Сущность и типы процесса сварки

Сварка как процесс получения неразъемных соединений материалов путем создания межатомных связей в результате совместной кристаллизации после расплавления. Характеристика видов сварки и их применимость. Ручная электродуговая сварка и требования к ней.

Рубрика Производство и технологии
Вид контрольная работа
Язык русский
Дата добавления 11.04.2012
Размер файла 799,3 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

Размещено на http://www.allbest.ru/

1. Сущность процесса сварки

Сваркой называется технологический процесс получения неразъёмных соединений материалов путём создания межатомных связей в результате совместной кристаллизации после расплавления, местной пластической деформации и диффузии атомов между свариваемыми частями.

По признаку применяемого вида активации для образования межатомных связей в неразъемном соединении различают два вида сварки - сварку плавлением и сварку давлением.

Сущность сварки плавлением состоит в том, что посредством внешнего источника тепла оплавляются кромки свариваемых частей, создается общий объем жидкого металла, который называется сварочной ванной. В процессе кристаллизации при охлаждении металла сварочной ванны образуется сварной шов (рис. 1).

Рис. 1. Схема ручной дуговой сварки металлическим электродом с покрытием (стрелкой показано направление сварки):

1 - металлический стержень; 2 - покрытие электрода;

3 - газовая атмосфера дуги;

4 - сварочная ванна;

5 - затвердевший шлак;

6 - закристаллизовавшийся металл шва;

7 - основной металл (изделие);

8 - капли расплавленного электродного металла;

9 - глубина проплавления;

Сущность сварки давлением состоит в пластическом деформировании металла по кромкам свариваемых частей статической или ударной нагрузкой (рис. 2).

Для облегчения пластической деформации по кромкам, зачастую сварку давлением выполняют с местным нагревом.

Рис. 2. Соединение деталей сваркой давлением без внешнего нагрева:

а - заготовки перед сваркой;

б - после сварки (макроструктура соединения алюминия);

в - оптимальная зависимость между температурой нагрева и давлением для железа;

2. Краткая характеристика видов сварки и их применимость

В настоящее время применяется широкий круг различных видов сварки, применение каждого из которых предопределено множеством факторов, такими как: природа свариваемых материалов, размерные параметры свариваемых изделий, локальность зоны сварки и многими другими. Более глубокое ознакомление с наиболее применимыми способами сварки - цель технологической практики, другие виды и способы приводятся в плане общеинженерной информации.

Сварка плавлением

Электрошлаковая сварка. Электрошлаковую сварку применяют для соединения стальных листов толщиной от 50 мм до нескольких метров (что невозможно выполнить никакими другими способами сварки). Она в основном применяется при изготовлении толстостенных турбин, при производстве сварно-литых и сварно-кованых конструкций и других аналогичных случаях.

Сущность процесса заключается в следующем. В начальный период под флюсом возбуждается электрическая дуга, за счет теплоты которой расплавляется флюс, образуя электропроводный шлак, обладающий значительным оммическим сопротивлением. После чего дуга гаснет, а ток, проходя через электропроводный расплавленный шлак, выделяет тепло достаточное для плавления последующей порции флюса, кромок свариваемых заготовок и электрода. Расплавленный металл сварочной ванны, кристаллизуясь, образует сварной шов (рис. 3).

Рис. 3. Схема электрошлаковой сварки:

1 - электрод;

2 - свариваемые заготовки;

3 - расплавленный флюс - электропроводный шлак;

4 - расплавленный металл;

5 - формующие ползуны;

6 - подача воды для охлаждения ползунов;

7 - сварной шов;

8 - флюс;

V - скорость сварки;

Рис. 4. Устройство инжекторной горелки:

1, 16 - кислородный и ацетиленовый ниппели;

2 - рукоятка; 3, 15 - кислородная и ацетиленовая трубки; 4 - корпус; 5, 14 - кислородный и ацетиленовый вентили; 6 - ниппель наконечника; 7 - мундштук; 8 - мундштук для пропан-бутан-кислородной смеси; 9 - штуцер;

10 - подогреватель; 11 - трубка горючей смеси; 12 - смесительная камера; 13 - инжектор.

а, б - диаметры выходного канала инжектора смесительной камеры;

в - размер зазора между инжектором и смесительной камерой;

г - боковые отверстия в штуцере 9 для нагрева смеси;

д - диаметр отверстия мундштука;

Газовая сварка. Газовая сварка в сравнении с дуговой обеспечивает более плавный нагрев и медленное охлаждение изделий, что и определяет, в основном, области ее применения. Этот способ сварки обладает рядом технологических особенностей, что позволяет применять его при изготовлении изделий из тонколистовой стали и сплавов цветных металлов, наплавке, в полевых условиях и т.д.

Газовая сварка основана на плавлении свариваемого и присадочного металлов высокотемпературным газокислородным пламенем. В качестве горючего для сгорания в кислороде применяют ацетилен, водород, пары нефтепродуктов и другие газы. Ацетилен чаще других газов применяется для сварки и газовой резки, он дает наиболее высокую температуру пламени при сгорании в смеси с кислородом (3050 - 3150С). Для смешивания ацетилена с кислородом применяют специальные горелки (рис. 4).

Сварка в защитных газах. Сварку в среде защитных газов проводят с целью изолирования расплавленного металла сварочной ванны от воздуха. Для этого в зону дуги подводят струю защитного газа (рис. 5). Сварка выполняется как плавящимся, так и неплавящимся электродом и может быть ручной, механизированной и автоматической. В качестве защитных газов применяют углекислый газ, аргон, гелий, иногда (для сварки меди) азот и смеси газов.

Инертные газы (аргон, гелий) используют для сварки легированных сталей и химически активных металлов (алюминий, титан) и их сплавов.

Рис. 5 Схема горения дуги в инертных газах:

1 - электрод; 2 - присадочная проволока; 3 - изделие; 4 - сварной шов; 5 - дуга; 6 - поток защитного газа; 7 - горелки; 8 - воздух;

Применение защитных газов началось вместе с изобретением дуговой сварки. При газовой защите процесс сварки происходит в атмосфере газа, менее вредного, чем воздух.

Способ газовой защиты заключается в том, что в зону дуги непрерывно подается струя защитного газа. Такой способ получил название «дуговая сварка в защитном газе» или «газоэлектрическая сварка».

При сварке в атмосфере защитных газов (Рис. 6а) электрод 3 зона дуги 5 и сварочная ванна 6 защищаются струей защитного газа 4. Газ подают с помощью сварочной горелки через сопло из керамики или меди, в центре которого помещается электрод: неплавящийся 3 (Рис. 6а) или плавящийся 8 (Рис. 6б). Медное сопло охлаждается водой и изолировано от других частей горелки и токоподвода.

Для обеспечения надежной защиты зоны сварки и сварочной ванны от окружающего воздуха важное значение имеют расстояние сопла от изделия 1 (Рис. 6а), размер сопла и расход защитного газа. Чрезмерное приближение к изделию увеличивает забрызгивание сопла, а удаление приводит к нарушению защиты зоны сварки. При существующем оборудовании расстояние сопла от изделия обычно выдерживают в пределах 7…25 мм.

Рис. 6 Схема сварки в среде защитных газов:

а - неплавящимся электродом;

б - плавящимся электродом.

1 - изделие;

2 - присадочная проволока;

3 - вольфрамовый электрод;

4 - защитный газ;

5 - электрическая дуга;

6 - расплавленный металл (сварочная ванна);

7 - наконечник (сопло) горелки;

8 - плавящийся электрод

Сварка в защитных газах обеспечивает достаточно надежную изоляцию сварочной ванны при работе в заводских условиях. При сварке на монтаже должны быть предусмотрены меры против нарушения газовой защиты потоками воздуха. На эффективность газовой защиты влияют тип сварного соединения и скорость сварки. С увеличением скорости сварки стабильность защиты снижается.

Находит применение ручная и полуавтоматическая сварка неплавящимся (вольфрамовым или угольным) электродом (Рис. 6а) и ручная, полуавтоматическая и автоматическая сварка плавящимся электродом (Рис. 6б).

В качестве защитных газов применяют инертные газы (аргон и гелий) и активные газы (углекислый газ, азот, водород и др.), иногда-смеси двух газов или более. У нас в стране наиболее распространены аргон (Ar) и углекислый газ (CO2).

Аргон - бесцветный газ, в 1,38 раза тяжелее воздуха. С большинством элементов он не образует химических соединений и нерастворим в жидких и твердых металлах. Аргон получают из воздуха, переохлажденного до низких отрицательных температур, путем избирательного испарения при температурах выше -185,5о С. Согласно ГОСТ 10157-73 выпускают три марки аргона различной чистоты: А - 99,99%, Б - 99,96% и В - 99,90% чистого аргона, остальное - примеси кислорода и азота. Поставляется и хранится аргон в сжатом газообразном состоянии в стальных баллонах под давлением 150 кг/см2.

Углекислый газ - бесцветный, со слабым запахом, в 1,52 раза тяжелее воздуха и нерастворим в жидких металлах. Углекислый газ оказывает окислительное действие на расплавленные металлы, особенно после термической диссоциации на окись углерода (СО) и кислород (О). Получают углекислый газ из отходящих газов химических производств в сжиженном или твердом состоянии (сухой лёд). Согласно ГОСТ 8050-76 выпускают два сорта сварочного углекислого газа и пищевую углекислоту соответственно с 99,5; 99,0 и 98,5% чистого газа. Для сварки газ поставляют и хранят в сжиженном состоянии в стальных баллонах под давлением 7,0 МПа.

Сварку в защитных газах, как правило, выполняют при напряжении 22…34В. При этом обеспечивается надежная защита плавильного пространства от окружающего воздуха и снижается угар элементов, входящих в состав электродной проволоки. При сварке неплавящимся электродом (Рис. 6а) применяют стержни диаметром 0,8…25 мм и силу тока 40…300 А, при сварке плавящимся электродом (Рис. 6б) - электродную проволоку сплошного сечения диаметром 0,5…4,0 мм (сила тока 50…700 А) и порошковую проволоку.

Аргонодуговая сварка

Этим способом можно сваривать металл по двум схемам: неплавящимся и плавящимся электродами. Сварку неплавящимся электродом применяют, как правило, при соединении металла толщиной 0,1…6 мм; плавящимся электродом - от 2 мм и более. Разграничение по толщинам является условным. Нередко, когда производительность не является главным показателем сварочного процесса, металл значительной толщины также сваривают неплавящимся электродом многослойным швом.

Аргонодуговую сварку неплавящимся электродом ведут дугой прямого действия на постоянном токе прямой полярности без присадочного металла (при толщине основного металла до 3 мм с отбортовкой кромок), а при необходимости усиления шва или заполнения разделки кромок (при толщине основного металла более 3 мм) с применением присадочного материала - прутка или проволоки (Рис. 6а).

Применение постоянного тока прямой полярности обеспечивает легкое зажигание дуги и устойчивое её горение при напряжении 10…15 В. Возможно применение сравнительно высоких плотностей тока без значительного нагрева и расхода электрода. В тоже время дуга остается устойчивой при малых токах (~1 А), что обуславливает возможность сварки очень тонкого металла (0,1 мм).

При обратной полярности уменьшается устойчивость горения дуги, поэтому приходится повышать напряжение, что приводит к перегреву электрода, а, следовательно, к увеличению потерь (например, на разбрызгивание). Эти особенности дуги обратной полярности делают её ограниченной для применения в сварочном производстве. Однако такая дуга обладает одним важным технологическим свойством: при её действии с поверхности свариваемого металла удаляются окислы и загрязнения. Одно из объяснений этого явления заключается в том, что поверхность металла бомбардируется тяжелыми положительными ионами аргона, которые механически разрушают окисные пленки. Процесс удаления окисных пленок также известен как катодное распыление. Указанные свойства дуги обратной полярности используют при сварке таких сильно окисляющихся металлов, как алюминий, магний и их сплавы, применяя для питания дуги переменный ток.

Сварка в среде активных газов

При сварке с защитой активными газами наиболее широко применяют углекислый газ, некоторое применение находит также водород.

Сварка в углекислом газе осуществляется, главным образом, плавящимся электродом. В качестве плавящегося электрода служат низколегированные сварочные проволоки сплошного сечения и порошковые проволоки. Сварку низколегированными проволоками сплошного сечения ведут постоянным током обратной полярности.

При сварке постоянным током прямой полярности вследствие более высокого содержания в металле шва водорода наблюдается интенсивное образование пор. Питание дуги переменным током возможно при сварке порошковой проволоки, в состав которой введены стабилизирующие дугу вещества.

Широкое использование полуавтоматической сварки в углекислом газе взамен ручной сварки покрытыми электродами обусловлено большей производительностью, лучшими условиями труда и меньшими требованиями к квалификации сварщиков. Перед полуавтоматической сваркой под флюсом её преимущества заключаются в возможности визуального наблюдения за расположением электрода, отсутствии операций по удержанию и удалению флюса и возможности выполнения сварки швов во всех пространственных положениях.

При применении СО2 в качестве защитного газа необходимо учитывать некоторые металлургические особенности процесса сварки, связанные с окислительным действием СО2 по отношению к расплавленному металлу. При высокой температуре сварочной дуги СО2 диссоциирует на окись углерода (СО) и кислород (О), который, если не принять специальных мер, приводит к окислению свариваемого металла и легирующих элементов. Окислительное действие СО2 нейтрализуется введением в сварочную проволоку избыточного количества раскислителей - марганца и кремния. Поэтому для сварки в СО2 конструкционных углеродистых и низколегированных сталей применяют специальные марки сварочной проволоки с повышенным содержанием этих элементов (Св-08ГС, Св-10Г2 и т.п.).

Рис. 7 Схема установки полуавтомата для сварки

в среде углекислого газа:

1 - баллон с газом

2 - электроподогреватель газа

3 - редуктор

4 - осушитель

5 - газоэлектрический клапан

6 - расходомер

7 - подающий механизм с катушкой проволоки

8 - гибкий шланг

9 - держатель с горелкой

Сварка давлением

Контактная сварка. Сварка осуществляется нагреванием местa сварки теплом, получаемым при прохождении электрического тока через контактируемые поверхности изделий c последующим приложением давления (усилия осадки). Применяют точечную и роликовую сварку.

Холодная сварка. Сварка основана на способности металла образовывать общие кристаллы при значительном давлении.

Ультразвуковая сварка. Сварка осуществляется за счет превращения при помощи специального преобразователя ультразвуковых колебаний в механические высокой частоты и применения небольшого сдавливающего усилия.

Газопрессовая сварка. Сварка осуществляется нагреванием концов стержней или труб по всему периметру многопламенными горелками до пластического состояния с их последующим сжатием.

3. Ручная электродуговая сварка

Источники питания сварочной дуги

Для выполнения сварочных работ необходим комплекс оборудования, обеспечивающего получение сварных швов требуемого качества. При электродуговой сварке одним из важнейших элементов этого комплекса является источник питания сварочной дуги.

Источники питания электрической дуги классифицируют по следующим признакам:

1. По роду тока (на источники питания постоянного и переменного тока);

2. По виду внешних характеристик (падающие, полого падающие, жесткие и полого возрастающие характеристики);

3. По способу получения энергии (на зависимые и автономные, т.е. получающие энергию от стационарной электрической сети или имеющие источником энергии двигатель внутреннего сгорания, агрегатированный с источником питания дуги);

4. По количеству обслуживаемых постов (на одно - и много постовые);

5. По применению (на общепромышленные и специализированные: общепромышленные - источники питания для ручной дуговой сварки, а также для механизированной дуговой сварки под флюсом. Эти источники предназначены для сварки низкоуглеродистых сталей толщиной более одного миллиметра и, как правило, имеют достаточно простую конструкцию. Специализированные - источники, предназначенные для сварки легких металлов и их сплавов, тонкой и особо тонкой стали всех марок, для особо качественных соединений, работающие сжатыми и импульсными сварочными дугами);

6. По фазности электрического тока (однофазные и трёхфазные).

Источники питания сварочной дуги переменного тока.

В производственных условиях наибольшее применение имеют источники питания переменного тока, что обусловлено относительной дешевизной, простотой устройства и возможностью получения сварных соединений требуемого качества.

Обычные электрические машины, питающие осветительные и силовые установки, имеют внешнюю вольтамперную характеристику, при которой обеспечивается постоянство напряжения независимо от изменения тока (нагрузки) и описывается кривой 1 на рис. 9. Такую форму внешней характеристики выбирают потому, что обычные потребители тока - осветительные приборы, электродвигатели и т.д. требуют для нормальной работы постоянство напряжения. В случае применения такого источника для сварки (которая осуществляется в режиме короткого замыкания), сила тока будет возрастать, пока не произойдет перегорание предохранителей или разрушение проводников цепи.

Для питания сварочной дуги используют источники питания, имеющие внешнюю характеристику, при которой напряжение снижалось бы с увеличением нагрузки и возрастало бы с ее уменьшением. Это возможно при падающей характеристике источника питания по форме кривой 2 на рис. 9. Падающая внешняя характеристика обеспечивает устойчивое горение дуги при определенной постоянной силе тока. Пересечение внешней характеристики источника питания и статической характеристики сварочной дуги в точке А представляет собой режим устойчивого горения дуги (процесс сварки при токе J и напряжении U).

Рис. 9. Образование внешней характеристики:

1 - напряжение на вторичной обмотке сварочного трансформатора;

2 - падающая характеристика источника питания;

3 - статическая характеристика дуги;

4 - точка устойчивого горения дуги;

Рис. 12. Сварочный трансформатор ТСК-500 (кожух снят):

а) конструктивная схема; б) электрическая схема:

1 - клемма для сварочных проводов, 2 - сердечник (магнитопровод), 3 - рукоятка для регулировки тока, 4 - клеммы для подсоединения проводов от сети, 5 - ходовой винт, 6 - катушка вторичной обмотки, 7 - катушка первичной обмотки, 8 - компенсирующий конденсатор (стрелками показано перемещение катушек для регулирования тока)

Принадлежности и инструмент сварщика

Сварочный пост - рабочее место сварщика, оборудованное всем необходимым для выполнения сварочных работ. Сварочный пост укомплектован источником питания, электрическими проводами, электрододержателем, защитным щитком и сборочно-сварочными приспособлениями.

Для зажатия электрода и подвода к нему сварочного тока служит электрододержатель. Более совершенными являются электрододержатели с пружинами (рис. 13). Применяют также винтовые, пластинчатые, вилочные и другие типы. Электрододержатели выпускают, в зависимости от силы сварочного тока, трех типов. 1-го типа для тока 125 А, 2-го типа для тока 125-315 А и 3-го типа для тока 315-500 А. Все типы электрододержателей должны выдерживать без ремонта 8000 зажимов электродов. Время смены электрода не должно превышать 4 с.

Рис. 13. Конструктивные схемы электрододержателей для ручной дуговой сварки:

а - вилочные; б - пружинные; в-зажимные; г - безогарковые;

д - двухэлектродные; е - со стопорным кольцом;

Щитки предназначены для защиты лица от лучей, брызг металла и шлака изготавливают из легких и несгораемых материалов (спецпластмасс).

Защитные стекла (светофильтры) служат для защиты глаз от лучей дуги. Предусмотрено 13 классов светофильтров для сварки при различных токах. Номер светофильтра подбирают в зависимости от тока, состава свариваемого металла, вида дуговой сварки и т.д. К примеру, сварка покрытыми электродами при токе 100 А выполняется со светофильтром С5, при токе 200 А - С6 и т.д.

Размеры светофильтров 52 102 мм. Светофильтр вставляют в рамку щитка и снаружи защищают от брызг оконным стеклом, которое заменяют по мере загрязнения.

Кабели и сварочные провода служат для подвода тока от источника питания к электрододержателю и изделию. Сечение проводов выбирают по установленным нормативам для электротехнических установок 5 - 2 А/мм2 при токах 100 - 300 А.

Инструмент сварщика: стальная щетка - для зачистки кромок перед сваркой и удаления с поверхности швов остатков шлака, молоток - шлакоотделитель для удаления шлаковой корки, зубило, угольник и др.

Сварные соединения

Сварным соединением называют неразъемное соединение, выполненное сваркой. При ручной дуговой сварке применяют стыковое, угловое, тавровое и нахлесточное соединения.

При конструировании сварных соединений исходят из двух принципов:

1) если известна величина действующих сил, то при конструировании сварного соединения обеспечивают прочность с учетом заданных усилий;

2) если величина действующих сил не известна, то сварные соединения конструируют с учетом равнопрочности их основному металлу.

Расчетные схемы и основные типы сварных соединений приведены на рис. 14.

Рис. 14. Расчетные схемы и основные типы сварных соединений

При ручной сварке стыковых соединений металла толщиной менее 6 мм кромки стыкуют без подготовки с зазором величиной до 2 мм. или без него. При толщине металла 6 - 30 мм сварку стыковых соединений производят с V-образной подготовкой кромок, причем угол раскрытия кромок равен 60 - 70, притупление 2 - 3 мм, зазор 2 - 4 мм.

Зазор между кромками при сборке сварных швов стыковых соединений под сварку оставляют с целью улучшения провара. Соединение в нахлестку выполняют угловыми швами. Нахлесточные соединения не требуют точной обработки кромок и проще при сборке. Величину нахлестки обычно применяют равной пятикратной толщине свариваемых элементов.

Техника и режимы сварки

Качество сварного соединения зависит от правильного выбора режима сварки. Под выбором режима сварки понимается выбор диаметра электрода, силы сварочного тока, скорости сварки в соответствии с размерами и формой изделия, типом соединения, материалом изделия и электрода. Прежде всего, в зависимости от толщины металла и типа сварного соединения выбирают диаметр электрода. Диаметр электрода должен быть по возможности наибольшим для того, чтобы обеспечить максимальную производительность сварки. Применение слишком большого диаметра электрода, особенно при малой толщине металла, может привести к прожогу. Затем выбирают необходимую силу тока, которая в основном определяется диаметром электрода, но зависит также от толщины свариваемого металла, типа соединения, скорости сварки, положения свариваемого шва в пространстве, покрытия электрода и его рабочей длины.

Силу сварочного тока I можно определить в зависимости от диаметра электрода d по формуле (1):

(1)

где

k - опытный коэффициенты, которые для ручной сварки обыкновенными стальными электродами составляет 40-60 а/мм2;

dЭ - диаметр электрода, мм.

В процессе сварки швов в нижнем положении сварщик совершает электродом три основных движения: подает электрод вниз для поддержания постоянной длины дуги по мере проплавления электрода, перемещает электрод вдоль оси шва для заполнения разделки шва, а также производит концом электрода поперечные движения для получения валика шва заданной ширины. Схемы движения конца электрода представлены на рис. 15. Неправильное ведение электрода при сварке может привести к непроварам и пористости шва.

Рис. 15. Основные виды поперечных движений конца электрода

а, б, в, г - при обычных швах;

д, е - при швах с усиленным прогревом кромок;

Для получения провара и хорошо сформированного шва амплитуда поперечных колебаний не должна превышать двух диаметров электрода. При сварке тонкого металла и первых слоев многослойного шва электрод ведут без поперечных колебаний.

По положению в пространстве швы разделяют на: нижние, вертикальные и потолочные (рис. 16). Наиболее удобной для выполнения является сварка в нижнем положении.

Рис. 16 - Положение шва в пространстве

1 - нижнее; 2 - вертикальное; 3 - потолочное;

Швы с V-образной подготовкой кромок выполняют в один или несколько слоев в зависимости от толщины свариваемого металла. При многослойной сварке первым валиком (слоем) проваривают вершину шва, затем после тщательной послойной зачистки накладывают остальные слои по порядку, указанному на рис. 17. После окончания заполнения всей разделки производят подварку корня шва с обратной стороны.

сварка расплавление электродуговой ручной

Рис. 17 Схема сварного шва:

а - однопроходный; б, в-многослойные или многопроходные

Сварка вертикальных и горизонтальных швов по вертикальной плоскости труднее сварки в нижнем положении. Расплавленный металл под действием силы тяжести стремится стекать вниз. Сварку вертикальных швов производят главным образом снизу вверх. При сварке швов в потолочном положении возможность стекания металла увеличивается. Поэтому, для потолочной сварки применяют специальные электроды с тугоплавкими обмазками, образующими чашечку (на конце электрода), способствующую удержанию жидкого металла.

Сварочные электроды

Электродом для дуговой сварки называют стержень, предназначенный для подвода тока к сварочной дуге. Для ручной дуговой сварки электроды представляют собой стержни круглого сечения различного диаметра и длины. Для механизированной дуговой сварки в качестве электрода применяют сварочную, порошковую и самозащитную металлическую проволоку.

Электроды подразделяют на плавящиеся (из стали, чугуна, меди, алюминия и их сплавов) и неплавящиеся из чистого вольфрама, из вольфрама с присадками оксидов тория, лантана или иттрия, электротехнического угля и прессованного графита.

Для сварки сталей применяют специальную проволоку. Стандартом предусмотрено 75 марок сварочной проволоки различного хим. состава:

- выпускается шесть марок низкоуглеродистой проволоки - Св-08, Св-08А,

Св-08АА, Св-08ГА, Св-10ГА и Св-10Г2;

- 30 марок легированной проволоки типа Св-12ГС, Св-15ГСТЮЦА и др.;

- 39 марок высоколегированной проволоки - Св-12Х11НМФ, Св-10Х17Т и др.

В проволоке из легированной стали легирующих элементов содержится от 2,5 до 10%, а в высоколегированной - более 10%.

Буквы и цифры в написании марок проволоки обозначают: Св-08 - сварочная 0,08% углерода (среднее содержание); А - пониженное, АА - еще более пониженное содержание вредных примесей серы и фосфора; Г - легированная марганцем; Г2 - содержащая до 2% марганца.

Условные обозначения легирующих элементов следующие: С - кремний, Н - никель, М - молибден, Т - титан, Ю - алюминий, Ц - цирконий, Х - хром, Ф - ванадий, Б - ниобий, В-вольфрам, Д - медь, Г - марганец.

Покрытие электродов. Покрытый электрод представляет собой определенных размеров стальной стержень, на поверхность которого опрессовкой или окунанием нанесено специальное покрытие.

Общие требования ко всем типам электродов:

1. Обеспечение устойчивого горения дуги.

2. Хорошее формирование шва.

3. Получение металла шва определенного химического состава и свойств без дефектов.

4. Спокойное и равномерное плавление электродного стержня и покрытия в процессе сварки.

5. Минимальные потери электродного металла от угара и разбрызгивания.

6. Высокая производительность сварки.

7. Легкая отделимость шлаковой корки с поверхности шва.

8. Достаточная прочность покрытия.

9. Сохранение физико-химических и технологических свойств электродов в течение определенного промежутка времени.

10. Минимальная токсичность при изготовлении и сварке.

Размещено на Allbest.ru


Подобные документы

  • Сварка как технологический процесс получения неразъемных соединений в результате возникновения атомно-молекулярных связей между деталями. Специфика сварки плавлением и давлением. Особенности видов сварки, используемых на судоремонтных предприятиях.

    реферат [463,3 K], добавлен 11.12.2014

  • Методы получения неразъемных соединений термопластичных полимерных материалов. Классификация относительно ультразвуковой сварки. Процесс сварки термопластов. Контроль качества сварных соединений. Факторы, влияющие на прочность клеевого соединения.

    курсовая работа [522,9 K], добавлен 26.03.2014

  • Сущность понятия "сварка". Механическая, термическая, электродуговая сварка. Сварка неплавящимся и плавящим электродом. Перечень основных достоинств лазерной сварки. Технология роботизированной сварки, характеристика основных преимуществ применения.

    реферат [10,2 K], добавлен 11.11.2011

  • Определение свариваемости стали. Расчет массы изделия. Выбор способа сварки и сварочных материалов. Ручная дуговая сварка. Выбор сварочных материалов. Определение складских площадей и производственных кладовых. Сварка под флюсом, в защитном газе.

    контрольная работа [1,5 M], добавлен 18.05.2015

  • Сварка как процесс получения неразборных соединений посредством установленных связей между свариваемыми деталями. Оборудование для электрической сварки. Правила устройств и применения электроустановок сварки с применением давления. Методы поиска дефектов.

    контрольная работа [294,6 K], добавлен 22.04.2011

  • Сварка как процесс получения неразъемных соединений в различных материалах, в узлах и конструкциях, осуществляемый за счет межатомных сил сцепления. Описание процессов при сварке, обзор ее разновидностей. Оборудование и основные элементы процесса резания.

    учебное пособие [2,4 M], добавлен 11.04.2010

  • Сварка как технологический процесс получения неразъемных соединений материалов посредством установления межатомных связей, его особенности и порядок реализации, назначение. Выбор и обоснование необходимого сварочного оборудования, расчет эффективности.

    курсовая работа [2,3 M], добавлен 28.01.2010

  • История развития сварочного производства. Понятие промышленной продукции сварочного производства. Сварка, понятие, виды и классы: электродуговая, контактная, газовая сварка и резка металлов. Сборка и техника сварки. Предупреждение деформации изделия.

    реферат [45,1 K], добавлен 26.01.2008

  • Высокопроизводительный процесс изготовления неразъемных соединений. Необходимость сварки деталей разных толщин. Процесс электрошлаковой сварки. Скорость плавления присадочного металла. Выполнение прямолинейных, криволинейных и кольцевых сварных швов.

    дипломная работа [2,7 M], добавлен 15.02.2013

  • Запасные и регулирующие ёмкости. Резервуары. Их назначение и типы. Оборудование резервуаров. Ручная дуговая сварка чугуна. Классификация, свариваемость, способы сварки, горячая сварка, холодная сварка чугуна. Охрана труда при сварочных работах.

    курсовая работа [33,1 K], добавлен 18.09.2008

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.