Производство каучука и резины
Каучук и резина: общие сведения. Структура и свойства этиленпропиленовых каучуков. Технология получения этиленпропиленовых каучуков. Расчет материального баланса химических процессов. Обработка каучука и производство резины. Приготовление резиновой смеси.
Рубрика | Производство и технологии |
Вид | реферат |
Язык | русский |
Дата добавления | 25.03.2012 |
Размер файла | 456,1 K |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
Размещено на http://www.allbest.ru/
Челябинский Государственный Университет
Кафедра химической технологии и вычислительной химии
Реферат
«Производство каучука и резины»
Челябинск, 2010 г.
Содержание
Общие сведения о каучуке и резине
Структура и свойства этиленпропиленовых каучуков
Общие сведения о получении этиленпропиленовы каучуков
Технология получения этиленпропиленовых каучуков
Расчет материального баланса
Обработка каучука и производство резины
Вывод
Список используемой литературы
Общие сведения о каучуке и резине
Натуральный каучук - вещество, получаемое из каучуконосных растений, растущих главным образом в тропиках и содержащих млечную жидкость (латекс) в корнях, стволе, ветвях, листьях или плодах либо под корой. Резина - продукт вулканизации композиций на основе каучука. Латекс не является соком растения, и его роль в жизнедеятельности растения до конца не выяснена. Латекс содержит частицы, выделяемые путем коагуляции в виде сплошной упругой массы, называемой сырым, или необработанным, каучуком.
Источники натурального каучука. Сырой натуральный каучук бывает двух видов: 1) дикий каучук, добываемый из произрастающих в естественных условиях деревьев, кустов и лозы; 2) плантационный каучук, добываемый из возделываемых человеком деревьев и других растений. В течение 19 в. вся масса сырого каучука промышленного применения представляла собой дикий каучук, добывавшийся подсочкой гевеи бразильской в экваториальных тропических лесах Латинской Америки, из деревьев и лозы в экваториальной Африке, на Малаккском полуострове и Зондских островах.
Свойства каучука. Сырой каучук, предназначенный для последующего промышленного применения, является плотным аморфным эластическим материалом с удельной массой 0,91-0,92 г/см3 и показателем преломления 1,5191. Его состав неодинаков для различных латексов и методов приготовления на плантации. Результаты типичного анализа представлены в таблице. Состав (%) двух типов сырого каучука:
Компонент |
Копченый лист |
Светлый креп |
|
Влага |
0,6 |
0,4 |
|
Ацетонорастворимый материал |
2,9 |
2,9 |
|
Белки |
2,8 |
2,8 |
|
Зола |
0,4 |
0,3 |
|
Водорастворимый материал |
1,0 |
1,0 |
|
Сложные эфиры, не растворимые в ацетоне |
1,0 |
1,0 |
|
Углеводород каучука |
91,3 |
91,6 |
Углеводород каучука - это полиизопрен, углеводородное полимерное химическое соединение, имеющее общую формулу (C5H8)n. Как именно в дереве синтезируется углеводород каучука, неизвестно. Невулканизованный каучук становится мягким и липким в теплую погоду и хрупким - в холодную. При нагреве выше 180? С в отсутствие воздуха каучук разлагается и выделяет изопрен [1].
Углеводород каучука присутствует в латексе в виде суспензии мельчайших частиц, размер которых составляет от 0,1 до 0,5 мкм. Самые крупные частицы видны через ультрамикроскоп; они находятся в состоянии непрерывного движения, которое может служить иллюстрацией явления, называемого броуновским движением.
Каждая каучуковая частица несет отрицательный заряд. Если через латекс пропускать ток, то такие частицы будут двигаться к положительному электроду (аноду) и осаждаться на нем. Это явление используется в промышленности для нанесения покрытий на металлические предметы. На поверхности каучуковых частиц присутствуют адсорбированные белки, которые препятствуют сближению латексных частиц и их коагуляции. Заменяя вещество, адсорбированное на поверхности частицы, можно изменить знак ее заряда, и тогда каучуковые частицы будут осаждаться на катоде.
Синтетический каучук начали производить с 1923 г. Каучук относится к классу ненасыщенных органических соединений, которые проявляют значительную химическую активность при взаимодействии с другими реакционноспособными веществами. Так, он реагирует с хлороводородной кислотой с образованием гидрохлорида каучука, а также с хлором по механизмам присоединения и замещения с образованием хлорированного каучука. Атмосферный кислород действует на каучук медленно, делая его жестким и хрупким; озон делает то же самое быстрее. Сильные окислители, например азотная кислота, перманганат калия и перекись водорода, окисляют каучук. Он устойчив к действию щелочей и умеренно сильных кислот. Каучук реагирует также с водородом, серой, серной кислотой, сульфоновыми кислотами, окислами азота и многими другими реакционноспособными соединениями, образуя производные, часть из которых имеет промышленное применение.
Каучук обладает двумя важными свойствами, которые обусловливают его промышленное применение. В вулканизованном состоянии он упруг и после растяжения принимает первоначальную форму; в невулканизованном состоянии он пластичен, т.е. течет под воздействием тепла или давления.
Одно свойство каучуков уникально: при растяжении они нагреваются, а при сжатии - охлаждаются. Наоборот, при нагревании каучук сжимается, а при охлаждении - расширяется, демонстрируя явление, называемое эффектом Джоуля. При растяжении на несколько сот процентов молекулы каучука ориентируются до такой степени, что его волокна дают рентгенограмму, свойственную кристаллу. Молекулы каучука, добытого из гевеи, имеют цис-конфигурацию, а молекулы балаты и гуттаперчи - транс-конфигурацию. Будучи плохим проводником электричества, каучук используется и как электрический изолятор [1].
Синтез каучука, происходящий в дереве, никогда не выполнялся в лаборатории. Синтетические каучуки являются эластичными материалами; они сходны с натуральным продуктом по химическим и физическим свойствам, но отличаются от него структурой.
Синтез аналога натурального каучука (1,4-цис-полиизопрена и 1,4-цис-полибутадиена). Натуральный каучук, получаемый из гевеи бразильской, имеет структуру, состоящую на 97,8% из 1,4-цис-полиизопрена:
Синтез 1,4-цис-полиизопрена проводился несколькими различными путями с использованием регулирующих стереоструктуру катализаторов, и это позволило наладить производство различных синтетических эластомеров. Катализатор Циглера состоит из триэтилалюминия и четыреххлористого титана; он заставляет молекулы изопрена объединяться (полимеризоваться) с образованием гигантских молекул 1,4-цис-полиизопрена (полимера). Аналогично, металлический литий или алкил- и алкиленлитиевые соединения, например бутиллитий, служат катализаторами полимеризации изопрена в 1,4-цис-полиизопрен. Реакции полимеризации с этими катализаторами проводятся в растворе с использованием углеводородов нефти в качестве растворителей. Синтетический 1,4-цис-полиизопрен обладает свойствами натурального каучука и может использоваться как его заместитель в производстве резиновых изделий.
Полибутадиен, на 90-95% состоящий из 1,4-цис-изомера, также был синтезирован посредством регулирующих стереоструктуру катализаторов Циглера, например триэтилалюминия и четырехиодистого титана. Другие регулирующие стереоструктуру катализаторы, например хлорид кобальта и алкилалюминий, также дают полибутадиен с высоким (95%) содержанием 1,4-цис-изомера. Бутиллитий тоже способен полимеризовать бутадиен, однако дает полибутадиен с меньшим (35-40%) содержанием 1,4-цис-изомера. 1,4-цис-полибутадиен обладает чрезвычайно высокой эластичностью и может использоваться как наполнитель натурального каучука.
Тиокол (полисульфидный каучук). В 1920, пытаясь получить новый антифриз из этиленхлорида и полисульфида натрия, Дж.Патрик вместо этого открыл новое каучукоподобное вещество, названное им тиоколом. Тиокол высокоустойчив к бензину и ароматическим растворителям. Он имеет хорошие характеристики старения, высокое сопротивление раздиру и низкую проницаемость для газов. Не будучи настоящим синтетическим каучуком, он, тем не менее, находит применение для изготовления резин специального назначения.
Неопрен (полихлоропрен). В 1931 компания «Дюпон» объявила о создании каучукоподобного полимера, или эластомера, названного неопреном. Неопрен изготавливают из ацетилена, который, в свою очередь, получают из угля, известняка и воды. Ацетилен сначала полимеризуют до винилацетилена, из которого путем добавления хлороводородной кислоты производят хлоропрен. Далее хлоропрен полимеризуют до неопрена. Помимо маслостойкости неопрен имеет высокую тепло- и химическую стойкость и используется в производстве шлангов, труб, перчаток, а также деталей машин, например шестерен, прокладок и приводных ремней.
Буна S (SBR, бутадиенстирольный каучук). Синтетический каучук типа буна S, обозначаемый как SBR, производится в больших реакторах с рубашкой, или автоклавах, в которые загружают бутадиен, стирол, мыло, воду, катализатор (персульфат калия) и регулятор роста цепи (меркаптан). Мыло и вода служат для эмульгирования бутадиена и стирола и приведения их в близкий контакт с катализатором и регулятором роста цепи. Содержимое реактора нагревается до примерно 50° С и перемешивается в течение 12-14 ч; за это время в результате процесса полимеризации в реакторе образуется каучук. Получающийся латекс содержит каучук в форме малых частиц и имеет вид молока, очень напоминающий натуральный латекс, добытый из дерева.
Латекс из реакторов обрабатывается прерывателем полимеризации для остановки реакции и антиоксидантом для сохранения каучука. Затем он очищается от избытка бутадиена и стирола. Чтобы отделить (путем коагуляции) каучук от латекса, он обрабатывается раствором хлорида натрия (пищевой соли) в кислоте либо раствором сульфата алюминия, которые отделяют каучук в форме мелкой крошки. Далее крошка промывается, сушится в печи и прессуется в кипы.
Из всех эластомеров SBR используется наиболее широко. Больше всего его идет на производство автомобильных шин. Этот эластомер сходен по свойствам с натуральным каучуком. Он не маслостоек и в большинстве случаев проявляет низкую химическую стойкость, но обладает высоким сопротивлением удару и истиранию.
Латексы для эмульсионных красок. Бутадиен-стирольные латексы широко используются в эмульсионных красках, в которых латекс образует смесь с пигментами обычных красок. В таком применении содержание стирола в латексе должно превышать 60%.
Низкотемпературный маслонаполненный каучук. Низкотемпературный каучук - особый тип каучука SBR. Он производится при 5° С и обеспечивает лучшую износостойкость шин, чем стандартный SBR, полученный при 50° С. Износостойкость шин еще более повышается, если низкотемпературному каучуку придать высокую ударную вязкость. Для этого в базовый латекс добавляют некоторые нефтяные масла, называемые нефтяными мягчителями. Количество добавляемого масла зависит от требуемого значения ударной вязкости: чем оно выше, тем больше вводится масла. Добавленное масло действует как мягчитель жесткого каучука. Другие свойства маслонаполненного низкотемпературного каучука такие же, как у обычного низкотемпературного.
Буна N (NBR, бутадиенакрилонитрильный каучук). Вместе с буна S в Германии был также разработан маслостойкий тип синтетического каучука под названием пербунан, или буна N. Основной компонент этого нитрильного каучука - также бутадиен, который сополимеризуется с акрилонитрилом по существу по тому же механизму, что и SBR. Сорта NBR различаются содержанием акрилонитрила, количество которого в полимере варьирует от 15 до 40% в зависимости от назначения каучука. Нитрильные каучуки маслостойки в степени, соответствующей содержанию в них акрилонитрила. NBR использовался в тех видах военного оборудования, где требовалась маслостойкость, например в шлангах, самоуплотняющихся топливных элементах и конструкциях транспортных средств.
Бутилкаучук. Бутилкаучук - еще один синтетический каучук - был открыт в 1940. Он замечателен своей низкой газопроницаемостью; камера шины из этого материала удерживает воздух в 10 раз дольше, чем камера из натурального каучука. Бутилкаучук изготавливают полимеризацией изобутилена, получаемого из нефти, с малой добавкой изопрена при температуре 100° С.
Эта полимеризация не является эмульсионным процессом, а проводится в органическом растворителе, например метилхлориде. Свойства бутилкаучука могут быть сильно улучшены термообработкой маточной смеси бутилкаучука и газовой сажи при температуре от 150 до 230? С. Недавно бутилкаучук нашел новое применение как материал для протекторов шин ввиду его хороших ходовых характеристик, отсутствия шума и превосходного сцепления с дорогой. Бутилкаучук несовместим с натуральным каучуком и SBR и, значит, не может быть смешан с ними. Однако после хлорирования до хлорбутилкаучука он становится совместимым с натуральным каучуком и SBR. Хлорбутилкаучук сохраняет низкую газопроницаемость. Это свойство используется при изготовлении смешанных продуктов хлорбутилкаучука с натуральным каучуком или SBR, которые служат для производства внутреннего слоя бескамерных шин.
Этиленпропиленовый каучук. Сополимеры этилена и пропилена могут быть получены в широких диапазонах составов и молекулярных масс. Эластомеры, содержащие 60-70% этилена, вулканизуются с пероксидами и дают вулканизат с хорошими свойствами. Этиленпропиленовый каучук имеет превосходную атмосферо- и озоностойкость, высокую термо-, масло- и износостойкость, но также и высокую воздухопроницаемость. Такой каучук изготавливается из дешевых сырьевых материалов и находит многочисленные применения в промышленности.
Наиболее широко применяемым типом этиленпропиленового каучука является тройной этиленпропиленовый каучук (с диеновым сомономером). Он используется в основном для изготовления оболочек проводов и кабелей, однослойной кровли и в качестве присадки для смазочных масел. Его малая плотность и превосходная озоно- и атмосферостойкость обусловливают его применение в качестве кровельного материала.
Вистанекс. Вистанекс, или полиизобутилен, - полимер изобутилена, также получаемый при низких температурах. Он подобен каучуку по свойствам, но в отличие от каучука является насыщенным углеводородом и, значит, не может быть подвергнут вулканизации. Полиизобутилен озоностоек.
Коросил. Коросил, каучукоподобный материал, - это пластифицированный поливинилхлорид, приготовленный из винилхлорида, который, в свою очередь, получают из ацетилена и хлороводородной кислоты. Коросил замечательно стоек к действию окислителей, в том числе озона, азотной и хромовой кислот, и поэтому используется для внутренней облицовки цистерн с целью защиты их от коррозии. Он непроницаем для воды, масел и газов и в силу этого находит применение как покрытие для тканей и бумаги. Каландрованный материал используется в производстве плащей, душевых занавесок и обоев. Низкое водопоглощение, высокая электрическая прочность, негорючесть и высокое сопротивление старению делают пластифицированный поливинилхлорид пригодным для изготовления изоляции проводов и кабелей.
Полиуретан. Класс эластомеров, известных как полиуретаны, находит применение в производстве пеноматериалов, клеев, покрытий и формованных изделий. Изготовление полиуретанов включает несколько стадий. Сначала получают сложный полиэфир реакцией дикарбоновой кислоты, например адипиновой, с многоатомным спиртом, в частности этиленгликолем или диэтиленгликолем. Полиэфир обрабатывают диизоцианатом, например толуилен-2,4-диизоцианатом или метилендифенилендиизоцианатом. Продукт этой реакции обрабатывают водой и подходящим катализатором, в частности n-этилморфолином, и получают упругий или гибкий пенополиуретан. Добавляя диизоцианат, получают формованные изделия, в том числе шины. Меняя соотношение гликоля и дикарбоновой кислоты в процессе производства сложного полиэфира, можно изготовить полиуретаны, которые используются как клеи или перерабатываются в твердые или гибкие пеноматериалы либо формованные изделия. Пенополиуретаны огнестойки, имеют высокую прочность на растяжение, очень высокое сопротивление раздиру и истиранию. Они проявляют исключительно высокую несущую способность и хорошее сопротивление старению. Вулканизованные полиуретановые каучуки имеют высокие прочность на растяжение, сопротивление истиранию, раздиру и старению. Был разработан процесс получения полиуретанового каучука на основе простого полиэфира. Такой каучук хорошо ведет себя при низких температурах и устойчив к старению.
Кремнийорганический каучук. Кремнийорганические каучуки не имеют себе равных по пригодности к эксплуатации в широком температурном интервале (от ?73 до 315° С). Для вулканизованных кремнийорганических каучуков была достигнута прочность на растяжение около 14 МПа. Их сопротивление старению и диэлектрические характеристики также весьма высоки.
Хайпалон (хлорсульфоэтиленовый каучук). Этот эластомер хлорсульфонированного полиэтилена получают обработкой полиэтилена хлором и двуокисью серы. Вулканизованный хайпалон чрезвычайно озоно- и атмосферостоек и имеет хорошую термо- и химическую стойкость.
Фторсодержащие эластомеры. Эластомер кель-F - сополимер хлортрифторэтилена и винилиденфторида. Этот каучук имеет хорошую термо- и маслостойкость. Он стоек к действию коррозионно-активных веществ, негорюч и пригоден к эксплуатации в интервале от ?26 до 200° С. Витон А и флюорел - сополимеры гексафторпропилена и винилиденфторида. Эти эластомеры отличаются превосходной стойкостью к действию тепла, кислорода, озона, атмосферных факторов и солнечного света. Они имеют удовлетворительные низкотемпературные характеристики и пригодны к эксплуатации до ?21° С. Фторсодержащие эластомеры используются в тех приложениях, где требуется стойкость к действию тепла и масел.
Специализированные эластомеры. Производятся специализированные эластомеры с разнообразными физическими свойствами. Многие из них очень дороги. Наиболее важные из них - акрилатные каучуки, хлорсульфонированный полиэтилен, сополимеры простых и сложных эфиров, полимеры на основе эпихлоргидрина, фторированные полимеры и термопластичные блок-сополимеры. Они используются для изготовления уплотнений, прокладок, шлангов, оболочек проводов и кабелей и клеев. [3]
Резина (от латинского resina-смола) (вулканизат) - эластичный материал, образующийся в результате вулканизации натурального и синтетических каучуков. Представляет собой сетчатый эластомер - продукт поперечного сшивания молекул каучуков химическими связями.
Резину можно рассматривать как сшитую коллоидную систему, в которой каучук составляет дисперсионную среду, а наполнители - дисперсную фазу. Важнейшее свойство резины - высокая эластичность, т. е. способность к большим обратимым деформациям в широком интервале температур (высокоэластическое состояние). Полимеры в высокоэластичном состоянии отличаются способностью к огромным обратимым деформациям растяжения (до многих сотен процентов), низкими значениями модуля эластичности [0,1--10 Мн/м2 (1--100 кгс/см2)], выделением тепла при растяжении, возрастанием равновесного модуля эластичности с температурой и другими особенностями.
Высокоэластичное состояние возникает благодаря способности цепных молекул полимеров к изменению формы. Гибкие цепные молекулы под влиянием теплового движения непрерывно меняют свою форму, т. е. принимают ряд различных конформаций. При достаточно большой длине молекул число разрешённых скрученных конформаций подавляюще велико. Воздействие растягивающих сил распрямляет макромолекулы; после прекращения действия сил она вновь скручивается благодаря хаотическому характеру теплового движения. Таким образом, сопротивление изменению формы полимерного тела в основном обусловлено не изменением внутренней энергии, как в кристаллических телах, а увеличением числа более распрямлённых конформаций.
Резина сочетает в себе свойства твердых тел (упругость, стабильность формы), жидкостей (аморфность, высокая деформируемость при малом объемном сжатии) и газов (повышение упругости вулканизационных сеток с ростом температуры, энтропийная природа упругости).
Резина - сравнительно мягкий, практически несжимаемый материал. Комплекс ее свойств определяется в первую очередь типом каучука (см. табл. 1); свойства могут существенно изменяться при комбинировании каучуков различные типов или их модификации (см. табл.1).
Модуль упругости резины различные типов при малых деформациях составляет 1-10 МПа, что на 4-5 порядков ниже, чем для стали; коэффициент Пауссона близок к 0,5. Упругие свойства резины нелинейны и носят резко выраженный релаксационный характер: зависят от режима нагружения, величины, времени, скорости (или частоты), повторности деформаций и температуры. Деформация обратимого растяжения резины может достигать 500-1000%.
Нижний предел температурного диапазона высокоэластичности резины обусловлен главным образом температурой стеклования каучуков, а для кристаллизующихся каучуков зависит также от температуры и скорости кристаллизации. Верхний температурный предел эксплуатации резины связан с термодинамической стойкостью каучуков и поперечных химических связей, образующихся при вулканизации. Ненаполненные резины на основе некристаллизующихся каучуков имеют низкую прочность. Применение активных наполнителей (высокодисперсных саж, SiO2 и др.) позволяет на порядок повысить прочностные характеристики резины и достичь уровня показателей резины из кристаллизующихся каучуков. Твердость резины определяется содержанием в ней наполнителей и пластификаторов, а также степенью вулканизации. Плотность резины рассчитывают как средневзвешенное по объему значение плотностей отдельных компонентов. Аналогичным образом могут быть приближенно вычислены (при объемном наполнении менее 30%) теплофизических характеристики резины: коэффициент термодинамического расширения, удельная объемная теплоемкость, коэффициент теплопроводности. Циклическое деформирование резины сопровождается упругим гистерезисом, что обусловливает их хорошие амортизационные свойства. Резина характеризуются также высокими фрикционными свойствами, износостойкостью, сопротивлением раздиру и утомлению, тепло- и звукоизоляционными свойствами. Они диамагнетики и хорошие диэлектрики, хотя может быть получены токопроводящие и магнитные резины [6].
Резины незначительно поглощают воду и ограниченно набухают в органических растворителях. Степень набухания определяется разницей параметров растворимости каучука и растворителя (тем меньше, чем выше эта разность) и степенью поперечного сшивания (величину равновесного набухания обычно используют для определения степени поперечного сшивания). Каучук не растворяется в воде, спирте или ацетоне, однако набухает и растворяется в бензоле, толуоле, бензине, сероуглероде, скипидаре, хлороформе, четыреххлористом углероде и других галогенсодержащих растворителях, образуя вязкую массу, применяемую в качестве клея. Известны резины, характеризующиеся масло-, бензо-, водо-, паро- и термостойкостью, стойкостью к действию химический агрессивных сред, озона, света, ионизирующих излучений. При длительном хранении и эксплуатации резина подвергаются старению и утомлению, приводящим к ухудшению их механические свойств, снижению прочности и разрушению. Срок службы резины в зависимости от условий эксплуатации от несколько дней до несколько десятков лет [8].
Классификация. По назначению различают следующие основные группы резин: общего назначения, теплостойкие, морозостойкие, маслобензостойкие, стойкие к действию химический агрессивных сред, диэлектрическая, электропроводящие, магнитные, огнестойкие, радиационностойкие, вакуумные, фрикционные, пищевая и мед. назначения, для условий тропического климата и другие (табл. 2); получают также пористые, или губчатые, цветные и прозрачные резины.
Применение. Резина широко используют в технике, сельском хозяйстве, быту, медицине, строительстве, спорте. Ассортимент резиновых изделий насчитывает более 60 тысяч наименований. Среди них: шины, транспортные ленты, приводные ремни, рукава, амортизаторы, уплотнители, сальники, манжеты, кольца, кабельные изделия, обувь, ковры, трубки, покрытия и облицовочные материалы, прорезиненные ткани, герметики и др. Более половины объема вырабатываемой резины используется в производстве шин.
Мировое производство резиновых изделий более 20 млн. тонн/год.
В данном проекте рассмотрено производство этиленпропиленовых каучуков и резин на их основе [10].
Структура и свойства этиленпропиленовых каучуков
Этиленпропиленовые качуки - сополимеры этилена с пропиленом или терполимеры этих двух мономеров с несопряженным диеном.
Макромолекула этиленпропиленового каучука содержит от 50 до 70 мол. % этиленовых звеньев, сополимеры с большим количеством этих звеньев в молекуле являются термопластами (термопласты - пластмассы, которые после формования изделия сохраняют способность к повторной переработке).
Молекулярная масса: 80-250 тыс.;
Плотность: 0,85-0,87 г/см3;
теплопроводность 20,81 х 10-4 Вт(м х К);
Этиленпропиленовые каучуки мало набухают в полярных растворителях, но нестойки к действию углеводородных масел и неполярных растворителей.
Основные цепи сополимера и терполимера не содержат двойных связей, поэтому этиленпропиленовые каучуки превосходят другие типы синтетических каучуков по озоно-, свето- и атмосферостойкости; обладают длительной теплостойкостью при температурах до 150 °С и кратковременной при 200 °С; стойки к воздействию окислительных и агрессивных сред. Недостатки этиленпропиленовых каучуков - низкая масло- и огнестойкость.
Каучуки с низким содержанием пропилена (20-30%) характеризуются высокой прочностью невулканизованной смеси, каучуки с высоким его содержанием (45-50%) - низкой прочностью, но достаточно высокой морозостойкостью. В зависимости от молекулярной массы этиленпропиленовые каучуки делят на низко-, средне- и высоковязкие; их вязкости по Муни, измеренные при 100 °С, 120 °С, 125-200 °С, составляют соотв. 25-60, 60-100 и 100-120 единиц.
Общие сведения о получении этиленпропиленовы каучуков
Получение этиленпропиленовых каучуков стало возможно после открытия катализаторов Циглера-Натта (каталитические комплексы, образующиеся при взаимодействии соединений переходных металлов [TiCl4, TiCl3, VOC13, (C5H5)2TiCl2 и т. п.] с алкильными производными и другими соединениями металлов I - III групп (A1R3, A1R2C1, LiR, MgRCl, ZnR2 и др.); один из видов катализаторов полимеризации).
Сырьём для получения этих каучуков являются продукты пиролиза (термическое разложение органических соединений без доступа воздуха) нестабильного бензина: этилен и пропилен.
Этиленпропиленовые каучуки выпускаются в виде двойных (СКЭП) и тройных (СКЭПТ) сополимеров этилена с пропиленом. В качестве третьего мономера применяют диеновые углеводороды, как например 1,4-гексадиен:
;
1,5-циклооктадиен:
;
дициклопентадиен:
;
этилиденноборнен:
Наиболее доступным из этих мономеров является дициклопентадиен. Однако тройные сополимеры с дициклопентадиеном обладают низкими физико-механическими показателями. В последнее время в качестве третьего мономера стали применять этилиденноборнен.
В промышленности освоен выпуск 4 марок СКЭП и 7 марок СКЭПТ.
Работы по синтезу этиленпропиленовых каучуков начаты в СССР в 1956 г. В результате были разработаны 2 способа получения каучуков: в среде инертного растворителя (гексан, изопентан) и в среде жидкого пропилена.
Технология получения этиленпропиленовых каучуков
В процессе полимеризации применяют этилен с содержанием основного вещества 99,9%, а пропилен - не менее 99,8%.
Схема полимеризации этилена с пропиленом:
Этилен Пропилен Сополимер этиленаи пропилена
Вредное воздействие на процесс полимеризации оказывают примеси ацетилена, кислорода, влаги и сернистых соединений. Поэтому их предельное содержание в мономерах должно составлять не более 0,001-0,002%.
Сополимеризацию (полимеризация, в которой участвуют 2 или более мономера различных типов) этилена и пропилена ведут с применением каталитических систем на основе соединений ванадия и алюминия, ванадия и титана в сочетании с алкилами или алкилхлоридами алюминия.
Поскольку этилен и пропилен имеют различную активность, соотношение мономеров в сополимере отличается от соотношения в зоне реакции. Для получения каучуков заданного состава необходимо обеспечить постоянство концентрации исходных мономеров во времени и по всему объему реакционной зоны. Поэтому при сополимеризации применяются реакторы реального перемешивания. Теплота реакции отводится при испарении мономеров через теплопередающие поверхности реактора.
Процессы получения этиленпропиленовых каучуков в промышленности могут быть разделены на 2 типа в зависимости от состояния получаемого полимера на стадии полимеризации - в виде раствора или в виде суспензии.
Схема процесса полученя этиленпропиленовых каучуков в среде избытка пропилена с отводом теплоты реакции за счет испарения мономеров приведена на рис.1.
В реактор 1 поступают мономеры (этилен, пропилен и третий мономер), компоненты каталитического комплекса, а также циркулирующая газожидкостная смесь.
Температура полимеризации поддерживается в пределах 0-20?С, давление 0,3-0,6 МПа.
Газовая фаза состоит из смеси этилена, пропилена и регулятора молекулярной массы. Их соотношение определяется динамическим равновесием между газом и жидкостью в реакторе. Газовая фаза непрерывно выводится из реактора и поступает на охлаждение и конденсацию в конденсатор 2.
Суспензия полимера из реактора поступает в смеситель 3, в котором происходит смешение с водой и разрушение каталитического комплекса. После смесителя суспензия полимера поступает в отстойник 4 для разделения водного и углеводородного слоёв. Часть продуктов разрушения каталитического комплекса вместе с водным слоем поступает на отмывку, а часть после смешения со свежей водой возвращается в смеситель 3.
После отмывки полученный полимер поступает в дегазатор 5, в котором происходит отгонка с паром непрореагировавших мономеров. В дегазаторе в пульпу полимера вводят антиагломератор (порошкообразный графит, технический углерод) с целью предотвращения слипания крошки. Из дегазатора 5 пульпа поступает на вибросито 6 для отделения воды от крошки полимера. Вода возвращается в отстойник 4, а полимер поступает в червячно-отжимную машину 7, где сначала происходит предварительный отжим полимера от влаги, а на второй стадии - окончательная сушка каучука.
Непрореагировавшие мономеры после ректификационной колонны 8, колонны азеотропной сушки 9, и осушителя 10 возвращаются в процесс.
Преимуществом процесса получения этиленпропиленовых каучуков в избытке пропилена является простота технологического оформления и легкость регулирования соотношения мономеров в реакционной массе.
К недостаткам относится ограниченная возможность регулирования молекулярно-массового распределения полимера.
Расчет материального баланса
Материальный баланс химических процессов составляют для определения количеств перерабатываемых и получаемых веществ. Также при помощи данных расчетов выбирают наиболее выгодный путь реакции, его время, температуру протекания процесса и т. д.
В нашем проекте мы рассмотрели получение каучука по основной реакции:
Предположим, что в процессе участвует 1 моль этилена и 1 моль пропилена. Тогда в результате реакции будет получен 1 моль продукта. Таким образом, если взять 28 г этилена и 42 г пропилена, то будет получено 70 г.сополимера.
Обработка каучука и производство резины
Резину получают главным образом вулканизацией композиций (резиновых смесей), основу которых (обычно 20-60% по массе) составляют каучуки. Другие компоненты резиновых смесей - вулканизующие агенты, ускорители и активаторы вулканизации, наполнители, противостарители, пластификаторы (мягчители). В состав смесей могут также входить регенерат (пластичный продукт регенерации резины, способный к повторной вулканизации), замедлители подвулканизации, модификаторы, красители, порообразователи, антипирены , душистые вещества и другие ингредиенты, общее число которых может достигать 20 и более. Выбор каучука и состава резиновой смеси определяется назначением, условиями эксплуатации и техническими требованиями к изделию, технологией производства, экономическими и другими соображениями.
Пластикация. Одно из важнейших свойств каучука - пластичность - используется в производстве резиновых изделий. Чтобы смешать каучук с другими ингредиентами резиновой смеси, его нужно сначала умягчить, или пластицировать, путем механической или термической обработки. Этот процесс называется пластикацией каучука. Открытие Т. Хэнкоком в 1820 возможности пластикации каучука имело огромное значение для резиновой промышленности. Его пластикатор состоял из шипованного ротора, вращающегося в шипованном полом цилиндре; это устройство имело ручной привод. В современной резиновой промышленности используются три типа подобных машин до ввода других компонентов резиновой смеси в каучук. Это - каучукотерка, смеситель Бенбери и пластикатор Гордона.
Использование грануляторов - машин, которые разрезают каучук на маленькие гранулы или пластинки одинаковых размеров и формы, - облегчает операции по дозировке и управлению процессом обработки каучука. Каучук подается в гранулятор по выходу из пластикатора. Получающиеся гранулы смешиваются с углеродной сажей и маслами в смесителе Бенбери, образуя маточную смесь, которая также гранулируется. После обработки в смесителе Бенбери производится смешивание с вулканизующими веществами, серой и ускорителями вулканизации.
Приготовление резиновой смеси. Химическое соединение только из каучука и серы имело бы ограниченное практическое применение. Чтобы улучшить физические свойства каучука и сделать его более пригодным для эксплуатации в различных применениях, необходимо модифицировать его свойства путем добавления других веществ. Все вещества, смешиваемые с каучуком перед вулканизацией, включая серу, называются ингредиентами резиновой смеси. Они вызывают как химические, так и физические изменения в каучуке. Их назначение - модифицировать твердость, прочность и ударную вязкость и увеличить стойкость к истиранию, маслам, кислороду, химическим растворителям, теплу и растрескиванию. Для изготовления резин разных применений используются различные составы.
Ускорители и активаторы. Некоторые химически активные вещества, называемые ускорителями, при использовании вместе с серой уменьшают время вулканизации и улучшают физические свойства каучука. Примерами неорганических ускорителей являются свинцовые белила, свинцовый глет (монооксид свинца), известь и магнезия (оксид магния). Органические ускорители гораздо более активны и являются важной частью почти любой резиновой смеси. Они вводятся в смесь в относительно малой доле: обычно бывает достаточно от 0,5 до 1,0 части на 100 частей каучука. Большинство ускорителей полностью проявляет свою эффективность в присутствии активаторов, таких, как окись цинка, а для некоторых требуется органическая кислота, например стеариновая. Поэтому современные рецептуры резиновых смесей обычно включают окись цинка и стеариновую кислоту.
Мягчители и пластификаторы. Мягчители и пластификаторы обычно используются для сокращения времени приготовления резиновой смеси и понижения температуры процесса. Они также способствуют диспергированию ингредиентов смеси, вызывая набухание или растворение каучука. Типичными мягчителями являются парафиновое и растительные масла, воски, олеиновая и стеариновая кислоты, хвойная смола, каменноугольная смола и канифоль.
Упрочняющие наполнители. Некоторые вещества усиливают каучук, придавая ему прочность и сопротивляемость износу. Они называются упрочняющими наполнителями. Углеродная (газовая) сажа в тонко измельченной форме - наиболее распространенный упрочняющий наполнитель; она относительно дешева и является одним из самых эффективных веществ такого рода. Протекторная резина автомобильной шины содержит приблизительно 45 частей углеродной сажи на 100 частей каучука.
Другими широко используемыми упрочняющими наполнителями являются окись цинка, карбонат магния, кремнезем, карбонат кальция и некоторые глины, однако все они менее эффективны, чем газовая сажа.
Наполнители. На заре каучуковой промышленности еще до появления автомобиля некоторые вещества добавлялись к каучуку для удешевления получаемых из него продуктов. Упрочнение еще не имело большого значения, и такие вещества просто служили для увеличения объема и массы резины. Их называют наполнителями или инертными ингредиентами резиновой смеси. Распространенными наполнителями являются бариты, мел, некоторые глины и диатомит.
Антиоксиданты. Использование антиоксидантов для сохранения нужных свойств резиновых изделий в процессе их старения и эксплуатации началось после Второй мировой войны. Как и ускорители вулканизации, антиоксиданты - сложные органические соединения, которые при концентрации 1-2 части на 100 частей каучука препятствуют росту жесткости и хрупкости резины. Воздействие воздуха, озона, тепла и света - основная причина старения резины. Некоторые антиоксиданты также защищают резину от повреждения при изгибе и нагреве.
Пигменты. Упрочняющие и инертные наполнители и другие ингредиенты резиновой смеси часто называют пигментами, хотя используются и настоящие пигменты, которые придают цвет резиновым изделиям. Оксиды цинка и титана, сульфид цинка и литопон применяются в качестве белых пигментов. Желтый крон, железоокисный пигмент, сульфид сурьмы, ультрамарин и ламповая сажа используются для придания изделиям различных цветовых оттенков.
Каландрование. После того как сырой каучук пластицирован и смешан с ингредиентами резиновой смеси, он подвергается дальнейшей обработке перед вулканизацией, чтобы придать ему форму конечного изделия. Тип обработки зависит от области применения резинового изделия. На этой стадии процесса широко используются каландрование и экструзия.
Каландры представляют собой машины, предназначенные для раскатки резиновой смеси в листы или промазки ею тканей. Стандартный каландр обычно состоит из трех горизонтальных валов, расположенных один над другим, хотя для некоторых видов работ используются четырехвальные и пятивальные каландры. Полые каландровые валы имеют длину до 2,5 м и диаметр до 0,8 м. К валам подводятся пар и холодная вода, чтобы контролировать температуру, выбор и поддержание которой имеют решающее значение для получения качественного изделия с постоянной толщиной и гладкой поверхностью. Соседние валы вращаются в противоположных направлениях, причем частота вращения каждого вала и расстояние между валами точно контролируются. На каландре выполняются нанесение покрытия на ткани, промазка тканей и раскатка резиновой смеси в листы.
Экструзия. Экструдер применяется для формования труб, шлангов, протекторов шин, камер пневматических шин, уплотнительных прокладок для автомобилей и других изделий. Он состоит из стального цилиндрического корпуса, снабженного рубашкой для нагрева или охлаждения. Плотно прилегающий к корпусу шнек подает невулканизованную резиновую смесь, предварительно нагретую на вальцах, через корпус к головке, в которую вставляется сменный формующий инструмент, определяющий форму получаемого изделия. Выходящее из головки изделие обычно охлаждается струей воды. Камеры пневматических шин выходят из экструдера в виде непрерывной трубки, которая потом разрезается на части нужной длины. Многие изделия, например уплотнительные прокладки и небольшие трубки, выходят из экструдера в окончательной форме, а потом вулканизуются. Другие изделия, например протекторы шин, выходят из экструдера в виде прямых заготовок, которые впоследствии накладываются на корпус шины и привулканизовываются к нему, меняя свою первоначальную форму.
Вулканизация. Далее необходимо вулканизовать заготовку, чтобы получить готовое изделие, пригодное к эксплуатации. Вулканизация проводится несколькими способами. Многим изделиям придается окончательная форма только на стадии вулканизации, когда заключенная в металлические формы резиновая смесь подвергается воздействию температуры и давления. Автомобильные шины после сборки на барабане формуются до нужного размера и затем вулканизуются в рифленых стальных формах. Формы устанавливаются одна на другую в вертикальном вулканизационном автоклаве, и в замкнутый нагреватель запускается пар. В невулканизованную заготовку шины вставляется пневмомешок той же формы, что и камера шины. По гибким медным трубкам в него запускаются воздух, пар, горячая вода по отдельности или в сочетании друг с другом; эти служащие для передачи давления текучие среды раздвигают каркас шины, заставляя каучук втекать в фасонные углубления формы. В современной практике технологи стремятся к увеличению числа шин, вулканизуемых в отдельных вулканизаторах, называемых пресс-формами. Эти литые пресс-формы имеют полые стенки, обеспечивающие внутреннюю циркуляцию пара, горячей воды и воздуха, которые подводят тепло к заготовке. В заданное время пресс-формы автоматически открываются [2].
Были разработаны автоматизированные вулканизационные прессы, которые вставляют в заготовку шины варочную камеру, вулканизуют шину и удаляют варочную камеру из готовой шины. Варочная камера является составной частью вулканизационного пресса. Камеры шин вулканизуются в сходных пресс-формах, имеющих гладкую поверхность. Среднее время вулканизации одной камеры составляет около 7 мин при 155? С. При меньших температурах время вулканизации возрастает.
Многие изделия меньшего размера вулканизуются в металлических пресс-формах, которые размещаются между параллельными плитами гидравлического пресса. Плиты пресса внутри полые, чтобы обеспечить доступ пара для нагрева без непосредственного контакта с изделием. Изделие получает тепло только через металлическую пресс-форму.
Многие изделия вулканизуются нагревом в воздухе или углекислом газе. Прорезиненная ткань, одежда, плащи и резиновая обувь вулканизуются таким способом. Процесс обычно проводится в больших горизонтальных вулканизаторах с паровой рубашкой. Резиновые смеси, вулканизуемые сухим теплом, обычно содержат меньшую добавку серы, чтобы исключить выход части серы на поверхность изделия. Для уменьшения времени вулканизации, которое, как правило, больше, чем при вулканизации открытым паром или под прессом, используются вещества-ускорители.
Некоторые резиновые изделия вулканизуются погружением в горячую воду под давлением. Листовой каучук наматывается между слоями муслина на барабан и вулканизуется в горячей воде под давлением. Резиновые груши, шланги, изоляция для проводов вулканизуются в открытом паре. Вулканизаторы обычно представляют собой горизонтальные цилиндры с плотно подогнанными крышками. Пожарные шланги вулканизуются паром с внутренней стороны и таким образом играют роль собственных вулканизаторов. Каучуковый шланг втягивается вовнутрь плетеного хлопчатобумажного шланга, к ним прикрепляются соединительные фланцы и внутрь заготовки на заданное время под давлением нагнетается пар.
Вулканизация без подвода тепла может проводиться с помощью хлористой серы S2Cl2 путем либо погружения в раствор, либо воздействия паров. Только тонкие листы или такие изделия, как фартуки, купальные шапочки, напальчники или хирургические перчатки, вулканизуются таким способом, поскольку реакция протекает быстро, а раствор при этом не проникает глубоко в заготовку. Дополнительная обработка аммиаком необходима для удаления кислоты, образующейся в процессе вулканизации.
Технология производства изделий из резины включает смешение каучука с ингредиентами в смесителях или на вальцах, изготовление полуфабрикатов (шприцеванных профилей, каландрованных листов, прорезиненных тканей, корда и т.п.), резку и раскрой полуфабрикатов, сборку заготовок изделия сложной конструкции или конфигурации с применением специального сборочного оборудования и вулканизацию изделий в аппаратах периодического (прессы, котлы, автоклавы, форматоры-вулканизаторы и др.) или непрерывного действия (тоннельные, барабанные и др. вулканизаторы). При этом используется высокая пластичность резиновых смесей, благодаря которой им придается форма будущего изделия, закрепляемая в результате вулканизации. Широко применяют формование в вулканизационном прессе и литье под давлением, при которых формование и вулканизацию изделий совмещают в одной операции. Перспективны использование порошкообразных каучуков и композиций и получение литьевых резин методами жидкого формования из композиций на основе жидких каучуков. При вулканизации смесей, содержащих 30-50% по массе S в расчете на каучук, получают эбониты (вулканизированный каучук с большим содержанием серы (30--50 % в расчёте на массу каучука), обычно темно-бурого или черного цвета). Изделия из твердой резины обладают хорошими диэлектрическими свойствами и используются в электротехнической промышленности в качестве изоляторов, например в распределительных щитах, вилках, розетках, телефонах и аккумуляторах. Изготовленные с применением твердой резины трубы, клапаны и арматура применяются в тех областях химической промышленности, где требуется коррозионная стойкость. Изготовление детских игрушек - еще одна статья потребления твердой резины. [9]
этиленпропиленовый каучук резина
Вывод
Производство синтетических каучуков необходимо каждой стране, так как необходимо производство резиновых изделий.
Основные производимые в России синтетические каучуки (более 91%): СКИ (синтетический изопреновый каучук), 408 тыс. тонн; СКД (синтетический бутадиеновый каучук), 267 тыс. тонн; СКМС (синтетический каучук метилстирольный) и СКС (бутадиенстирольный каучук), 220 тыс. тонн; БК (бутиловый каучук), 117 тыс. тонн.
В наибольших объемах экспортируются СКД и СКИ (доля каждого в общем экспорте - около 30%), 40 % внутреннего рынка приходится на СКИ. Максимальную долю в импорте (более 40%) занимает бутадиенстирольный латекс.
Производство этиленпропиленового каучука СКЭП и СКЭПТ не такое объемное, но имеет не мало важное значение, так как резины, получаемые из этих каучуков, имеют ряд уникальных свойств, не присущих другим видам синтетических каучуков.
Российская промышленность синтетического каучука является одной из наиболее конкурентноспособных и успешных частей нашей нефтехимии.
Список литературы
Говорова О.А., Свойства резин на основе этилен пропиленовых каучуков, М., 1989
Говорова О.А., Фролов Л.Е., Сорокин Г.А., в сб.: Свойства резин на основе этилен пропиленовых каучуков, М., 1986;
Догадкин Б.А., Донцов А.А., Шершнев В.А., Химия эластомеров, 2 изд., М., 1981;
Зуев Ю.С., Дегтева Т.Г., Стойкость эластомеров в эксплуатационных условиях, М., 1986;
Кисин К.В. "Каучук и резина", 1981, № 6, с. 5-8;
Кошелев Ф.Ф., Корнев А.Е., Буканов А.М., Общая технология резины, 4 изд., М., 1978;
Кузьминский А.С., Кавун С.М., Кирпичев В.П., Физико-химические основы получения, переработки и применения эластомеров, М., 1976;
Справочник резинщика. Материалы резинового производства, М., 1971;
Федюкин Д.Л., Махлис Ф.А., Технические и технологические свойства резин, М., 1985;
Энциклопедия полимеров, т. 3, М., 1977, с. 313-25.
Размещено на Allbest.ru
Подобные документы
Производство синтетических каучуков. Получение каучукогенов (мономеров) их полимеризация. Зависимость свойства резины от типа каучука, применяемого для её производства. Классификация, маркировка и ассортимент резины. Факторы, формирующие качество резины.
реферат [28,7 K], добавлен 10.02.2009Понятие неметаллические материалы. Состав и классификация резин. Народнохозяйственное значение каучука. Резины общего и специального назначения. Вулканизация, этапы, механизмы и технология. Деформационно-прочные и фрикционные свойства резин и каучуков.
курсовая работа [104,7 K], добавлен 29.11.2016Физико-механические свойства каучуков. Классификация резин, маркировка, ее хранение и применение. Ингредиенты, добавляемые при производстве резины и их влияние на свойства резины. Способы переработки, складирование, утилизация и захоронение отходов.
курсовая работа [54,3 K], добавлен 04.12.2012Основные виды каучуков. Технологии и производство, полимеризация. Физические характеристики эмульсионных бутадиен-стирольных каучуков с различным содержанием стирольных звеньев, свойства вулканизаторов эмульсионных бутадиен-метилстирольных каучуков.
курсовая работа [1,6 M], добавлен 30.01.2011Резины на основе изопреновых каучуков. Конструктивные особенности многогнездовых пресс-форм для прямого прессования резины. Расчет количества необходимого основного и вспомогательного оборудования. Контур регулирования температуры и сигнализации давления.
дипломная работа [599,3 K], добавлен 15.11.2011Требования, предъявляемые к каучукам. Свойства и применение бутадиен-стирольных каучуков. Способы получения бутадиен-стирольного каучука полимеризацией в растворе и в эмульсии, их стадии и схемы процесса. Расчёт материального баланса производства.
курсовая работа [811,5 K], добавлен 16.09.2013Процесс вулканизации резины, ее общая характеристика. Классификация каучука, особенности его применения в России. Специфические свойства резин. Технология получения, методы воздействия на их свойства. Описание и свойства готовых резинотехнических изделий.
реферат [13,2 K], добавлен 28.12.2009Характеристика разновидностей резиновых изделий. Показатели, определяющие качество синтетического каучука. Износостойкие, маслобензостойкие, морозостойкие, теплостойкие специальные резины. Вулканизированные резиновые детали. Государственные стандарты.
реферат [43,6 K], добавлен 28.10.2013Виды, свойства и область применения резинотехнических изделий (РТИ). Назначение тепло-морозо-кислото-щелочестойкой технической пластины. Методы получения РТИ: современные тенденции в процессе их изготовления. Состав резиновой смеси, виды каучука.
курсовая работа [56,3 K], добавлен 20.10.2012Физико-химические явления в процессах переработки каучуков и резиновых смесей. Особенности современной технологии приготовления резиновых смесей. Приготовление смесей на основе изопренового каучука. Обработка резиновых смесей на валковых машинах.
курсовая работа [374,7 K], добавлен 04.01.2010