Диагностика карбюраторных двигателей
Понятие о диагностике двигателей. Обнаружение, устранение неисправностей и профилактика оборудования. Параметры технического состояния механизмов двигателя. Диагностические признаки и диагностические параметры. Процесс диагностирования двигателей.
Рубрика | Производство и технологии |
Вид | контрольная работа |
Язык | русский |
Дата добавления | 04.05.2012 |
Размер файла | 20,0 K |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
Размещено на http://www.allbest.ru/
Диагностика карбюраторных двигателей
1. Понятие о диагностике двигателей
Одним из важнейших условий поддержания на высоком уровне эффективности и надёжности двигателей является своевременное обнаружение и предупреждение отказов, возникающих в процессе эксплуатации.
Отрасль знаний, изучающая формы проявления технических состояний, методы и средства обнаружения неисправностей и прогнозирование ресурса работы объекта без его разборки называется диагностикой технического состояния. Технологический процесс определения технического состояния двигателя (агрегата, механизма) без его разборки и заключение о необходимом ремонте или техническом обслуживании (профилактике) называют диагностированием. Диагностирование осуществляют по внешним признакам (люфтам, вибрациям, нагревам и т.д.), несущим информацию о техническом состоянии механизма.
Это позволяет, во-первых, обнаружить скрытые отказы механизма и определить необходимый для их устранения ремонт и, во-вторых, при отсутствии отказов выявить ресурс исправной работы механизма и необходимость в профилактике.
Диагностика двигателей в автотранспортных предприятиях является частью технологического процесса технического обслуживания и ремонта.
Обнаружение и последующее устранение неисправностей и своевременная профилактика позволяют снизить интенсивность процессов изнашивания, повысить вероятность безотказной работы двигателей, а также исключить преждевременный и поздний (аварийный) ремонты их агрегатов. Таким образом, диагностика даёт возможность количественно оценить безотказность и эффективность двигателя и прогнозировать эти свойства в пределах остаточного ресурса или заданной наработки. Задачи диагностики заключаются в том, чтобы поддерживать на высоком уровне надёжность и долговечность двигателей, уменьшать расход запасных частей, эксплуатационных материалов и трудовых затрат на техническое обслуживание и ремонт. В конечном счёте, диагностика служит повышению производительности двигателя и снижению себестоимости перевозочных работ, т.е. повышению его эффективности.
2. Параметры технического состояния механизмов двигателя (структурные параметры)
Параметрами технического состояния, или структурными параметрами механизма называют физические величины (миллиметр, градус, вольт и т.д.), определяющие связь и взаимодействие между элементами этого механизма и его функционирование в целом. Так, например, параметрами технического состояния узла вал - подшипник являются размеры сопряжённых поверхностей цапфы и подшипника, определяющие зазор между ними, овальность, конусность, соосность и т.п. В процессе эксплуатации параметры технического состояния механизма изменяются от номинальной Xн (или начальной после приработки) до предельной Xп величины. При этом изменяются и показатели рабочей характеристики механизма от величин, соответствующих новому изделию, до величин, соответствующих изделию, не пригодному к дальнейшему использованию.
Указанные изменения носят случайный характер. Они зависят от темпа изнашивания деталей, деформаций, нарушения креплений и других причин, обусловленных как неоднородностью производства изделия, так и многочисленными эксплуатационными факторами.
Как правило, техническое состояние механизмов двигателя обусловливается совокупностью структурных параметров. Однако ввиду различной их значимости техническое состояние многих механизмов (и, в частности, простых) практически зависит от одного или немногих основных (критических) параметров. Так, например, одним из основных показателей годности цилиндро-поршневой группы двигателя может быть такой (предельный) зазор в стыке компрессионного кольца, при котором компрессия становится ниже допустимой. Для кривошипного механизма предельной величиной параметра будет износ подшипника, могущий вызвать его выкрашивание с последующим задиром шейки коленчатого вала.
Предельные величины структурных параметров обусловлены вероятностью возникновения неисправности механизма или недопустимого снижения его рабочих характеристик (мощности, топливной экономичности и т.п.), прогрессивного роста износов и др. Они, как правило, являются величинами технико-экономического характера. При диагностике механизма преимущественно используют те его структурные параметры, которые в первую очередь определяют отказ.
3. Диагностические признаки и диагностические параметры
Возможность прямого изменения структурных параметров, а, следовательно, и возможность их непосредственного использования для диагностики весьма ограничена. Поэтому при диагностике параметры технического состояния механизма, как правило, измеряют косвенно, используя выходные (рабочие) и сопутствующие процессы, порождаемые функционирующим механизмом. Указанные процессы, будучи функционально связаны техническим состоянием механизма, содержат необходимую для диагностики информацию. Они называются диагностическими признаками. При диагностике двигателей наиболее часто используют такие признаки, как эффективность механизма, колебательные процессы, тепловое состояние, герметичность, состав масла и др. Каждый из диагностических признаков можно количественно оценивать при помощи соответствующих диагностических параметров. Эффективность (т.е. выходной рабочий процесс) двигателя можно оценить по мощности и темпу её нарастания. Такие параметры дают обобщённую информацию о состоянии механизма в целом, являющуюся основой для дальнейшей поэлементной диагностики. Сопутствующие процессы можно оценить при помощи таких диагностических параметров, как величина, скорость и ускорения вибраций, степень и скорость нагрева, компрессия, концентрация в масле продуктов износа и др. Эти параметры дают более узкую, конкретную информацию о техническом состоянии диагностируемого механизма. Кроме того, они достаточно универсальны и широко применимы для сложных технических устройств. Диагностические параметры механизма, так же как и структурные, являются переменными случайными величинами и имеют соответствующие номинальные (или начальные) SН1, SН2…., SНп и предельные SП1, SП2,…., SПп значения.
Начальная величина диагностического параметра характеризует кондицию механизма. Его величину можно определить по среднему значению измерений данного диагностического параметра у совокупности заведомо исправных механизмов. Сравнивая фактическую величину диагностического параметра с номинальной, можно судить об израсходованном ресурсе.
Предельную величину диагностического параметра можно определить на основе закона её распределения для механизмов данной совокупности в период их нормальной эксплуатации (т.е. после приработки до начала прогрессивного изнашивания). Так как в этот период интенсивность отказов механизма примерно постоянна, то плотность распределения f(S) диагностического параметра относится к практически исправным механизмам. Поэтому неисправными механизмами можно считать такие, у которых диагностический параметр превышает величины, входящие в 95% случаев его распределения. На основе этого величину Sп можно принять равной её граничному значению АВ между исправными и не исправными механизмами. В дальнейшем Sп оптимизируют по экономическому критерию с учётом величины межконтрольного пробега.
По мере ухудшения технического состояния механизма диагностические параметры могут либо увеличиваться (вибрации, расход топлива), либо уменьшаться (давление масла, мощность). Определённая связь между диагностическими и структурными параметрами механизма позволяет без разборки количественно оценить его исправность и работоспособность. Для того чтобы обеспечить достоверность, экономичность и стабильность результатов, диагностические параметры должны отвечать требованиям однозначности, воспроизводимости, чувствительности или информативности.
Однозначность диагностического параметра означает, что все его текущие значения (в интервале изменений технического состояния механизма от некоторого начального Xн до Xп однозначно соответствуют структурным параметрам, т.е. зависимость S = f(X) в указанном интервале не имеет экстремума. Воспроизводимость (или стабильность) параметра определяется дисперсией его величин, многократно измеренных с заданной точностью.
Чувствительность или информативность диагностического параметра
оценивается величиной и скоростью его приращения при достаточно малом изменении структурного параметра механизма. Указанные качества диагностических признаков, а следовательно, и достоверность диагностики в большой степени зависят от теплового нагрузочного и скоростного режимов работы диагностируемого механизма. Поэтому при диагностике часто используют устройства, задающие и поддерживающие оптимальные режимы.
4. Процесс диагностирования двигателей
двигатель диагностика неисправность профилактика
Процесс диагностирования заключается в восприятии диагностических параметров (S1, S2, …, Sп), измерении их величин, определяющих в известном масштабе параметры технического состояния (X1, X2, …, Xn) механизма, и выдачи заключения на основе сопоставления измеренных величин с упреждающими (Sу1, Sу2, …., Sуn) или предельными (Sп1, Sп2, …, Sпn) величинами.
Процесс восприятия и измерения диагностических параметров показан на рис. 1. Объект диагностики О имеет техническое состояние, характеризующееся параметром Х. Функционируя, или под воздействием стимулирующего устройства (например, стенда), он порождает соответствующий диагностический параметр S. Этот параметр воспринимается при помощи какого-либо одного или нескольких датчиков D (механических, тепловых, электрических, индукционных и др.). От датчика параметр в трансформированном виде S? поступает в устройство У для соответствующей обработки (расчленения усиления, дешифровки, анализа и т.п.) и далее в измерительное устройство И, где измеряется параметр X технического состояния в определённом масштабе б при помощи прибора (стрелочного типа, индикатора, диаграммы, компостера и т.п.).
Простые механизмы диагностируют по одному наиболее весомому признаку, а сложные по нескольким. Диагностика сложных механизмов возможна либо по одному признаку путём анализа полученной информации, либо одновременно по нескольким диагностическим параметрам путём синтеза сведений о состоянии объекта. В последнем случае заключение о техническом состоянии делают на основе логической обработки полученных результатов.
При логической обработке учитывается, что каждый из структурных параметров, достигнув упреждающей или предельной величины (т.е. превратившись в неисправность), может породить одновременно несколько различных диагностических параметров соответствующей величины. При этом различные неисправности могут частично сопровождаться одинаковыми диагностическими параметрами. Так, например, износ запорной иглы поплавковой камеры карбюратора может вызвать расход топлива, превышающий норму, перегрев двигателя, рост содержания СО в отработавших газах и т.д. Такие же и некоторые другие диагностические параметры сопровождают износ дозирующих устройств. При этом неисправности могут быть такими, что механизм не перестаёт функционировать. В этом случае для локализации неисправности сложного устройства необходимо пользоваться целым комплексом диагностических параметров. Для решения подобных задач надо знать количественные характеристики типичных неисправностей (т.е. величины структурных параметров, при достижении которых требуется профилактика или ремонт) и порождаемых ими диагностических параметров, достигших упреждающих или предельных величин, а также связей между теми и другими.
Рассмотрим схематический пример методики выявления одной из возможных неисправностей механизма, при наличии которой он требует профилактики. Пусть известно, что механизм может иметь три типичных неисправности Xy1, Xy2, Xy3 и три порождаемых ими диагностических параметра Sy1, Sy2, Sy3. Взаимосвязь между неисправностями и параметрами можно выразить таблицей (рис. 2), называемой диагностической матрицей. Единицы, проставленные в клетках горизонтального ряда этой матрицы, указывают на существование неисправности механизма при наличии данного диагностического параметра S ? Sy, а нули - на отсутствие неисправности. Подобные диагностические матрицы составляют на основе изучения структурных связей между элементами механизма, параметрами его состояния и диагностическими параметрами.
5. Методы диагностики
Методы диагностики двигателей базируются на способах измерения параметров, наиболее приемлемых для данного механизма диагностических признаков. Для выбора таких параметров используют структурно-следственную схему диагностируемого механизма. Эта схема связывает элементы механизма с его структурными параметрами, а структурные параметры с соответствующими им диагностическими признаками и диагностическими параметрами.
На основе анализа структурной схемы выбирают наиболее эффективный метод измерения параметров диагностических признаков, т.е. метод диагностики.
Метод диагностики по параметрам эффективности, т.е. по параметрам рабочих процессов, широко используется для комплексной оценки работоспособности двигателя. Он заключается в имитации условий и режимов работы двигателя. Применительно к двигателю это может быть измерение мощностных и экономических показателей.
Диагностика по герметичности рабочих объёмов используется для оценки технического состояния цилиндропоршневой группы двигателя, его систем охлаждения и смазки.
Метод тепловой диагностики по скорости и температуре нагрева применяют главным образом для оценки состояния сопряжений по выделению ими тепла соответственно работе трения при заданном скоростном и нагрузочном режимах.
По геометрическим соотношениям (зазорам, смещениям) диагностируют подшипники и шкворни.
Метод диагностики по колебательным процессам (шумам, вибрациям) широко применяют для общей оценки технического состояния двигателя (по уровню шума) и для локальной проверки кривошипно-шатунного и газораспределительного механизмов.
Метод диагностики по составу эксплуатационных материалов и отработавших газов используется для общей оценки системы питания (по содержанию СО в отработавших газах), для определения интенсивности изнашивания основных механизмов двигателя (по концентрации в картерном масле продуктов износа), исправности его систем фильтрации, годности картерного масла.
Важной характеристикой основных методов диагностики является их применение в динамике и статике, т.е. в рабочем и нерабочем состоянии механизма. В динамике применяют те методы, в которых диагностическими признаками являются рабочие или сопутствующие процессы, а в статике - геометрические соотношения и некоторые другие, доступные для прямого измерения структурные параметры при обеспечении достаточной достоверности результатов.
По способу и средствам проведения различают стационарную (стендовую) и ходовую диагностику.
При стационарной диагностике работу двигателя на заданном режиме имитируют при помощи специальных стендов, а при ходовой - путём ходовых испытаний. Кроме того, к ходовой диагностике можно отнести наблюдение за постоянно действующими контрольными приборами в процессе работы двигателя.
Стационарную диагностику осуществляют, пользуясь стендами, передвижными и переносными диагностическими устройствами. Ходовая диагностика проводится при помощи переносных диагностических приборов (десселерометр, бачок для измерения расхода топлива и т.п.) или же встроенных измерительных средств (термометр, манометр, расходомер и др.). В настоящее время наибольшее развитие получила стационарная диагностика.
Диагностику проводят по принципу «от целого к частному». Это означает, что, прежде чем делать углублённую поэлементную диагностику сложного механизма, необходимо определить его техническое состояние комплексно по показателям эффективности (рабочим параметрам). Использование этого принципа упрощает и рационализирует процессы диагностики. Совершенство методов диагностики зависит от качества применяемой аппаратуры и от уровня автоматизации процесса. При этом возможна автоматизация отдельных диагностических комплексов или всей системы диагностических работ по двигателю в целом. Степень автоматизации может быть тем выше, чем больше число объектов диагностики, т.е. в тех случаях, когда надлежащая объективность и производительность диагноза операторами невозможна или экономически невыгодна. Добротность методов и средств диагностики оценивают экономичностью, достоверностью и доступностью.
Размещено на Allbest.ru
Подобные документы
Общие сведение о современной системе зажигания карбюраторных двигателей. Прерыватель-распределитель, катушка, свечи и замок зажигания: устройство, предназначение и принцип действия. Схема батарейной системы зажигания. Установка зажигания в двигателе.
реферат [465,3 K], добавлен 14.07.2010- Классификация воздушно-реактивных двигателей. Особенности проточной части различных типов двигателей
Принцип действия и классификация воздушно-реактивных двигателей, их схемы и разрезные макеты. Сведения о турбовальном трехвальном двигателе Д-136. Модули двигателя, максимальный взлетный режим. Компрессоры низкого и высокого давления, камера сгорания.
лабораторная работа [1,0 M], добавлен 22.12.2010 Отказы и неисправности коробки передач. Перегрев коробки передач. Субъективные методы диагностирования техники. Процесс определения технического состояния объекта диагностирования по структурным параметрам. Диагностические приборы и приспособления.
курсовая работа [3,4 M], добавлен 02.09.2012Признаки исправности машины и предпосылки ее поломок. Методы и средства диагностирования дизельного двигателя, необхомые инструменты, причины нарушения нормальной работы его системы питания. Порядок определения герметичности форсунки прибором КП 1609А.
контрольная работа [647,5 K], добавлен 23.07.2009Технические характеристики и режимы испытания двигателя. Характеристика испытательных стендов авиационных газотурбинных двигателей. Выбор и обоснование типа и конструкции испытательного бокса, его аэродинамический расчет. Тепловой расчет двигателя.
дипломная работа [1,6 M], добавлен 05.12.2010Предназначение и принцип работы паротурбинных и газотурбинных двигателей. Опыт эксплуатации судов с ГТУ. Внедрение ГТД в различные отрасли промышленности и транспорта. Производство турбореактивного двигателя с форсажной камерой, схема его подключения.
презентация [2,7 M], добавлен 19.03.2015Факторы, неблагоприятно влияющие на состояние электродвигателей. Методы диагностики неисправностей асинхронных электродвигателей. Диагностика асинхронного электропривода по данным измерений рабочего режима. Связь диагностируемых дефектов и их симптомов.
курсовая работа [184,7 K], добавлен 27.09.2013Основные виды, устройство и принцип работы шаговых двигателей. Управление шаговым двигателем с помощью автономного контроллера. Управление контроллером с помощью системы программирования PureBasic. Модель крана как пример применения шаговых двигателей.
дипломная работа [5,7 M], добавлен 06.03.2013Понятие автомобиля, его сущность и особенности внутреннего устройства. Классификация автомобильных двигателей, их виды и характеристика. Назначение, состав, устройство и условия работы кривошипно-шатунного механизма. Основные дефекты и их устранение.
курсовая работа [410,2 K], добавлен 02.04.2009Проектирование механизма подъема. Выбор каната по разрывному усилию, барабана, двигателей, редукторов, тормозов. Вращающий момент муфты. Основные параметры передачи. Расчет внутреннего и внешнего зацепления, подшипников. Параметры зубчатой передачи.
курсовая работа [1,0 M], добавлен 21.05.2019