Двухсекционный пластинчатый теплообменник для охлаждения пивного сусла

Расчет ориентировочной поверхности теплопередачи. Выбор теплообменного аппарата. Определение гидравлических сопротивлений. Секция водяного и рассольного охлаждения. Использование пластинчатых теплообменников в пищевой промышленности для стерилизации.

Рубрика Производство и технологии
Вид контрольная работа
Язык русский
Дата добавления 21.01.2012
Размер файла 275,7 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

Министерство образования и науки Российской Федерации

Федеральное агентство по образованию

ИРКУТСКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ

Кафедра химической технологии

Двухсекционный пластинчатый теплообменник для охлаждения пивного сусла

Технологическое оборудование

Иркутск 2008

СОДЕРЖАНИЕ

Введение

1. Технологический расчет

1.1 Общий тепловой баланс

1.2 Расчет ориентировочной поверхности теплопередачи. Выбор теплообменного аппарата

1.3 Уточненный расчет теплообменного аппарата

1.3.1 Расчет коэффициентов теплоотдачи в секции водяного охлаждения

1.3.2 Расчет коэффициентов теплоотдачи в рассольной секции

1.4 Необходимая поверхность теплопередачи

2. Гидравлический расчет

2.1 Расчет гидравлических сопротивлений

2.1.1 Секция водяного охлаждения

2.1.2 Секция рассольного охлаждения

Список литературы

Введение

Для расчета и подбора нормализированного теплообменного аппарата составим и рассчитаем тепловой баланс из которого определим тепловую нагрузку теплообменного аппарата и расход теплоносителя. Рассчитаем среднюю разность температур, выберем по опытным данным ориентировочный коэффициент теплопередачи. Рассчитаем ориентировочное значение поверхности теплообмена и по нему выберем стандартный теплообменник. Произведем уточненный расчет стандартного теплообменника: уточним коэффициенты теплоотдачи для горячего и холодного теплоносителя и уточненный расчет коэффициента теплопередачи. Сопоставим поверхности теплообмена расчетной и нормированной. Произведем гидравлический расчет.

Теплообменные аппараты применяются для проведения теплообменных процессов (нагревание или охлаждение). В данном курсовом проекте мы рассчитываем рекуперативный теплообменник, в котором теплоносители разделены стенкой и теплота передается от одного теплоносителя к другому через разделяющую их стенку.

Предложено на расчет пластинчатый теплообменный аппарат. Поверхность теплообмена в таком аппарате образована набором штампованных гофрированных пластин. Сами аппараты могут быть разборными, полуразборными и неразборными (сварными).

Разборные теплообменники могут работать при давлении 0,002 - 1,0 МПа и температуре рабочих сред от -20 до +180 єС, полуразборные - при давлении 0,002 - 2,5 МПа и той же температуре; неразборные (сварные) аппараты могут работать при давлении 0,0002 - 4,0 МПа и температуре от - 100 до +300 єС.

Пластинчатые теплообменники широко используются в пищевой промышленности в качестве нагревателей, холодильников, а также комбинированных теплообменников для пастеризации и стерилизации.

Пластинчатые теплообменники компактны, обладают большой площадью поверхности теплоотдачи, достигающаяся гофрированием пластин.

Эффективность обусловлена большой величиной отношения площади теплопередачи к объему теплообменника. Это достигается высокими скоростями теплоносителей, а также турбулизации потоков гофрированными поверхностями пластин и низкому термическому сопротивлению стенок пластин.

Эти теплообменники изготовляют в виде модулей, из которых может быть собран теплообменник с площадью поверхности теплопередачи, необходимой для осуществления технологического процесса.

К недостаткам относятся сложность изготовления, возможность загрязнения поверхности пластин взвешенными в жидкости твердыми частицами.

1. Технологический расчет

1.1 Общий тепловой баланс

Тепловой поток через пластины водяной секции:

 (1.1)

Тепловой поток через пластины рассольной секции:

(1.2)

Принимаем конечную температуру воды 40°С.

Разность температур охлаждаемого сусла и воды:

Разность температур охлажденного сусла и воды:

Средняя разность температур теплообменивающихся жидкостей при противотоке:

Разность температур охлаждаемого сусла и рассола:

Разность температур охлажденного сусла и рассола:

Средняя разность температур теплообменивающихся жидкостей в рассольной секции:

1.2 Расчет ориентировочной поверхности теплопередачи

теплообменник гидравлический стерилизация пищевой

Выбор теплообменного аппарата

Ориентировочное значение коэффициента теплопередачи выбираем на основании [3]. Вид теплообмена: от жидкости к жидкости, при вынужденном движении . Примем .

Зная тепловую нагрузку аппарата, рассчитав среднею разность температур и выбрав ориентировочный коэффициент теплопередачи, определим ориентировочную поверхность теплообмена для водяной секции:

, (1.3)

и для рассольной секции:

По ГОСТ 15518-83, при такой площади теплообмена выбираем теплообменный аппарат типа Р исполнение 3 для секции рассольного охлаждения:

f - поверхность теплообмена одной пластины (f=0,2м2);

F - поверхность теплообмена (F=31,5м2);

N - количество пластин (N=160шт);

M - масса аппарата (M=1485кг).

По ГОСТ 15518-83, при такой площади теплообмена выбираем теплообменный аппарат типа Р исполнение 3 для секции рассольного охлаждения:

f - поверхность теплообмена одной пластины (f=0,2м2);

F - поверхность теплообмена (F=16м2);

N - количество пластин (N=84шт);

M - масса аппарата (M=1222кг).

В соответствии с [1] пластина с f=0,2м2, имеет габаритные размеры:

длина - 960 мм;

ширина - 460 мм;

толщина - 1,0мм;

dэ - эквивалентный диаметр канала (dэ=8,8 мм=0,0088м);

S - поперечное сечение канала (S=17,8?10-4 м2);

L - приведенная длина канала (L=0,518 м);

m - масса пластины (m=2,5кг);

dш - диаметр условного прохода штуцеров (dш=150мм=0,15м).

1.3 Уточненный расчет выбранного теплообменного аппарата

Пусть компоновка пластин самая простая: Сх: 80/80 и 42/42, т.е. по одному пакету (ходу) для обоих потоков.

1.3.1 Расчет коэффициента теплоотдачи для секции водяного охлаждения

Скорость сусла в 68 каналах с проходным отверстием 0,00178 м2 равна

, (1.4)

где  - скорость сусла.

Определим тип движения в каналах, для этого найдем число Рейнольдса

, (1.5)

где, Re - число Рейнольдса;

- скорость теплоносителя, м/с;

 - эквивалентный диаметр, м;

 - плотность теплоносителя, кг/м3;

 - вязкость теплоносителя, Па•с.

В секции водяного охлаждения средняя температура сусла:

Для сусла при 100°С по формуле (1.11)

Режим движения турбулентный.

Критерий Прандтля для потока сусла:

 (1.6)

В секции водяного охлаждения средняя температура воды:

Найдем число Рейнольдса из формулы(1.6)

Режим движения турбулентный.

Примем термические сопротивления для воды среднего качества 1/rЗ.в.=2000 Вт/м2?К, для сусла 1/rЗ.сус.=1800 Вт/м2?К. Повышенная коррозийная активность воды диктует применять нержавеющую сталь в качестве материале для пластин. Теплопроводность нержавеющей стали [1] при толщине пластины 1,0 мм, примем равную лСТ=17,5 Вт/м2?К. Сумма термических сопротивлений стенки и загрязнений равна:

, (1.7)

Для секции водяного охлаждения коэффициент теплопередачи:

 , (1.8)

Преобразуем формулу(1.8), и получим

 (1.9)

Уточненный расчет учитывая температуры стенок:

Уравнение интерполяции:

Коэффициент теплопередачи для секции водяного охлаждения

1.3.3 Коэффициент теплопередачи для рассольной секции

Скорость движения рассола принимаем в 1.5 раза ниже скорости сусла, так как рассол имеет низкую температуру и значительную вязкость:

В секции рассольного охлаждения средняя температура сусла:

Для сусла при 15°С по формуле (1.5)

Режим движения турбулентный.

Критерий Прандтля для потока сусла:

В секции рассольного охлаждения средняя температура рассола:

Найдем число Рейнольдса из формулы(1.5)

Режим движения турбулентный.

Для секции рассольного охлаждения коэффициент теплопередачи:

 , (1.10)

Преобразуем формулу(1.10), и получим

1.4 Необходимая поверхность теплопередачи

Согласно формуле(1.3), найдем поверхность теплопередачи, только вместо , подставим расчетную К

.

Выбранные нами теплообменники для водяной и рассольной секций подходят с запасом.

2. Гидравлический расчет

2.1 Расчет гидравлических сопротивлений 

Гидравлическое сопротивление рассчитываем:

, (2.1)

где x - число пакетов для данного теплоносителя, компоновка однопакетная(x=1);

L - приведенная длина канала(L=0,518м);

dЭ - эквивалентный диаметр канала(dЭ=0,0088м);

 - коэффициент местного сопротивления;

 - плотность теплоносителя, кг/м3;

 - скорость теплоносителя, м/с;

 - скорость в штуцерах, м/с.

Найдем коэффициент местного сопротивления - о, который зависит от типа пластины и движения теплоносителя [1].

2.1.1 Секция водяного охлаждения

Найдем коэффициент местного сопротивления - о, который зависит от типа пластины и движения теплоносителя.

Режим движения для воды - турбулентный. Значит коэффициент местного сопротивления при ламинарном режиме движения

, (2.2)

где коэффициент а1=320. Для воды по формуле(2.2)

Найдем скорость в штуцерах [1]

, (2.3)

где  - скорость в штуцере, м/с;

 - расход теплоносителя, кг/с;

 - диаметр штуцера(=0,2м);

 - плотность теплоносителя, кг/м3.

Скорость в штуцерах для горячего теплоносителя

.

Так как >2,5м/с, то скорость в штуцерах учитываем.

Гидравлическое сопротивление воды по формуле(2.1), с учетом скорости в штуцерах

Секция рассольного охлаждения 

Режим движения для рассола - турбулентный. Значит коэффициент местного сопротивления при турбулентном режиме движения

, (2.4)

где коэффициент а2=15,0. Для холодного теплоносителя по формуле(2.4)

.

Найдем по формуле(2.3) скорость в штуцерах, для холодного теплоносителя

Так как >2,5м/с, то скорость в штуцерах учитываем.

Гидравлическое сопротивление рассола по формуле(2.1)

Список литературы

1. Основные процессы и аппараты химической технологии: Пособие по проектированию/ Г.С. Борисов, В.П. Брыков, Ю.И. Дытнерский и др. Под. ред. Ю.И. Дытнерского, 2-е изд., перераб. и дополн. М.: Химия, 1991. - 496 с.

2. Павлов К.Ф., Романков П.Г., Носков А.А. Примеры и задачи по курсу процессов и аппаратов химической технологии: учебное пособие для вузов; под. ред. чл. - корр. АН России П.Г. Романкова. - 13-е изд., стереотипное. Перепечатка с издания 1987г. М.: ООО ТИД «Альянс», 2006. - 576 с.

3. Ульянов Б.А., Бадеников В.Я., Ликучёв В.Г. Процессы и аппараты химической технологии. Учебное пособие - Ангарск: Издательство Ангарской государственной технической академии, 2005 г. - 903 с.

4. ГОСТ 15518-87 Аппараты теплообменные пластинчатые.

5. И.Т. Кретов, С.Т. Антипов, С.В. Шахов Инженерные расчеты технологического оборудования предприятий бродильной промышленности - М.: КолосС, 2004 г. - 391 с.

Размещено на Allbest.ru


Подобные документы

  • Расчет ориентировочной поверхности теплопередачи. Выбор теплообменного аппарата. Уточненный расчет и коэффициентов теплоотдачи в секции водяного охлаждения, в рассольной секции. Необходимая поверхность теплопередачи и гидравлические сопротивления.

    курсовая работа [78,8 K], добавлен 21.07.2008

  • Технологический процесс производства пивного сусла и его охлаждения в пластинчатом теплообменнике. Выбор и обоснование контролируемых и регулируемых, параметров. Разработка автоматической системы регулирования температуры сусла на выходе теплообменника.

    дипломная работа [2,5 M], добавлен 16.12.2013

  • Схема пастеризационно-охладительной установки и особенности конструирования пластинчатых теплообменников. Основная схема компоновки многопакетных пластинчатых аппаратов. Расчёт комбинированного пластинчатого аппарата для пастеризации и охлаждения молока.

    курсовая работа [379,6 K], добавлен 17.11.2014

  • Подбор и расчет нормализованного пластинчатого теплообменника для охлаждения купажного сиропа перед сатурацией с поверхностью теплообмена 40 м2. Расчет теплового баланса и нагрузки, определение гидравлического сопротивления для купажного сиропа.

    курсовая работа [71,2 K], добавлен 17.02.2016

  • Классификация пластинчатых теплообменников по схеме движения теплоносителей. Технологическая схема пастеризации молока. Тепловой, компоновочный, гидравлический и экономический расчеты. Процедура продольного оребрения теплопередающей поверхности.

    курсовая работа [2,2 M], добавлен 29.09.2014

  • Предварительный расчет теплообменного аппарата и определение площадей теплообмена. Выбор геометрии трубы и определение конструктивных параметров АВОМ. Поверочный тепловой и гидравлический расчет аппарата. Расчет конструктивных элементов теплообменника.

    курсовая работа [578,0 K], добавлен 15.02.2012

  • Преимущества и недостатки спиральных теплообменников. Температурный режим аппарата. Средняя разность температур теплоносителей. Тепловая нагрузка аппарата. Массовый расход воды. Уточнённый расчёт теплообменного аппарата. Тепловое сопротивление стенки.

    курсовая работа [43,8 K], добавлен 14.06.2012

  • Расчет вертикального теплообменного аппарата с жесткой трубной решеткой, который применяют для нагрева и охлаждения жидкостей и газов, а также для испарения и конденсации теплоносителей в различных технологических процессах. Расчет местных сопротивлений.

    курсовая работа [212,3 K], добавлен 17.06.2011

  • Методика и критерии подбора спирального теплообменника, который необходим при производстве виноградного сока. Расчет теплообменного аппарата: определение необходимой поверхности теплопередачи, выбор типа аппарата и нормализованного варианта конструкции.

    курсовая работа [25,7 K], добавлен 21.03.2011

  • Проект горизонтального кожухотрубчатого теплообменника для конденсации и охлаждения паров уксусной кислоты. Технологический расчет коэффициента теплопередачи, конденсатора, определение площади поверхности теплообмена. Подбор шестиходового теплообменника.

    курсовая работа [1,3 M], добавлен 18.09.2014

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.