], добавлен 07.08.2013

  • Основные сведения о двигателе, описание конструкции компрессора высокого давления. Расчет на прочность рабочей лопатки первой ступени и диска рабочего колеса. Динамическая частота первой формы изгибных колебаний. Прочность деталей камеры сгорания.

    курсовая работа [1,3 M], добавлен 19.02.2012

  • Термогазодинамический расчет двигателя, выбор и обоснование параметров. Согласование параметров компрессора и турбины. Газодинамический расчет турбины и профилирование лопаток РК первой ступени турбины на ЭВМ. Расчет замка лопатки турбины на прочность.

    дипломная работа [1,7 M], добавлен 12.03.2012

  • Проектирование рабочего процесса газотурбинных двигателей и особенности газодинамического расчета узлов: компрессора и турбины. Элементы термогазодинамического расчета двухвального термореактивного двигателя. Компрессоры высокого и низкого давления.

    контрольная работа [907,7 K], добавлен 24.12.2010

  • Расчет на прочность пера лопатки рабочего колеса первой ступени компрессора высокого давления. Прочностной расчет лопаточного замка: замковой части лопатки и диска рабочего колеса. Расчет динамики первой формы колебаний пера рабочей лопатки колеса.

    курсовая работа [958,5 K], добавлен 27.02.2012

  • Термогазоденамический расчет, выбор и основание параметров. Степень повышения давления в компрессоре. Термогазодинамический расчет двигателя. Формирование облика ГТД. Газодинамический расчет компрессора на ЭВМ. Методы профилирования, подготовка данных.

    курсовая работа [2,2 M], добавлен 13.01.2009

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.