Электроцентробежный насос

Назначение и технические данные установки электроцентробежного насоса. Обзор отечественных и зарубежных схем и установок, их сравнение. Патентная проработка. Обоснование выбранного прототипа. Суть модернизации и оценка ожидаемых выгод от ее реализации.

Рубрика Производство и технологии
Вид контрольная работа
Язык русский
Дата добавления 20.05.2012
Размер файла 34,3 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

Размещено на http://www.allbest.ru/

Введение

УЭЦН предназначены для откачки пластовой жидкости из нефтяных скважин и используется для форсирования отбора жидкости. Установки относятся к группе изделий II, виду I по ГОСТ 27.003-83.

Климатические исполнение погружного оборудования - 5, наземного электрооборудования - I ГОСТ 15150-69.

Для надежной работы насоса требуется его правильный подбор к данной скважине. При работе скважины постоянно меняются параметры плата, призабойной зоны пласта, свойства отбираемой жидкости: содержание воды, количество попутного газа, количество механических примесей, и как следствие, отсюда идет не доотбор жидкости или работа насоса вхолостую, что сокращает межремонтный период работы насоса. На данный момент делается упор на более надежное оборудование, для увеличения межремонтного периода, и как следствие из этого снижение затрат на подъем жидкости. Этого можно добиться, применяя центробежные УЭЦН вместо ШСН, так как центробежные насосы имеют большой межремонтный период.

Установку УЭЦН можно применять при откачке жидкости, содержащих газ, песок, и коррозионо-активные элементы.

1. Анализ существующих схем и конструкций

1.1 Назначение и технические данные УЭЦН

Установки погружных центробежных насосов предназначены для откачки из нефтяных скважин, в том числе и наклонных пластовой жидкости, содержащей нефть, воду и газ, и механические примеси. В зависимости от количества различных компонентов, содержащихся в откачиваемой жидкости, насосы установок имеют исполнение обычное и повышенной корозионно-износостойкости. При работе УЭЦН, где в откачиваемой жидкости концентрация мехпримесей превышает допустимую 0,1 грамм\литр происходит засорение насосов, интенсивной износ рабочих агрегатов. Как следствие, усиливается вибрация, попадание воды в ПЭД по торцевым уплотнениям, происходит перегрев двигателя, что приводит к отказу работы УЭЦН.

Условное обозначение установок:

УЭЦН К 5-180-1200, У 2 ЭЦН И 6-350-1100,

Где У - установка, 2 - вторая модификация, Э - с приводом от погружного электродвигателя, Ц - центробежный, Н - насос, К - повышенный коррозионостойкости, И - повышенной износостойкости, М - модульного исполнения, 6 - группы насосов, 180, 350 - подача м\сут, 1200, 1100 - напор, м.в.ст.

В зависимости от диаметра эксплуатационной колонны, максимального поперечного габарита погружного агрегата, применяют ЭЦН различных групп - 5,5, а 6. Установка группы 5 с поперечным диаметром не менее 121,7 мм. Установки группы 5 а с поперечным габаритом 124 мм - в скважинах внутренним диаметром не менее 148,3 мм. Насосы также подразделяют на три условные группы - 5,5 а, 6. Диаметры корпусов группы 5 - 92 мм, группы 5 а - 103 мм, группы 6 - 114 мм. Технические характеристики насосов типа ЭЦНМ и ЭЦНМК приведены в приложении 1.

Историческая справка о развитии способа добычи.

Разработка бесштанговых насосов в нашей стране началась еще до революции. Когда А.С. Артюнов вместе с В.К. Домовым разработали скважинный агрегат, в котором центробежный насос приводился в действие погружным электродвигателем. Советские инженеры, начиная с 20-х годов, предлагали разработку поршневых насосов с поршневым пневматическим двигателем. Одним из первых такие насосы разработал М.И. Марцишевский.

Разработка скважинного насоса с пневмодвигателем была продолжена в Азинмаше В.И. Документовым. скважинные центробежные насосы с электроприводом разрабатывались в предвоенный период А.А. Богдановым, А.В. Крыловым, Л.И. Штурман. Промышленные образцы центробежных насосов с электроприводом были разработаны в особом конструкторском бюро по бесштанговым насосам. Эта организация ведет все работы по скважинным бесштанговым насосам, в том числе и по винтовым, диафрагменным и др.

Нефтегазодобывающая промышленность с открытием новых месторождений нуждалась в насосах для отбора из скважины большого количества жидкости. Естественно, что наиболее рационален лопастной насос, приспособленный для больших подач. Из лопастных насосов получили распространение насосы с рабочими колесами центробежного типа, поскольку они давали большой напор при заданных подачах жидкости и габаритах насоса. Широкое применение скважинных центробежных насосов с электроприводом обусловлено многими факторами. При больших отборах жидкости из скважины установки ЭЦН наиболее экономичные и наименее трудоемки при обслуживании, по сравнению с компрессорной добычей и подъемом жидкости насосами других типов. При больших подачах энергетические затраты на установку относительно невелики. Обслуживание установок ЭЦН просто, так ака на поверхности размещаются только станция управления и трансформатор, не требующие постоянного ухода.

Монтаж оборудования ЭЦН прост, так как станция управления и трансформатор не нуждаются в устройстве фундаментов. Эти два узла установки ЭЦН размещают обычно в легкой будке.

Состав и комплектность УЭЦН

Установка УЭЦН состоит из погружного насосного агрегата (электродвигателя с гидрозащитой и насоса), кабельной линии (круглого плоского кабеля с муфтой кабельного ввода), колонны НКТ, оборудования устья скважины и наземного электрооборудования: трансформатора и станции управления (комплектного устройства) (см. рисунок 1.1.). Трансформаторная подстанция преобразует напряжение промысловой сети дооптимальной величины на зажимах электродвигателя с учетом потерь напряжения в кабеле. Станция управления обеспечивает управление работой насосных агрегатов и его защиту при оптимальных режимах.

Погружной насосный агрегат, состоящий из насоса и электродвигателя с гидрозащитой и компенсатора, опускается в скважину по НКТ. Кабельная линия обеспечивает подвод электроэнергии к электродвигателю. Кабель крепится к НКТ, металлическими колесами. На длине насоса и протектора кабель плоский, прикреплен к ним металлическим колесами и защищен от повреждений кожухами и хомутами. Над секциями насоса устанавливаются обратный и сливной клапаны. Насос откачивает жидкость из скважины и подает ее на поверхность по колонне НКТ (см. рисунок 1.2.)

Оборудование устья скважины обеспечивает подвеску на фланце обсадной колонны НКТ с электронасосом и кабелем, герметизацию труб и кабеля, а также отвод добываемой жидкости в выходной трубопровод.

Насос погружной, центробежный, секционный, многоступенчатый не отличается по принципу действия от обычных центробежный насосов.

Отличие его в том, что он секционный, многоступенчатый, с малым диаметром рабочих ступеней - рабочих колес и направляющих аппаратов. Выпускаемые для нефтяной промышленности погружные насосы содержат от 1300 до 415 ступеней.

Секции насоса, связанные фланцевыми соединениями, представляют собой металлический корпус. Изготовленный из стальной трубы длиной 5500 мм. Длина насоса определяется числом рабочих ступеней, число которых, в свою очередь, определяется основными параметрами насоса. - подачей и напором. Подача и напор ступеней зависят от поперечного сечения и конструкции проточной части (лопаток), а также от частоты вращения. В корпусе секций насоса вставляется пакет ступеней представляющих собой собрание на валу рабочих колес и направляющих аппаратов.

Рабочие колеса устанавливаются на валу на призматической шпонке по ходовой посадке и могут перемещаться в осевом направлении. Направляющие аппараты закреплены от поворота в корпусе ниппеля, расположенным в верхней части насоса. Снизу в корпус ввинчивают основание насоса с приемными отверстиями и фильтром, через которые жидкость из скважины поступает к первой ступени насоса.

Верхний конец вала насоса вращается в подшипниках сальника и заканчивается специальной пяткой, воспринимающей нагрузку на вал и его вес через пружинное кольцо. Радиальные усилия в насосе воспринимаются подшипниками скольжения, устанавливаемыми в основании ниппеля и на валу насоса.

В верхней части насоса находится ловильная головка, в которой устанавливается обратный клапан и к которой крепится НКТ.

Электродвигатель погружной, трехфазовый, асинхронный, маслозаполненный с короткозамкнутым ротором в обычном исполнении и коррозионностойком исполнениях ПЭДУ (ТУ 16-652-029-86). Климатическое исполнение - В, категория размещения - 5 по ГОСТ 15150 - 69. В основании электродвигателя предусмотрены клапан для закачки масла и его слива, а также фильтр для очистки масла от механических примесей.

Гидрозащита ПЭД состоит из протектора и компенсатора. Она предназначена для предохранения внутренней полости электродвигателя от попадания пластовой жидкости, а также компенсации температурных изменений объемов масла и его расхода. (см. рисунок 1.3.)

Протектор двухкамерный, с резиновой диафрагмой и торцевыми уплотнениями вала, компенсатор с резиновой диафрагмой.

Кабель трехжильный с полиэтиленовой изоляцией, бронированный. Кабельная линия, т.е. кабель намотанный на барабан, к основанию которого присоединен удлинитель - плоский кабель с муфтой кабельного ввода. Каждая жила кабеля имеет слой изоляции и оболочку, подушки из прорезиненной ткани и брони. Три изолированные жилы плоского кабеля уложены параллельно в ряд, а круглового скручены по винтовой линии. Кабель в сборе имеет унифицированную муфту кабельного ввода К 38, К 46 круглого типа. В металлическом корпусе муфты герметично заделаны с помощью резинового уплотнения, к токопроводящим жилам прикреплены наконечники.

Конструкция установок УЭЦНК, УЭЦНМ с насосом имеющим вал и ступени, выполненные из коррозионностойких материалов, и УЭЦНИ с насосом, имеющим пластмассовые рабочие колеса и резинометаллические подшипники аналогична конструкция установок УЭЦН.

При большом газовом факторе применяют насосные модули - газосепараторы, предназначенные для уменьшения объемного содержания свободного газа на приеме насоса. Газосепараторы соответствуют группе изделий 5, виду 1 (восстанавливаемые) по РД 50-650-87, климатическое исполнение - В, категория размещения - 5 по ГОСТ 15150-69.

Модули могут быть поставлены в двух исполнениях:

Газосепараторы: 1 МНГ 5, 1 МНГ5а, 1МНГ6 - обычного исполнения;

Газосепараторы 1 МНГК5, МНГ5а - повышенной коррозионной стойкости.

Модули насосные устанавливаются между входным модулем и модулем-секцией погружного насоса.

Погружной насос, электродвигатель, и гидрозащита соединяются между собой фланцами и шпильками. Валы насоса, двигателя и протектора имеют на концах шлицы и соединяются шлицевыми муфтами.

Комплектующие подъемы и оборудование установок ЭЦН приведены в приложении 2.

Технические характеристика ПЭД

Приводом погружных центробежных насосов служит специальный маслозаполненный погружной ассинхронный электродвигатель трехфазного переменного тока с короткозамкнутым ротором вертикального исполнения типа ПЭД. Электродвигатели имеют диаметры корпусов 103, 117, 123, 130, 138 мм. Поскольку диаметр электродвигателя ограничен, при больших мощностях двигатель имеет большую длину, а в некоторых случаях выполнения секционным. Так как электродвигатель работает погруженным в жидкость и часто под большим гидростатическим давлением, основное условие надежной работы - его герметичность (см. рисунок 1.3).

ПЭД заполняется специальным маловязким, высокой диэлектрической прочности маслом, служащим как для охлаждения, так и для смазки деталей.

Погружной электродвигатель состоит из статора, ротора, головки, основания. Корпус статора изготавливается из стальной трубы, на концах которой предусмотрена резьба для подсоединения головки и основания двигателя. Магнитопровод статора собирается из активных и немагнитных шихтованных жестей, имеющих пазы, в которых располагаются обмотка. Обмотка статора может быть однослойной, протяжной, катушечной или двухслойной, стержневой, петлевой. Фазы обмотки соединены.

Активная часть магнитопровода совместно с обмоткой создает в электродвигателей вращающееся магнитное поле, а немагнитная часть служит опорами для промежуточных подшипников ротора. К концам обмотки статора припаивают выводные концы, изготовленные из многожильной медного провода с изоляцией, имеющий высокую электрическую и механическую прочность. К концам припаивают штежельные гильзы, в которые входят наконечники кабеля. Выводные концы обмотки соединяют с кабелем через специальную штежельную колодку (муфту) кабельного ввода. Токоввод двигателя может быть и ножевого типа. Ротор двигателя короткозамкнутый, многосекционный. В его состав входят вал, сердечники (пакеты ротора), радиальные опоры (подшипники скольжения). Вал ротора выполнен из пустотелой калиброванной стали, сердечники из листовой электротехнической стали. Сердечники набираются на вал, чередуясь с радиальными подшипниками, и соединены с валом шпонками. Набор сердечников на валу затянуть в осевом направлении гайками или турбинкой. Турбинка служит для принудительной циркуляции масла для выравнивания температуры двигателя на длине статора. Для обеспечения циркуляции масла на погружной поверхности магнитопровода имеются продольные пазы. Масло циркуляцией через эти пазы, фильтра в нижней части двигателя, где оно очищается, и через отверстие в валу. В головке двигателя расположены пята и подшипник. Переводник в нижней части двигателя служит для размещения фильтра, перепускного клапана и клапана для закачки масла в двигатель. Электродвигатель секционного исполнения состоит из верхней и нижней секций. Каждая секция имеет такие же основные узлы. Технические характеристики ПЭД приведены в приложении 3.

Основные технические данные кабеля

Подвод электроэнергии к электродвигателю установки погружного насоса осуществляется через кабельную линию, состоящую из питающего кабеля и муфты кабельного ввода для сочленения с электродвигателем.

В зависимости от назначения в кабельную линию могут входить:

Кабель марок КПБК или КППБПС - в качестве основного кабеля.

Кабель марки КПБП (плоский)

Муфта кабельного ввода круглая или плоская.

Кабель КПБК состоит из медных однопроволочных или многопроволочных жил, изолированных в два слоя полиэтиленом высокой прочности и скрученных между собой, а также подушки и брони.

Кабели марок КПБП и КППБПС в общей шланговой оболочке состоят из медных однопроволочных и многопроволочных жил, изолированных полиэтиленом высокой плотности и уложенных в одной плоскости, а так же из общей шланговой оболочке, подушки и брони.

Кабели марки КППБПС с отдельно отшлангованными жилами состоят из медных одно-, многопроволочных жил, изолированных в два слоя полиэтилена высокого давления и уложенных в одной плоскости.

Кабель марки КПБК имеет:

Рабочее напряжение В - 3300

Допустимое давление пластовой жидкости, МПа - 19,6

Допустимый газовый фактор, м/т - 180

Кабель марки КПБП имеет:

Рабочее напряжение, В - 2500

Допустимое давление пластовой жидкости, МПа - 19,6

Допустимый газовый фактор, м/т - 180

Кабель марки КПБК и КПБП имеет допустимые температуры окружающей среды от 60 до 45 С воздуха, 90 С - пластовой жидкости.

Температуры кабельных линий приведены в приложении 4.

1.2 Краткий обзор отечественных схем и установок

Общие сведения

Установки погружных центробежных насосов предназначены для откачивания нефтяных скважин, в том числе наклонных, пластовой жидкости, содержащей нефть и газ, и механической примеси.

Установки выпускаются двух видов - модульные и немодульные; трех исполнений: обычное, коррозионостойкое и повышенной износостойкости. Перекачиваемая среда отечественных насосов должна иметь следующие показатели:

пластовая дикость - смесь нефти, попутной воды и нефтяного газа;

максимальная кинематическая вязкость пластовой жидкости 1 мм\с;

водородный показатель попутной воды рН 6,0-8.3;

содержание мехпримесей для обычного и коррозионостойкого не более 0,1 г\л, износостойкого не более 0.5 г.\л;

содержание сероводорода для обычного и износостойкого не более 0,01 г.\л; корозионостойкого до 1.25 г.\л;

максимальное содержание полученной воды 99%;

свободного газа на приеме до 25%, для установок с модулями - сепараторами до 55%;

максимальная температура добываемой продукции до 90С.

В зависимости от поперечных размеров применяемых в комплекте установок погружных центробежных электронасосов, элетродвигателей и кабельных линий установки условно делятся на 2 группы 5 и 5 а. С диаметрами обсадных колонн 121.7 мм; 130 мм; 144,3 мм соответственно.

Установка УЭЦ состоит из погружного насосного агрегата, кабеля в сборе, наземного электрооборудования - трансформаторной комилентной подстанции. Насосный агрегат состоит из погружного центробежного насоса и двигателя с гидрозащитой, спускается в скважину на колонне НКТ. Насос погружной, трехфазный, асинхронный, маслозаполненный с ротором.

Гидрозащита состоит из протектора и компенсатора. Кабель трехжильный с полиэтиленовой изоляцией, бронированный.

Погружной насос, электродвигатель и гидрозащита соединяются между собой фланцами и шпильками. Валы насоса, двигателя и протектора имеют на концах шлицы и соединяются шлицевыми муфтами.

Погружной центробежный насос

Погружной центробежный насос по принципу действия не отличается от обычных центробежных насосов, применяемых для перекачки жидкости. Отличие в том, что он многосекционный с малым диаметром рабочих ступеней - рабочих колес и направляющих аппаратов. Рабочие колеса и направляющие аппараты насосов обычного исполнения изготавливают из модифицированного серого чугуна, насосов коррозионностойких - чугуна типа «нирезист», износостойких колес - их полиамидных смол.

Насос состоит из секций, число которых зависит от основных параметров насоса - напора, но не более четырех. Длина секции до 5500 метров. У модульных насосов состоит из входного модуля, модуля - секции. Модуль - головки, обратного и спускного клапанов. Соединение модулей между собой и входного модуля с двигателем - фланцевое соединение (кроме входного модуля, двигателем или сепаратором) уплотняются резиновыми манжетами. Соединение валов модулей-секций между собой, модуля-секции с валом входного модуля, вала входного модуля с валом гидрозащиты двигателя осуществляется шлицевыми муфтами. Валы модулей-секций всех групп насосов имеющих одинаковые длины корпусов унифицированы по длине.

Модуль-секция состоит из корпуса, вала, пакета ступеней (рабочих колес и направляющих аппаратов), верхнего и нижнего подшипников, верхней осевой опоры, головки, основания, двух ребер и резиновых колец. Ребра предназначены для защиты плоского кабеля с муфтой от механических повреждений.

Входной модуль состоит из основания с отверстиями для прохода пластовой жидкости, подшипниковых втулок и сетки, вала с защитными втулками и шлицевой муфтой, предназначенной для соединения вала модуля с валом гидрозащиты.

Модуль-головка состоит из корпуса, с одной стороны которого имеется внутренняя коническая резьба для подсоединения обратного клапана, с другой стороны - фланец для подсоединения к модулю-секции, двух ребер и резинового кольца.

В верхней части насоса имеется ловильная головка.

Отечественной промышленностью выпускаются насосы с подачей (м/сут):

Модульные - 50,80,125,200. 160,250,400,500,320,800,1000.1250.

Немодульные - 40. 80,130. 160,100,200,250,360,350,500,700,1000.

Следующих напоров (м) - 700, 800, 900, 1000, 1400, 1700, 1800, 950, 1250, 1050, 1600, 1100, 750, 1150, 1450, 1750, 1800, 1700, 1550, 1300.

Погружные электродвигатели

Погружные электродвигатели состоят из электродвигателя и гидрозащиты.

Двигатели трехфазные, ассинхронные, короткозамкнутые, двухполюсные, погружные, унифицированной серии. ПЭД в нормальном и коррозионном исполнениях, климатического исполнения В, категории размещения 5, работают от сети переменного тока частотой 50 Гц и используются в качестве привода погружных центробежных насосов.

Двигатели предназначены для работы в среде пластовой жидкости (смесь нефти и попутной воды в любых пропорциях) с температурой до 110 С содержащей:

мехпримесей не более 0.5 г./л;

свободного газа не более 50%;

сероводорода для нормальных, не более 0.01 г./л, коррозионностойких до 1,25 г./л;

Гидрозащитное давление в зоне работы двигателя не более 20 МПа. Электродвигатели заполняются маслом с пробивным напряжением не менее 30 КВ. Предельная длительно допускаемая температура обмотки статора электродвигателя (для двигателя с диаметром корпуса 103 мм) равна 170 С, остальных электродвигателей 160 С.

Двигатель состоит из одного или нескольких электродвигателей (верхнего, среднего и нижнего, мощностью от 63 до 630 КВт) и протектора. Электродвигатель состоит из статора, ротора, головки с токовводом, корпуса.

Гидрозащита электродвигателя

Гидрозащита предназначена для предотвращения проникновения пластовой жидкости во внутреннюю полость электродвигателя, компенсации объема масла во внутренней полости от температуры электродвигателя и передачи крутящего момента от вала электродвигателя к валу насоса. Существует несколько вариантов гидрозащиты: П, ПД, Г.

Гидрозащиту выпускают обычного и коррозионностойкого исполнений. Основным типом гидрозащиты для комплектации ПЭД принята гидрозащита открытого типа. Гидрозащита открытого типа требует применения специальной барьерной жидкости плотностью до 21 г./см, обладающий физико-химическими свойствами с пластовой жидкостью и маслом.

Гидрозащита состоит из двух камер сообщенных трубкой. Изменение объемов жидкого диэлектрика в двигателе компенсируется перетоком барьерной жидкости из одной камеры в другую. В гидрозащите закрытого

типа применяются резиновые диафрагмы. Их эластичность компенсирует изменение объема масла.

1.3 Краткий обзор зарубежных схем и установок

Наиболее крупными фирмами, выпускающими погружные центробежные насосные установки являются «Реда ламп», «Оил дайнемикс».

Погружные центробежные насосы применяются для добычи нефтепродуктов в ряден стран.

Насосы имеют по 2 верхние и 2 нижние секции.

Рассчитаны на работу в скважинах:

с температурой до 95С;

содержание мехпримесей не более 0,5г\л;

сероводорода до 1,25 г.\л;

свободного газа на приеме насоса до 35%.

После определения производительности скважины выбирается насос соответствующего размера. Характеристиками рабочего колеса центробежного насоса являются большое давление сверху вниз при низком уровне дебита. Чтобы продлить срок службы насоса, фирма ОДИ рекомендует использовать специальное оборудование, если предполагается значительное содержание песка - гофрированный резиновый подшипник - используется для осевой поддержки насоса. Резина обеспечивает прочную упругую поверхность осевого подшипника. Такая поверхность позволяет частица песка перекатывается по поверхности подшипника, не царапая ее. Канавки обеспечивают отвод для частиц песка, которые затем вымываются из подшипника. Если насос теряет осевую стабильность, вал начинает вращаться эксцентрично, что приводит к увеличению боковой нагрузки и эксцентричному вращению опорных шайб и сокращает срок службы насоса до нескольких часов.

Опорные модули с заполненными опорными колесами и подшипниками обеспечивают осевую и радиальную поддержку насоса благодаря износостойким материалам, намного тверже песка, устойчивым к воздействию агрессивных газовых и химических сред.

Насосы фирмы ОДИ отличаются от других зарубежных образцов:

две опорные ступени насоса;

валы секций не имеют своей пяты и, упираясь, друг в друга образуют вал, который передает осевую нагрузку на пяту расположенную в протекторе;

валы соединяются между собой с помощью зацепления;

вал, общей длиной более 24 метров имеет только одну осевую опору в нижней части и подвергается продольному изгибу;

в каждой двенадцатой ступени размещены бронированные втулки.

Фирма выпускает насос двух габаритов: 139.7 мм и 177.8 мм (диаметры обсадных колонн) следующих типов (таблица 1.1)

Таблица 1.1.

Тип

насоса

Наружный

Диаметр,

(мм)

Максимальная мощность на валу насоса, КВт

Номинальная подача,

м/сут

Допустимое давление на пяту,

м.в.ст.

R 3

30-50

3862

RC 5

50-73

RA 7

90-125

R 9

109-133

RC 12

101,6

200

133-186

R 14

150-212

RA 16

186-239

RA 22

239-311

R 32

311-437

2652

R 38

437-570

1676

Двигатель фирмы отличается конструкцией - число пазов ротора и статора 18 и 23 соответственно, у других соответственно 18 и 16. Двигатели очень чувствительны к температуре, имеют малый температурный запас. Очень важна скорость обливающей их жидкости, фирма специально оговаривает диаметры скважин, в которые ставят ее двигатели. Фирма ODI предусматривает регуляторы частоты вращения двигателя и считается, что плавный пуск защитит двигатель, хотя есть вероятность того, что высокий ток на отдельных фазах может выбить пробки. В общем. Технические характеристики у двигателей фирмы ODI ниже, чем у отечественных двигателей.

Фирма ODI скопировала советские протекторы ГД и 1Г51. Она использует к гидрозащите вихревые газосепараторы KGV и RGV, если объем свободного газа на приеме достигает 10%. Используются для определения влияния повышенного содержания газа на работу насоса (рабочие характеристики вихревых газосепараторов).

Фирма ODI не является лучшей фирмой, представляющей на мировом рынке погружные центробежные насосы, но и не является плохой фирмой.

Более конкретно о технических данных насосов фирмы ODI представлено в приложении.

При разработке конструкции ступеней насосов фирма уделяет особое внимание проблеме защиты от абразии.

1. В ODI используется особая конструкция диффузора во всех ступенях насосов 55 и 70 серий для того, чтобы исключить попадание песка в область опорной втулки.

1.4 Анализ аварийного фонда по НГДУ «Лянторнефть»

В 1997 году произошло 60 полетов на 60 скважинах оборудованных установками электроцентрированных насосов. За прошедшие 5 лет наметилась тенденция увеличения количества аварий по фонду УЭЦН. В отчетном году аварийность повысилась на 16 скважин, по сравнению с аналогичным периодом 1996 года. Большая часть полетов произошли в результате расчленения фланцевых соединениях УЭЦН - 48%. Здесь следует выделить обрывы по шпилькам между секциями насоса - 25% и метод ПЭД и протектором гидрозащиты - 10%. Следующая группа обрывов - обрывы по НКТ. Основная доля обрывов приходится на нижнюю и верхнюю часть колонны НКТ, соответственно - 44% и 38%. Все остальные аварии относятся к категории частных случаев. Последняя большая группа аварий - это аварии по причине слома по телу узлов УЭЦН. По данной причине 4 полета получено в результате слома по телу корпуса секций насосов, 3 - по корпусу гидрозащиты, 1 - по телу ловильной головки. Сломы по «шейки насосов» возросли с 1 полета в 1996 г. до 5 в 1997 году. Проводя анализ эксплуатации аварийного фонда скважин УЭЦН достаточно четко просматривается влияние осложняющих факторов на работу УЭЦН ставших причиной полета на этих скважинах. В первую очередь, львиная доля полетов получена на таких пластах, как А 4-5 и А 2-3, где наблюдается интенсивный вынос мехпримесей и высока степень коррозии. Высокое содержание мехпримесей в добываемой жидкости наблюдается практически по всем скважинам аварийного фонда, особенно на момент запуска и первых дней эксплуатации. Более того по ряду скважин в период работы содержание мехпримесей не только остается на одном уровне, но и увеличивается. Снижение выноса мехпримесей говорит о том, что установка начала снижать свою производительность из-за износа рабочих органов насоса.

Основными причинами аварий являются следующие факторы:

1. Повышенное содержание мехпримесей в добываемой жидкости как после ремонта, так и в процессе эксплуатации, что вызывает интенсивный износ оборудования, что в свою очередь повышает вибрационные нагрузки.

2. Некачественные крепежные материалы, применяемые при монтаже УЭЦН, которые не выдерживают вибрационные нагрузки в процессе работы. Монтаж зачастую проводится крепежными материалами не соответствующими ГОСТ.

3. Увеличение полетов 1997 году связано также низким уровнем обеспечения нефтепромысловым оборудованием, в результате чего не обновляется парк подземного оборудования.

4. Недостаточным контролем со стороны технических служб ДАОЗТ за режимом работы скважин.

5. «Спутник».

Предлагаемые меры по сокращению аварийности:

1. Повышать контроль за работой скважин, особенно по пластам А 4-5 и А

2-3. Здесь необходимо 1 раз в месяц отбирать пробу добываемой местности на анализ содержания мехпримесей (по пластам А 4-5 и А 2-3 2 раза в месяц), 2 раза в месяц (в начале и в конце) контролировать УЭЦН по динамическому уровню.

2. Производить спуск УЭЦН на заданную глубину (7-10 метров) только с замером НКТ, что исключит попадание установки в зону повышенной кривизны.

3. Рассмотреть вопрос о приобретении НКТ с антикоррозийным покрытием для спуска в скважину коррозийного фонда.

4. Увеличить процент обновляемости парка подземного ремонта.

5. При ПДС производить зачистку резьбы труб и муфт перед свинчиванием, более качественно проводить отбраковку НКТ по износу резьбовых соединений.

6. Возбновить работу ПДК по авариям, более детально подойти к расследованию причин полетов.

2. Патентная проработка

2.1 Патентная проработка

М.М. Трусов, В.Я. Райт, и др. Авторское свидетельство №597785, №

21, 1976 г. с. 4. «Скважинная насосная установка».

Изобретение относится к гидромашиностроению и может быть использовано в конструкциях скважинных насосных установок, предназначенных для откачивания сред, содержащих механические примеси.

Цель изобретения - уменьшение габаритов и металлоемкости установки, а также повышение степени очистки перекачиваемой среды.

Поставленная цель достигается тем, что в скважинной насосной установке, содержащей центробежный насос, размещенный под ним электродвигатель, установленный на выходе насоса гидроэлеватор с наружным кожухом и камерой смещения и деформируемый пакер, последний расположен выше гидроэлеватора, в наружном кожухе гидроэлеватора выполнены отверстия и его камера смешения сообщена с областью всасывания насоса посредством упомянутых отверстий, а электродвигатель снабжен спиральной направляющей на его наружной поверхности.

Изобретение относится к гидромашиностроению и может быть использовано при эксплуатации центробежных насосов для подъема жидкости из скважины.

Цель изобретения - упрощение технологии запуска.

Указанная цель достигается тем, что согласно способу запуска центробежного насоса, откачивающего газированную жидкость и установленного в скважине на колонне подъемных труб, подключенной в верхней части к выкидной линии и затрубному пространству скважины, включающему создание положительной разности давлений на выходе и выходе насоса, раскрутку ротора последнего в турбинном режиме жидкостью, перетекающей из затрубного пространства в колонну подъемных труб под действием созданной разности давлений, и включение электродвигателя насоса, предварительно отключают колонну труб от выкидной линии и затрубного пространства, а создание положительной разности давлений осуществляют путем выпуска газа на верхней части колонны труб.

Изобретение относится к насосостроению и может найти применение в погружных электроцентробежных насосах, предназначенных, например, для добычи нефти из скважин.

Цель изобретения - обеспечение возможности обратной прокачки жидкости через насос и измерения давления на приеме насоса.

Указанная цель достигается тем, что насос дополнительно содержит муфту, закрепленную над обратным клапаном, в которой размещен специальный груз со штоком в нижней части, проходящим через отверстие седла клапана, причем груз имеет сквозное отверстие.

Изобретение относится к гидромашиностроению, более конкретно к конструкциям насосных установок для подъема минерализованных жидкостей, например обводненной нефти, из скважины.

Цель изобретения - повышение долговечности при использовании агрегата для перекачивания обводненной нефти.

Поставленная цель достигается тем, что в погружном центробежным агрегате излучатель снабжен расположенным по обе стороны от него кольцевыми камерами, сообщенными с отверстиями.

Изобретение относится к области гидромашиностроения и может быть использовано в конструкциях насосных установок, предназначенных для откачивания жидкости с механическими примесями из скважин.

Цель изобретения - в повышении надежности и уменьшения габаритов установки.

Поставленная цель достигается тем, что в скважинной насосной установке, содержащей установленный на колонне подъемных труб насос, размещенный на выходе последнего пескоотстойник, снабженный в нижней части нормально открытым клапаном, и обводную трубу, нижний конец которой непосредственно сообщен с выходом насоса, а верхний через обратный клапан - с полостью колонны труб, обводная труба расположена внутри пескоотстойника, а нормально открытый клапан выполнен подпружиненным и имеет внутреннюю

полость, уплотненную относительно полости колонны труб и гидравлически связанную с выходом.

2.2 Обоснование выбранного прототипа

Большое значение имеют погружные центробежные насосы для нефтедобывающей промышленности. Скважины, оборудованные установками погружных центробежных электронасосов, выгодно отличаются от скважин, оборудованных глубинонасосными установками. Применение такого оборудования позволяет вводить скважины в эксплуатацию сразу же после бурения в любой период года, без больших затрат времени и средств на сооружение фундаментов и монтаж тяжелого оборудования. Спуск электронасоса в скважину отличается от обычного для промыслов спуска НКТ лишь наличием кабеля и необходимостью его крепления к трубам, сборка же самого электронасоса на устье скважины очень проста и занимает по нормам не более 2-3 часов.

Характерной особенностью погружных центробежных насоса является простота обслуживания, экономичность, относительно большой межремонтный период их работы.

Насосный агрегат, состоящий из погружного центробежного насоса, двигателя и гидрозащиты спущен на колонне НКТ в скважину. Насосный агрегат откачивает пластовую жидкость из скважины и подает ее на поверхность по колонне НКТ. Кабель в сборе, обеспечивает подвод электроэнергии к электродвигателю, крепится к гидрозащите, насосу и колоне НКТ хомутами. Насос погружной, центробежный, модульный, многоступенчатый, вертикального исполнения.

Базовой моделью для моего усовершенствования является УЭЦН 5 50-1300, так как на основании проведенного анализа полетов УЭЦНМ в АО «Сургутнефтегаз» видно, что влияние вибрации в модульных насоса ЭЦН приводит к обрыву болтов во фланцевых соединениях, не только самого верхнего, но и ниже. На основании этого предлагается конструкция противополетного устройства, устанавливаемого на каждое фланцевое соединение насосного агрегата, описанное далее.

электроцентробежный насос установка модернизация

2.3 Суть модернизации

Страховочные муфты предназначены для предотвращения падения установок в скважину при ее расчленении по фланцевому соединению.

Устанавливаются страховочные муфты между модуль-секциями насоса (кроме соединения входной модуль - модель-секция) и между модуль-головкой и модуль секцией. Если применяется противополетная головка.

Монтаж-демонтаж установок производится согласно «Инструкции по монтажу-демонтажу на устье скважин погружных электроцентробежных насосов для добычи нефти» со следующими дополнениями.

После соединения верхней и нижней секций, приподнять агрегат и установить на фланцевом соединении страховочную муфту в следующей последовательности:

1. Вывинтить стягивающие винты из корпуса муфты для рассоединения двух частей.

2. Установить обе части муфты на фланцевое соединение винтами вниз так, чтобы срезанная плоскими часть муфты находилась под кабелем.

3. Соединить часть муфты винтами при помощи шестигранного ключа, и расклинить винты со стороны разрезанной части, для предотвращения самопроизвольного развинчивания.

Аналогично установить муфту при наличии многосекционного насоса между всеми модулями.

Демонтаж муфты осуществить следующим образом:

1. Сжать плоскогубцами расклиненные концы винтов.

2. Вывинтить винты из корпуса страховочные муфты, разъединить части муфты и снять их.

Размещено на Allbest.ru


Подобные документы

  • Общие сведения о месторождении, его геологическая характеристика. Анализ работы механизированного фонда скважин, оборудованных установкой электроцентробежного насоса на исследуемом месторождении. Экономическое обоснование внедрения в производство.

    дипломная работа [743,5 K], добавлен 18.10.2014

  • Изучение технологии автоматизации электроцентробежного насоса. Описание устройства и принципа работы системы управления насоса, общекустовой площадки месторождения нефти, систем телеметрии и телекоммуникаций. Выбор оборудования для модернизации процесса.

    дипломная работа [2,1 M], добавлен 29.04.2015

  • Назначение, основные данные, требования и характеристика бурового насоса. Устройство и принцип действия установки, правила монтажа и эксплуатации. Расчет буровых насосов и их элементов. Определение запаса прочности гидравлической части установки.

    курсовая работа [6,7 M], добавлен 26.01.2013

  • Назначение, технические данные, конструкция и принцип работы насоса НЦВ 40/40. Гидравлический расчет проточной части. Профилирование меридионального сечения рабочего колеса. Расчет спиральной камеры круглого сечения. Расчет на прочность вала насоса.

    курсовая работа [917,5 K], добавлен 14.04.2015

  • Подбор производительности насоса. Вычисление приведенного напряжения для конкретной скважины. Определение дополнительной прибыли за счет прироста добычи нефти. Снижение энергозатрат при переходе с электроцентробежного на штанговый глубинный насос.

    курсовая работа [1,0 M], добавлен 13.08.2013

  • Центробежные насосы и принцип их работы. Расчёт основных параметров и рабочего колеса центробежного насоса. Выбор прототипа проектируемого центробежного насоса. Принципы подбора типа электродвигателя. Особенности эксплуатации центробежного насоса.

    курсовая работа [859,3 K], добавлен 27.05.2013

  • Технологическая схема компрессорной установки, описание процесса компримирования воздуха. Патентная проработка по вибромониторингу. Назначение системы автоматизации, ее структурная схема. Разработка эффективной программы управления компрессором.

    дипломная работа [183,9 K], добавлен 16.04.2015

  • Назначение насосной установки, ее технические параметры и особенности. Выбор электродвигателя автоматизированного электропривода насоса. Разработка системы его защиты. Расчет статических характеристик турбомеханизма и преобразовательного агрегата.

    курсовая работа [145,3 K], добавлен 18.05.2012

  • Назначение и технические данные установок погружных центробежных насосов, их типы. Анализ аварийного фонда по НГДУ "Лянторнефть". Гидрозащита электродвигателя, предназначенная для предотвращения проникновения пластовой жидкости в его внутреннюю полость.

    дипломная работа [784,0 K], добавлен 31.12.2015

  • Основные технические данные насоса-регулятора НР-53Д. Всережимный центробежный регулятор числа оборотов. Датчики физических оборотов и температуры воздуха на входе в двигатель. Гидравлический расчет насоса-регулятора. Расчет сил, действующих на шестерни.

    дипломная работа [6,3 M], добавлен 04.10.2013

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.