Сырье и технология производства ряда керамических материалов

Сырье для производства керамических материалов. Глинистые материалы, добавки к глинам. Схема производства керамических изделий. Добыча глины, подготовка керамической массы и формование изделий, их сушка и обжиг. Структура и свойства керамических изделий.

Рубрика Производство и технологии
Вид реферат
Язык русский
Дата добавления 09.01.2012
Размер файла 28,1 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

2

Размещено на http://www.allbest.ru/

Сырье и технология производства ряда керамических материалов

СОДЕРЖАНИЕ

керамический материал глина сушка обжиг

Введение

1. Общие сведения

2. Сырье для производства керамических материалов

2.1 Глинистые материалы

2.2 Добавки к глинам

3. Общая схема производства керамических изделий

3.1 Добыча глины, подготовка керамической массы и формование изделий

3.2 Сушка изделий

3.3 Обжиг изделий

4. Структура и общие свойства керамических изделий

5. Стеновые изделия

5.1 Виды стеновых изделий

Заключение

Список литературы

ВВЕДЕНИЕ

В современном мире в строительстве очень широко применяются керамические материалы и изделия. Это обусловлено большой прочностью, значительной долговечностью, декоративностью многих видов керамики, а также распространенностью в природе сырьевых материалов.

Целью данной реферата является рассмотрение и изучение керамических материалов. В соответствии с поставленной целью можно выделить и задачи работы: изучить общие сведение о керамических материалах: понятие, виды, свойства керамических материалов и изделий; сырье для производства керамических материалов и изделий, а также рассмотреть основные этапы производства керамических изделий.

1. ОБЩИЕ СВЕДЕНИЯ

Происхождение самого слова «керамика» имеет несколько версий. Согласно одной из них оно происходит от греческого слова «керамейя», что означало в древнее время искусство изготовления изделий из глины. В связи с этим под технологией керамики длительное время понимали науку о методах производства из глинистого сырья изделий с заданными свойствами. Но за последние годы это понятие получило более широкое толкование. Дело в том, что для керамической технологии типичны определенные производственные приемы: формование из сырьевых материалов изделий, их сушка и обжиг для придания им камнеподобных свойств. Эти приемы в последнее время нашли распространение в производстве изделий также из другого минерального (не глинистого) сырья. И понятие технологии керамики получило толкование как науки о методах производства изделий из минерального сырья путем их формования, сушки и придания им камнеподобных свойств посредством спекания при высоких температурах. Более того, методы керамической технологии получили применение для изготовления некоторых деталей из металлических порошков, в связи с чем порошковую металлургию именуют часто также металлокерамикой.

В технологии керамики изучаются методы механической и тепловой обработки сырья и изделий, а также происходящие в них при этом процессы. Поэтому основы физической химии силикатов, механическое и теплотехническое оборудование предприятий керамической промышленности являются основными опорными дисциплинами для изучения технологии керамики.

Глины всегда в истории человечества были и являются одним из основных видов строительных материалов. Вначале Ї 8000 лет до н.э. глины применялись в необожженном виде для глинобитного строительства и изготовления саманного и сырцового кирпича. 3500 лет до н.э. отмечается начало применения керамического кирпича, а 1000 лет до н.э. Ї глазурованного кирпича и черепицы. С середины первого тысячелетия в Китае начинается производство изделий из фарфора. В России первый кирпичный завод был построен в Москве в 1475 г., а в 1744 году в Петербурге начал работать первый фарфоровый завод. В конце XVIII - середине XIX в. бурное развитие металлургической, химической и электротехнической промышленности привело к развитию производства огнеупорной, кислотоупорной, электроизоляционной керамики и плиток для полов. С начала текущего столетия получило развитие производство эффективного кирпича и пустотелых камней для возведения стен и перекрытий, а также керамических плиток для внутренней и наружной отделки и санитарнотехнических изделий. В последнее время получило распространение производство специальной керамики с уникальными свойствами для нужд ядерной энергетики, машиностроения, электронной, ракетной и других отраслей промышленности. Большой практический интерес имеют керметы, состоящие из металлической и керамической частей. В России начало производства керамических изделий относится к очень давним временам. Древние соборы во Владимире, Киеве и Новгороде украшены настенными деталями, служащими образцами древнерусского гончарного производства. Состав белой эмалевой поливы был известен в России раньше, чем в других европейских странах. Основоположники нашей науки -- М.В. Ломоносов, Д.И. Менделеев, а также крупные ученые-керамики Д.И. Виноградов, акад. Е.И. Орлов, профессора Я.А. Соколов, Б.С. Швецов и многие другие внесли свой вклад в развитие керамической промышленности. С первых лет Советской власти большое внимание стало уделяться изучению технологии керамических изделий. В 1919 г. были созданы Государственный научно-исследовательский керамический институт в Петрограде и Институт силикатов в Москве. Большая заслуга в разработке научных основ керамической технологии принадлежит Герою Социалистического Труда академику АН УССР П.П. Будникову.

2. Сырье для производства керамических материалов и изделии

Сырьевые материалы, используемые при изготовлении керамических изделий, можно подразделить на две основные группы: глинистые материалы (глины и каолины) и добавки к глинам, которые подразделяются на отощающие, пластифицирующие, выгорающие и специальные.

2.1 Глинистые материалы

Глины представляют собой осадочные горные породы тонкоземлистого строения, которые независимо от их минерального и химического состава способны при смешивании с водой образовывать пластичное тесто, переходящее после обжига в водостойкое и прочное камневидное тело. Они образуются в результате выветривания главным образом полевошпатовых пород. Процесс выветривания горной породы состоит из механического разрушения и химического разложения. Механическое разрушение происходит в результате воздействия переменной температуры воды и ветра, химическое разложение Ї в результате воздействия различных реагентов, например воды и углекислоты на полевой шпат, когда образуется минерал каолинит.

Глины состоят из плотной смеси различных глинистых минералов, представляющих собой водные алюмосиликаты со слоистой кристаллической структурой. Наиболее распространенными из них являются каолинитовые (каолинит и галлуазит), монтмориллонитовые (монтмориллонит, бейделлит) и гидрослюдистые (в основном продукты разной степени гидратации слюд). Наряду с глинообразующими минералами в глинах встречаются: кварцы, полевой шпат, серный колчедан, гидроксиды железа, карбонаты кальция и магния, соединения титана, ванадия, органические примеси. Перечисленные примеси влияют как на технологию керамических изделий, так и на их свойства. Наиболее чистые глины, состоящие преимущественно из каолинита, называют каолинами Ї после обжига они сохраняют белый цвет.

В состав глин входят различные по крупности зерна, но характерные для глин высокие пластичность и связующая способность обусловлены наличием в них очень мелких частиц пластинчатой формы, размер которых не превышает 0,005 мм. Эти частицы называют глинистым веществом. Малая величина частиц и, следовательно, большая суммарная поверхность, а также их пластинчатая форма обеспечивают сцепление частиц и позволяют им сдвигаться относительно друг друга без потери сцепления. Чем больше в глине содержится глинистого вещества, тем она пластичнее. Высокопластичные глины содержат частицы менее 0,005 мм Ї 80...90%. В большинстве глин имеются и более крупные частицы, не обладающие свойством пластичности. При величине зерен 0,005...0,05 мм их относят к пыли, а при размерах 0,05... 2 мм Ї к песку.

Керамические свойства глин характеризуются пластичностью, связностью и связующей способностью, отношением к сушке и к действию высоких температур.

Пластичность Ї способность глиняного теста деформироваться под влиянием внешних механических воздействий без нарушения сплошности (без разрыва или образования трещин) и сохранять полученную форму после прекращения этих воздействий. На этом свойстве и основана возможность формования изделий. При смачивании сухой глины молекулы воды (диполи) втягиваются между чешуйчатыми частицами глинистых минералов и адсорбируются на их поверхности, образуя тонкие слои воды и вызывая набухание глины. Эти слои воды играют роль смазки, облегчающей скольжение, поэтому глина, смешанная с водой, дает легко формующуюся пластичную массу. Чем пластичнее глины, тем больше они требуют воды для получения удобно формуемого глиняного теста и тем выше их воздушная усадка. Высокопластичные глины имеют водопотребность более 28% и воздушную усадку 1ОЇ15.%. Глины средней пластичности характеризуются водопотребностью 20Ї28 % и воздушной усадкой 7Ї10%. У малопластичных глин водопотребность менее 20%, а воздушная усадка 5Ї7%.

Изделия из весьма пластичных глин при высыхании сильно уменьшаются в объеме и дают трещины, что в производстве недопустимо. Малопластичные (тощие) глины неудобны в работе, так как тесто из таких глин с трудом формуется, поэтому нередко приходится регулировать пластичность глины. Излишняя пластичность глин может быть устранена путем введения в них непластичных (отощающих) добавок или добавлением малопластичных глин. При недостаточной пластичности глину отмучивают, освобождая ее от песка, подвергают вылеживанию на открытом воздухе, измельчают на специальных машинах, обрабатывают паром, а также добавляют пластичную глину. В результате повышается дисперсность глин, улучшается их набухаемость и повышается пластичность и формовочная способность.

Связность Ї усилие, необходимое для разъединения частиц глины. Как уже указывалось, связность глин обусловлена малой величиной и пластинчатой формой частиц глинистого вещества. Высокой связностью обладают глины, содержащие повышенное количество глинистых фракций. Связующая способность глины, выражается в том, что глина может связывать частицы непластичных материалов (песка, шамота и др.) и образовывать при высыхании достаточно прочное изделие -- сырец.

Воздушная усадка (усушка) глин Ї уменьшение размеров и объема сырцового изделия. В процессе сушки вода испаряется, толщина водных оболочек вокруг глинистых частиц сокращается и отдельные частицы глины сближаются между собой, в результате чего происходит воздушная усадка. Воздушную усадку выражают в процентах от первоначального размера сырцового изделия.

Огневая усадка глин Ї изменение размеров и объема при обжиге изделия. При обжиге наиболее легкоплавкие соединения глины переходят в состояние жидкости, которая обволакивает нерасплавившиеся частицы и частично заполняет промежутки между ними. Частичное плавление глины и действие сил поверхностного натяжения жидкой фазы вызывают сближение твердых частиц обжигаемой глины и объем ее уменьшается, т.е. происходит огневая усадка. При большом содержании в глине кварцевого песка может не быть усадки или даже произойдет расширение материала, что связано с переходом кварца при нагревании в другую кристаллическую форму с увеличением объема. Огневая усадка глин может быть 2Ї6%. Полной усадкой глин называют сумму воздушной и огневой усадок. Полная усадка обычно составляет 5Ї18%. Для получения изделий с заданными размерами полную усадку учитывают при формовании, соответственно увеличивая размеры сырца.

Огнеупорность Ї свойство глин выдерживать действие высокой температуры без деформации. Глины вследствие неоднородности состава не имеют определенной температуры плавления. При действии высоких температур они размягчаются и постепенно деформируются. По огнеупорности различают глины трех групп: огнеупорные (огнеупорность выше 1580 °С), тугоплавкие (1350Ї1580 °С) и легкоплавкие (ниже 1350 °С).

К огнеупорным относятся каолинитовые глины, содержащие мало примесей. Такие глины используют для производства фарфора, фаянса и огнеупорных изделий. Тугоплавкие глины содержат оксиды железа, кварцевый песок и другие примеси в значительно большем количестве, чем огнеупорные. Их применяют для производства тугоплавкого, облицовочного и лицевого кирпича, плиток для полов и канализационных труб. Легкоплавкие глины наиболее разнообразны по минеральному составу, содержат значительное количество примесей. Их используют в производстве кирпича, черепицы, легких заполнителей и т. д.

2.2 Добавки к глинам

Для придания различных свойств как глинам, так и получаемым из них керамическим изделиям в глину вводят различные добавки. Кратко рассмотрим добавки, имеющие наиболее частое применение.

Отощающие добавки. B качестве этих добавок чаще всего применяют вещества неорганического происхождения Ї кварцевый песок, шамот (обожженная и измельченная глина) и бой изделий, молотый шлак и золу. Эти добавки не только уменьшают усадку изделий, но и улучшают формовочные свойства массы, облегчают технологический процесс производства и устраняют брак. В ряде случаев они улучшают физические свойства изделий, например термостойкость и теплопроводность.

Пластифицирующими добавками являются бентониты, а также поверхностно активные вещества Ї сульфитно-дрожжевая бражка и др. Они используются для устранения недостаточной пластичности глины.

Выгорающие добавки. Для получения изделий с меньшим объемным весом и увеличенной пористостью применяют органические выгорающие добавки. Наиболее часто используются древесные опилки, угольная мелочь и угольный порошок, торфяная пыль и др. Применяют также вещества, выделяющие при высокой температуре обжига углекислоту, что ведет к образованию пор Ї мел, доломит и глинистый мергель (в молотом виде).

Специальные добавки. Для придания керамическим изделиям специальных свойств могут применяться соответствующие добавки. Так, например, при изготовлении кислотоупорных изделий и облицовочных плиток добавками к глинам являются песчаные смеси, затворенные жидким стеклом или щелочами. При необходимости понижения температуры обжига некоторых изделий в глину вводятся флюсы (плавни) Ї молотый полевой шпат, руды, содержащие железо, песчаник и др. В качестве добавок, повышающих пластичность формовочной массы, применяют в небольших дозах (0,1Ї0,3%) поверхностно-активные вещества, например сульфитно-спиртовую барду. Для повышения качества кирпича в виде добавки употребляют пирофосфаты и полифосфаты натрия. Как специальные добавки можно рассматривать и окислы некоторых металлов, добавляемые в массу беложгущихся глин для окраски ее в определенный цвет.

3. Общая схема производства керамических изделий

Керамические изделия вследствие их разнообразия изготовляют разными технологическими приемами, но основные этапы их производства примерно одинаковы и состоят из добычи глины, подготовки массы для формования, формования сырца, сушки и обжига изделий.

3.1 Добыча глины, подготовка керамической массы и формование изделий

В большинстве случаев глину добывают открытым способом, для чего используют одно или многоковшовые экскаваторы, скреперы и другие механизмы. На завод глину доставляют рельсовым транспортом, автотранспортом, ленточными транспортерами, подвесными дорогами, люлечными конвейерами.

Карьерная глина обычно непригодна для получения изделий. Поэтому технология любого керамического изделия начинается с приготовления так называемой керамической или рабочей массы. Цель этой стадии производства -- разрушить природную структуру глиняного сырья, удалить из него вредные примеси, крупные куски измельчить, а затем обеспечить равномерное смешивание всех компонентов с водой до получения однородной и удобно формуемой керамической массы. В зависимости от вида изготовляемой продукции и свойств исходного сырья керамическую массу получают пластическим, полусухим и шликерным (мокрым) способами. В связи с этим выбирают и способ формования изделий -- пластическое формование, полусухое или сухое прессование, литье.

При пластическом способе подготовки массы и формования исходные материалы при естественной влажности или предварительно высушенные смешивают друг с другом с добавкой воды до получения теста. Влажность получаемой массы колеблется от 15 до 25 % и более. Подготовленная глиняная масса поступает в формующий пресс, чаще всего в ленточный обычный или снабженный вакуум-камерой. Разрежение способствует удалению воздуха из глины и сближению ее частиц, что повышает однородность и формуемость массы и прочность сырца. Глиняный брус требуемого сечения, выходящий через мундштук пресса, разрезают резательным аппаратом на изделия (сырцовые изделия). Пластический способ подготовки массы и формования наиболее распространен при выпуске массовых материалов (кирпича сплошного и пустотелого, камней, черепицы, облицовочных плиток и т. п.).

При полусухом способе подготовки сырьевые материалы вначале подсушивают, дробят, размалывают в порошок, а затем перемешивают и увлажняют водой или, что лучше паром, так как при этом облегчается превращение глины в однородную массу, улучшаются ее набухаемость и формовочная способность. Керамическая масса представляет собой малопластичный пресспорошок с небольшой влажностью: 8Ї12% при полусухом и 2Ї8% (чаще 4Ї6%) при сухом способе формования. Поэтому изделия из таких масс формуют под большим давлением (15Ї40 МПа) на специальных автоматических прессах. Изделия после прессования иногда можно сразу обжигать без предварительной сушки, что ведет к ускорению производства, сокращению расхода топлива и удешевлению продукции. В отличие от пластического способа формования можно использовать малопластичные глины, что расширяет сырьевую базу производства. Полусухим способом прессования изготовляют кирпич сплошной и пустотелый, облицовочные плитки, а сухим способом -- плотные керамические изделия (плитки для полов, дорожный кирпич, материалы из фаянса и фарфора).

По шликерному способу исходные материалы предварительно измельчают и тщательно смешивают с большим количеством воды (влажность смеси до 40%) до получения однородной текучей массы (шликера). Шликер используют непосредственно для изготовления изделий (способ литья) или для приготовления пресспорошка, высушивая его в распылительных башенных сушилках. Шликерный способ применяют в технологии фарфоровых и фаянсовых изделий, облицовочных плиток.

3.2 Сушка изделий

Сушка Ї весьма ответственный этап технологии, так как трещины обычно возникают именно на этом этапе, а при обжиге они лишь окончательно выявляются. Обычно достаточным является высушивание сырца до остаточной влажности 6Ї8%.

В процессе сушки продвижение влаги из толщи керамического изделия к наружным слоям происходит значительно медленнее, чем влагоотдача с поверхности, особенно это проявляется в ребрах и углах изделий. При этом возникает различная степень усадки внутренних и внешних слоев, а следовательно, создаются напряжения, которые могут привести к растрескиванию материала. Для предотвращения этого к жирным глинам прибавляют отощители, которые образуют жесткий скелет, препятствующий сближению глинистых частиц, увеличивают пористость изделия, что способствует продвижению воды из его внутренних слоев к наружным. Для уменьшения чувствительности глин к сушке применяют также паропрогрев и вакуумирование глин, используют некоторые органические, дегтевые и битуминозные вещества и др.

Раньше сырец сушили преимущественно в естественных условиях (в сушильных сараях). Естественная сушка, хотя и не требует затрат топлива, но в значительной степени зависит от погоды и длится очень долго (10Ї20 суток). В настоящее время сушку сырца, как правило, производят искусственно в специальных сушилках периодического или непрерывного действия. В качестве теплоносителя используют дымовые газы обжигательных печей или горячий воздух из калориферов. Срок сушки сокращается до 2Ї3 суток, а иногда до нескольких часов.

3.3 Обжиг изделий

ОбжигЇважная и завершающая стадия технологического процесса керамических изделий. Суммарные затраты на обжиг достигают 35Ї40% себестоимости товарной продукции. При обжиге сырца образуется искусственный каменный материал, который в отличие от глины не размывается водой и обладает относительно высокой прочностью. Это объясняется физико-химическими процессами, происходящими в глине под влиянием повышенных температур.

При нагреве сырых керамических изделий до 110°С удаляется свободная вода и керамическая масса становится непластичной. Но если добавить воду, пластические свойства массы восстанавливаются. С повышением температуры до 500Ї700°С выгорают органические примеси и удаляется химически связанная вода, находящаяся в глинистых минералах и других соединениях керамической массы, а керамическая масса безвозвратно теряет свои пластические свойства. Затем происходит разложение глинистых минералов вплоть до полного распада кристаллической решетки и образования аморфной смеси Al2O3 и SiO2. При дальнейшем нагреве до 1000°С вследствие реакций в твердой фазе возможно образование новых кристаллических силикатов, например силлиманита (Al2O3)(SiO2), и далее при 1200Ї1300°С переход его в муллит (3Al2O3)(2SiO2). Одновременно с этим легкоплавкие соединения керамической массы и минералы плавни создают некоторое количество расплава (жидкой фазы). Расплав обволакивает не расплавившиеся частицы, частично заполняет поры между ними и, обладая силой поверхностного натяжения, стягивает их, вызывая сближение и уплотнение. После остывания образуется камнеподобный черепок. Этот процесс называют спеканием. Результатом процесса спекания является уплотнение обжигаемого материала и, как следствие, уменьшение его открытой пористости.

Температурный интервал между огнеупорностью и началом спекания называют интервалом спекания глин. Интервал спекания зависит от состава глин. Чем он шире, тем меньше опасность деформации изделия при обжиге. Большинство легкоплавких глин имеет узкий интервал спекания. Обжиг изделий из них обычно ведут при температуре 900Ї1000°С. Огнеупорные и тугоплавкие глины имеют большой интервал спекания и применяются для получения изделий с плотным спекшимся черепком; обжигают их при 1150Ї1400°С.

Для обжига керамических материалов используют специальные печи (кольцевые, туннельные, щелевые, роликовые и др.). После обжига изделия охлаждают постепенно, чтобы предотвратить образование трещин. Обожженные изделия могут различаться между собой как по степени обжига, так и по наличию внешних дефектов. После выгрузки из печи их сортируют с учетом ГОСТа.

4. СТРУКТУРА И ОБЩИЕ СВОЙСТВА КЕРАМИЧЕСКИХ ИЗДЕЛИЙ

По структуре керамические различают изделия с пористым и спекшимся (плотным) черепком. Пористыми считают изделия с водопоглощением по массе более 5%. К ним относятся изделия как грубой (керамические стеновые кирпич и камень, изделия для кровли и перекрытий, дренажные трубы), так и тонкой (облицовочные плитки, фаянсовые) керамики. К плотным относят изделия с водопоглощением по массе менее 5%. К ним принадлежат также изделия и грубой (клинкерный кирпич, крупноразмерные облицовочные плиты), и тонкой (фаянс, полуфарфор, фарфор) керамики.

К керамическим изделиям предъявляются различные требования к воздействиям, которые они испытывают при эксплуатации:

Пористость и водопоглощение. Пористость керамического черепка (у пористых изделий) обычно составляет 10Ї40%, она возрастает при введении в керамическую массу выгорающих, пенообразующих и других добавок. Стремясь снизить объемную массу и теплопроводность, прибегают к созданию пустот в кирпиче и керамических камнях. Водопоглощение характеризует пористость керамического черепка. Пористые керамические изделия имеют водопоглощение 6Ї20% по массе, т. е. 12Ї14% по объему. У плотных же изделий водопоглощение гораздо меньше: 1Ї5% по массе (2Ї10% по объему).

Теплопроводность. Теплопроводность абсолютно плотного керамического черепка (самая большая) Ї 1,16 Вт/(м.°С). Воздушные поры и пустоты, создаваемые в керамических изделиях, снижают объемную массу и значительно уменьшают теплопроводность. Облегчение стеновых керамических изделий с 1800 до 700 кг/м3 понижает теплопроводность с 0,8 до 0,21 Вт/(м.°С). Соответственно уменьшается толщина наружной стены и материалоемкость ограждающих конструкций.

Прочность. Прочность керамических материалов зависит от фазового состава керамического черепка и пористости. Марка стенового керамического изделия (кирпича и др.) по прочности обозначает предел прочности при сжатии и составляет в пределах от 0,05 до 1000 МПа, однако при установлении марки кирпича наряду с прочностью при сжатии учитывают показатель прочности при изгибе (0,7Ї5 МПа), поскольку кирпич в кладке подвергается изгибу. Предел прочности при сжатии керамических материалов зависит от их состава и структуры и уменьшается с увеличением размера образца. Наиболее важное значение он имеет для изделий стеновой керамики, которые воспринимают большие нагрузки в зданиях и сооружениях. По этому показателю стеновые изделия маркируют, принимая за марку среднюю величину по результатам испытания пяти образцов. Предел прочности при изгибе керамических материалов зависит от тех же факторов, что и при сжатии, с той лишь разницей, что здесь структура материала оказывает более резкое влияние на его сопротивляемость изгибу. Так, например, кирпич полусухого прессования имеет меньшую величину предела прочности при изгибе, чем кирпич пластического формования, изготовленный из тех же глин, хотя предел прочности при сжатии последнего ниже, чем у кирпича полусухого формования. Предел прочности при изгибе регламентируется ГОСТами для кирпича, поскольку в стене он испытывает не только сжимающие, но и изгибающие нагрузки, вследствие неровностей своей поверхности. Этот показатель регламентируется и для некоторых других керамических изделий. По нему также судят об относительной прочности испытуемого материала и используют его как косвенный показатель для характеристики некоторых других свойств глинистого сырья и обожженных изделий (связность, связующая способность, термостойкость).

Морозостойкость. Ею называют способность материала в насыщенном водой состоянии выдерживать многократное попеременное замораживание и оттаивание без признаков разрушения и без значительного понижения прочности. Показателем морозостойкости является количество теплосмен, которое выдерживает материал без признаков разрушения. Обстоятельные исследования по влиянию гранулометрии пор на морозостойкость керамических материалов выявили следующие положения: все поры в керамическом материале (с точки зрения морозостойкости) могут быть разделены на три категории: опасные, безопасные и резервные. Опасные поры заполняются водой при насыщении на холоде. В них она удерживается при извлечении материала из воды и замерзает при температуре от минус 15 до минус 20° С. Диаметр этих пор от 200 до 1 мкм для глиняного кирпича пластического прессования, от 200 до 0,1 мкм для глиняного кирпича полусухого прессования. Безопасные поры при насыщении на холоде водой не заполняются, либо заполнившая их вода не замерзает при указанных температурах. Это обычно мелкие поры. Заполняющая их вода становится по существу пристеночной адсорбированной влагой, имеющей свойства почти твердого тела и температуру замерзания существенно ниже (минус 20° С). Резервные поры при насыщении на холоде полностью заполняются водой, но из них при извлечении образца из насыщающего сосуда вода частично вытекает вследствие малых капиллярных сил. Это крупные поры диаметром более 200 мкм. Согласно этим исследованиям, керамический материал будет морозостойким, если в нем объем резервных пор достаточен для компенсации прироста объема замерзающей воды в опасных порах.

Паропроницаемость. Паропроницаемость стеновых керамических изделий способствует естественной вентиляции помещений. Малая паропроницаемость нередко служит причиной отпотевания внутренней поверхности стен помещений с повышенной влажностью воздуха. Паропроницаемость зависит от пористости и характера пор. Например, коэффициент паропроницаемости фасадных плиток полусухого прессования с водопоглощеннем 8,5; 6,5 и 0,25% соответственно равен 0,155; 0,0525 и 0,029 г/(м.ч.Па). В многослойных стенах неодинаковая газопроницаемость отдельных слоев стены может вызвать накопление влаги в ее толще, последующее ее замерзание и отслаивание части стены. По этой причине не вполне надежна фасадная облицовка стен глазурованными плитками, обладающими низкой газопроницаемостью.

5. СТЕНОВЫЕ ИЗДЕЛИЯ

Несмотря на определенные успехи в производстве индустриальных стеновых материалов (крупных блоков, панелей), на долю мелкоштучных изделий (кирпича и мелких блоков) приходится все еще около две третьих общего выпуска каменных стеновых материалов, в том числе выпуск керамического кирпича составляет почти половину всех стеновых материалов. Наряду с кирпичом керамическим обыкновенным в группу стеновых керамических материалов входят различные виды более эффективных керамических материалов (кирпич пустотелый, пористо-пустотелый, легкий, пустотелые камни), а также крупноразмерные стеновые кирпичные блоки и панели заводского изготовления. По плотности и теплотехническим свойствам керамические кирпич и камни для стен делят на три группы: обыкновенный с плотностью не менее 1600 кг/м3, условно-эффективный (1400Ї1600 кг/м3) и эффективный (менее 1400 кг/м3).

Эффективные керамические изделия имеют меньшую среднюю плотность и более низкую теплопроводность, чем сплошной кирпич. Они обладают достаточной прочностью, а некоторые из них (камни) имеют большие размеры, чем обыкновенный кирпич. Применение эффективных изделий дает возможность снизить толщину и массу ограждающих конструкций, расход керамических материалов и раствора для кладки и снизить стоимость строительства. Например, применение высокопустотного керамического камня позволяет сократить толщину наружных стен с 64 до 38 см, т. е. на 40%. Но кирпич, в том числе и эффективный, и мелкие камни являются мелкоштучным материалом. Изготовление же из них стеновых панелей и крупных блоков в заводских условиях позволяет получать индустриальные изделия. Стеновые керамические материалы характеризуются пористостью, которая контролируется водопоглощением (по ГОСТу не менее 6Ї8 % в зависимости от вида стенового керамического изделия и его марки). Это требование стандарта означает, что керамический материал, имеющий водопоглощение меньше указанной величины, недостаточно порист и отличается повышенной теплопроводностью и будет плохо сцепляться со строительным раствором. Морозостойкость стеновых керамических материалов должна быть не менее 15 циклов, кроме кирпича строительного легкого, который должен выдерживать не менее 10 циклов.

5.1 Виды стеновых изделий

Кирпич керамический обыкновенный имеет форму прямоугольного параллелепипеда с ровными гранями и прямыми ребрами и углами размером 250?120?65(88) мм, реже 288?138?65 (модульный). Для кирпича толщиной 88 мм и модульного обязательно наличие круглых или щелевых пустот, чтобы масса одного кирпича не превышала 4 кг. Формуют кирпич пластическим и реже полусухим способами. Плотность кирпича 1600Ї1900 кг/м3, а теплопроводность 0,70Ї0,82 Вт/(м.°С). Более высокие показатели этих свойств относятся к кирпичу полусухого прессования. Прочность кирпича характеризуется пределом прочности при сжатии и изгибе и обозначается марками: 75, 100, 125, 1.50, 175, 200, 250 и 300. По морозостойкости кирпич подразделяют на четыре марки: F 15, 25, 35 и 50.

Кирпич должен быть нормально обожжен, так как недожог (алый кирпич) обладает недостаточной прочностью, малой водостойкостью и морозостойкостью, а пережженный кирпич (железняк) отличается повышенными плотностью, теплопроводностью и, как правило, имеет искаженную форму. По внешнему виду кирпич должен удовлетворять требованиям стандарта. Это устанавливают путём осмотра и обмера определенного количества кирпича от каждой партии (0,5 %, но не менее 100 шт.) по отклонениям от установленных размеров, непрямолинейности ребер и граней, отбитости углов и ребер, наличию сквозных трещин, проходящих по постели кирпича.

Кирпич применяют для кладки наружных и внутренних стен, изготовления стеновых блоков и панелей, кладки печей и дымовых труб в зонах, где температура не превышает температуры обжига кирпича. Кирпич полусухого прессования не допускается использовать для кладки фундаментов и цоколей ниже гидроизоляционного слоя.

Пустотелый кирпич пластического формования имеет сквозные щелевидные или круглые отверстия, а полусухого прессования -- сквозные или несквозные пустоты различной формы.

Пористо-пустотелый кирпич получают аналогично пустотелому, но в состав керамической массы вводят выгорающие добавки.

Керамические стеновые камни выпускают больших размеров и объемов, чем кирпич. Технология производства их незначительно отличается от технологии пустотелого кирпича пластического формования. По плотности эти виды кирпича и камней подразделяют на условно-эффективные, улучшающие теплотехнические свойства стен, и эффективные, позволяющие уменьшить толщину стен по сравнению с толщиной стен из обыкновенного кирпича.

Наличие пустот не только снижает плотность и массу таких изделий, но и ускоряет процессы их сушки и обжига, так как изделие прогревается быстрее и равномернее через наружные и внутренние поверхности. Поэтому пустотелые кирпич и камни имеют меньше дефектов, а прочность (марка) их, несмотря на большой процент пустот (до 37%), такая же, как у обыкновенного кирпича, кроме камней с горизонтальными пустотами, у которых марка значительно ниже (25Ї50). Пустотелые кирпичи и камни применяют наравне со сплошным, за исключением кладки фундаментов, подземных частей стен, печей, дымовых каналов и стен помещений с влажным режимом эксплуатации.

Кирпич строительный легкий изготовляют из сырьевой массы, основу которой составляют легкие пористые кремнеземистые породы (диатомит, трепел) с выгорающими добавками. По плотности легкий кирпич разделяют на три класса: класс А (700Ї1000 кг/м3); класс Б (1001Ї1300 кг/м3); класс В (свыше 1300 кг/м3), каждому из которых соответствуют определенные марки по прочности -- от 50 до 100. Применяют легкий кирпич для стен зданий с нормальной влажностью.

Крупные стеновые керамические изделия (панели) для наружных стен выпускают трех, двух и однослойные, размером на комнату. Трехслойная панель состоит из двух кирпичных наружных слоев каждый толщиной 65 мм, утеплителя (минераловатных плит, пеностекла, фибролита) и трех слоев цементного раствора. Фасадная сторона может быть отделана керамической плиткой.

Двухслойная панель состоит из одного слоя в 1/2 кирпича (120 мм) и слоя утеплителя. Однослойные наружные панели изготовляют из пустотелых керамических камней, а для внутренних стен -- из кирпича. Для обеспечения прочности панели при монтаже и транспортировании их армируют стальными каркасами из проволоки по периметру оконного проема и панели. Монтажные петли закладывают на всю высоту панели. Для ускорения твердения применяют тепловлажностную обработку. Монтируют панели на строительстве с помощью крана.

СПИСОК ЛИТЕРАТУРЫ

1. Строительные материалы: Учеб. /Под общ. ред. В.Г. Микульского. - М.: Изд-во АСВ, 2000. - 536с.

2. Комар А.Г. Строительные материалы и изделия: Учеб. для вузов. - М.: Высш. шк., 1983. - 487с.

3. Домокеев А.Г. Строительные материалы: Учеб. для вузов. - М.: Высш. шк., 1989. - 495с.

4. http://www.bibliotekar.ru/spravochnik-32

5. http://www.bibliotekar.ru/spravochnik-33

Размещено на Allbest


Подобные документы

  • Исследование особенностей гончарного производства. Анализ состава массы, употребляемой для выделки керамических изделий. Обзор процесса подготовки глины. Характеристика конструкции и принципа работы гончарного круга. Обжиг и сушка керамических изделий.

    презентация [8,4 M], добавлен 23.03.2016

  • Изучение понятия, видов и свойств керамических материалов и изделий. Характеристика сырья и процесса производства керамических изделий. Исследование использования в строительстве как стеновых, кровельных, облицовочных материалов и заполнителей бетона.

    реферат [17,6 K], добавлен 26.04.2011

  • Подготовка стальных труб к нанесению стеклоэмали. Технологический процесс получения эмали. Обжиг стеклоэмалевого покрытия. Сырье для производства шамотных огнеупоров. Технология изготовления шамота. Декорирование керамических изделий по методу деколи.

    отчет по практике [1,5 M], добавлен 11.07.2015

  • История гончарной керамики. Технология производства керамических изделий. Сырьё для керамических масс. Прозрачные керамические материалы, особенности их структуры. Производство каменной керамической посуды в XVI в. Виды современных глиняных изделий.

    презентация [3,0 M], добавлен 11.02.2011

  • Исторические сведения о возникновении керамики, область ее применения. Современные технологии керамических материалов. Производство керамических материалов, изделий в Казахстане, СНГ и за рубежом. Производство и применение стеновых и облицовочных изделий.

    курсовая работа [134,7 K], добавлен 06.06.2014

  • Исторические сведения о возникновении керамических материалов, область их применения. Основные физико-химические свойства керамики, применяемые сырьевые материалы. Общая схема технологических этапов производства керамических материалов, ее характеристика.

    курсовая работа [74,2 K], добавлен 02.03.2011

  • Изучение технологии изготовления керамики - материалов, получаемых из глинистых веществ с минеральными или органическими добавками или без них путем формования и последующего обжига. Этапы производства: формовка изделия, нанесение декора, сушка, обжиг.

    реферат [21,2 K], добавлен 03.02.2011

  • Материалы керамического производства черепка, глазури и для декорирования, их влияние на качество изделий. Расчет керамических масс по рациональным составам компонентов, подготовка литейных шликеров и воздействие процессов сушки изделий на их качество.

    курсовая работа [74,9 K], добавлен 07.03.2011

  • Классификация кислотостойких керамических материалов: сырье, технология получения. Особенности производства кислотостойкой керамической плитки: выбор и обоснование технологической схемы и режимов. Расчет производственной программы и потребности в сырье.

    курсовая работа [2,0 M], добавлен 26.05.2013

  • Требования к кирпичу и керамическим камням прямоугольной формы, их разновидности. Сырье для производства кирпичей. Подготовка формовочных масс. Формование изделий, сушка, обжиг, сортировка и упаковка. Составление производственной программы предприятия.

    контрольная работа [27,6 K], добавлен 17.11.2010

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.