Химия в легкой промышленности

Легкая промышленность и оценка ее значения в народном хозяйстве, современные химические технологии, используемые в ней. Понятие и технологические особенности колорирования, применяемые краски. Влияние колорирования на свойства конечного продукта.

Рубрика Производство и технологии
Вид реферат
Язык русский
Дата добавления 11.11.2011
Размер файла 28,3 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

Размещено на http://www.allbest.ru/

Химия в легкой промышленности

колорирование легкий промышленность материал

Лёгкая промышленность обеспечивает потребности населения в тканях, одежде, обуви, а также другие отрасли специализированными материалами.

Лёгкая промышленность включает в себя 30 крупных отраслей, которые объединяются в группы:

· первичная переработка сырья;

· текстильная промышленность;

· швейная промышленность;

· обувная промышленность.

Важнейшей отраслью легкой промышленности является текстильная.

Производство текстиля - древнейшая и современная химическая технология.

Производство текстиля и изделий из него (одежда, обувь, головные уборы, предметы домашнего быта и др.) является одной из самых древних технологий, наряду с медициной, сельским хозяйством, технологией приготовления пищи, домостроительством. Эти технологии - на все времена, их результаты жизненно необходимы и востребованы всеми и каждодневно.

Поэтому эти исключительно мирные области знания и практической деятельности человека развивались и совершенствовались синхронно с развитием цивилизации и прежде всего фундаментальных и прикладных наук, реализуя их идеи и методы быстро и эффективно. Для всех этих технологий чрезвычайно важную, доминирующую роль всегда играла и будет играть химия.

Как и многие из этих древних и современных технологий производство текстиля прошло традиционные стадии развития: искусство - ремесло - технология.

Производство текстиля состоит из двух очень непохожих по своей сути стадий: механической и химической технологий. На первой, механической технологической фазе осуществляется производство из природных или химических волокон пряжи (прядение), из которой затем изготавливаются ткани (ткачество). Практически никаких химических превращений с волокнами, пряжей и тканью на этой стадии не происходит. Связь с химией состоит лишь в том, что все текстильные волокна (природные, химические) являются разнообразными полимерами с определенным химическим строением и физической структурой. Поэтому для реализации механической стадии технологии необходимы обширные знания физико-механических свойств волокон, которые определяются их химической и физической природой.

Химическая технология текстильных материалов в качестве объекта воздействия имеет дело с суровой тканью (реже пряжей), трикотажем или нетканым материалом. Это еще не конечный продукт, ему предстоит пройти долгий путь, включающий большое число операций физико-химического воздействия или химических превращений.

Основными стадиями химической технологии текстильных материалов (отделки) являются очистка текстильных материалов от загрязнений, колорирование (крашение и печатание) и заключительная отделка (аппретирование).

В развитии химической технологии производства текстиля, как области знания и прикладной деятельности, принимали активное участие видные ученые химики разных стран (Перкин, Зинин, Порай-Кошиц, Ворожцов, Ильинский, Корозерс и др.

На каких «химических китах» держится химическая технология производства текстиля?

В основе комплексной технологии производства текстиля лежат многочисленные физико-химические явления и химические превращения и практически все основные разделы химии активно используются в ее теории и практике.

Подготовка - начальная стадия технологии. В основе подготовки текстильных материалов, т.е. очистки от загрязнений и придание текстилю белизны, прежде всего лежат коллоидно-химические процессы и, в частности, с участием поверхностно-активных веществ, поскольку удаление загрязнений осуществляется через эмульгирование не растворимых в воде загрязнений гидрофобного характера (жиры, воска) с помощью моющих эмульгирующих ПАВ.

Загрязнения, имеющие окраску (природные пигменты), для придания текстильному материалу белизны должны быть обесцвечены (разрушение хромофорной системы пигмента без деструкции полимерной основы волокна), что достигается обработкой специально подобранными неорганическими окислителями (хлориты, гипохлориты, пероксиды). Эта важная часть технологии опирается на неорганическую химию (окислители), химию красителей (теория цветности), физическую химию (окислительно - восстановительные реакции), полимерную химию (окислительная деструкция полимеров), химическую физику (радикально-цепные реакции окисления органических веществ). Приведенное перечисление не исчерпывает полного списка химических и физико-химических процессов и явлений, присущих только первой химико-технологической фазе производства текстиля.

К вышесказанному следует добавить проблему использования оптических отбеливателей для придания текстильным материалам устойчивой и высокой белизны, которой нельзя добиться только химической (деструктивной) отбелкой. В основе этой операции лежат явления фотохимии (правильнее - фотофизики), поскольку белизна есть результат интенсивного поглощения органическими веществами определенной структуры (похожими на красители, но не имеющими окраски) в ультрафиолетовой области и испускания в видимой синей области спектра. Эмиссия синего цвета компенсирует дополнительный цвет - природную желтизну текстильного материала. Одной из операций подготовки (и не только подготовки) текстиля является придание материалу стабильной формы путем его тепловой обработки (пар, горячий воздух, ИК-обогрев), обеспечивающей протекание релаксационных процессов, которые снимают локальные напряжения в материале вплоть до надмолекулярной структуры волокна. Материал в этих условиях переходит в термодинамически равновесное состояние. Следовательно, в данной операции мы имеем дело с физикой и физикохимией полимеров.

Колорирование - ядро технологии. Колорирование, т.е. формирование окраски на текстильном материале целиком по его площади (крашение) или локальное, согласно рисунку художника, в широком понимании можно рассматривать как взаимодействие низкомолекулярных окрашенных соединений (красители или пигменты) с твердым бипористым (микро- и макропоры) дисперсным полимерным текстильным материалом. Как правило, это взаимодействие осуществляется в результате массопереноса окрашенного вещества в форме иона или незаряженной молекулы из внешней среды (фазы), чаще всего жидкой, реже гелеобразной или газовой, в твердую фазу волокна с последующим проникновением красителя во внутреннюю структуру волокна и закреплением его сорбционными связями различной природы (физическая сорбция или хемосорбция). Такой сложный межфазный, гетерогенный процесс включает в себя как основные стадии диффузию и сорбцию. Диффузия является лимитирующей стадией, определяющей скорость протекания процессов крашения и печатания, а сорбция, ее термодинамические свойства (сродство, теплота, энтропия) влияют на устойчивость окраски.

В зависимости от химической и физической природы волокон и химического строения красителей (принадлежность к определенному классу) проявляются различные механизмы диффузии и сорбции красителей.

В случае нетермопластичных гидрофильных волокон (целлюлозные, белковые) с развитой структурой микропор диффузия красителя осуществляется через жидкость (вода), заполняющую микропоры этих волокон - «поровый» механизм - с одновременной физической или химической сорбцией ионов красителей на активных центрах (ионогенные группы) волокна.

Соотношение диффузионных и сорбционных свойств системы волокно-краситель определяет скорость и эффективность формирования окраски. Между скоростью диффузии и сродством красителя к волокну имеется сложная зависимость, как между кинетическими и термодинамическими параметрами

системы. В упрощенном виде феномен окрашивания текстильного материала можно определить как реализацию этих параметров в двуединстве; без проявления их в совокупности окраска сформироваться не может. Краситель должен иметь сродство к волокну, что определяется комплиментарностью химического строения красителя и полимера волокна, а также должны быть выполнены условия для диффузии, т.е. наличие концентрации и диффузионной проницаемости волокна.

Чем выше сродство красителя к волокну, тем более интенсивно он взаимодействует с волокном и тем медленнее диффундирует. В то же время, чем выше сродство тем эффективнее и полнее краситель переходит из внешней фазы в волокно, образуя более устойчивую окраску. Такая зависимость между кинетикой и термодинамикой процесса определяет основной принцип практики колорирования: нахождение оптимального с точки зрения химика-технолога соотношения между диффузией и сорбцией («золотое сечение»).

В случае термопластичных волокон, а это большинство синтетических волокон, механизм диффузии красителей в волокне принципиально иной. Диффузия в эти волокна, существующие при комнатной температуре в застеклованном состоянии, невозможна, поскольку их структура «монолитна», не содержат пор, соизмеримых с размерами молекул (ионов) красителей и поэтому недоступна для диффузии. При повышении температуры до превышения температуры стеклования волокна оно переходит в высокоэластичное состояние с достаточным свободным объемом динамических пор, возникающих за счет сегментарной подвижности макромолекул в аморфной области волокна. Такая диффузия протекает по механизму диффузии через «свободный объем» и подчиняется известному уравнению Вильямса, Лэндла, Ферри:

,

где р и ст. коэффициент диффузии при рабочей температуре Тр и температуре стеклования Тст, соответственно; А и В = const; ДТ = Тр - Тст.

Как и в случае нетермопластичных волокон, для термопластичных материалов также существует аналогичная зависимость между диффузией и сорбцией. Однако роль влияния температуры для термопластичных волокон проявляется сильнее. До температуры стеклования диффузия практически не идет, а в условиях превышения температуры скорость диффузии D является функцией разности температур D = fT). Эта зависимость для формирования окраски требует высоких температур; ограничением является температура плавления волокна.

Все вышеописанные механизмы диффузии и сорбции характерны для всех классов красителей и видов волокон, за исключением пигментов, принцип фиксации которых совершенно иной. Они фиксируются - приклеиваются на текстильном материале с помощью специально подобранных полимерных клеев - связующих (адгезивов), химическая и физическая природа которых определяет эффективность крашения и печатания и качество окраски. Такими связующими служат специально синтезированные акрилаты, обеспечивающие устойчивость окраски за счет своей эластичности, свето- и погодостойкости, устойчивости к истиранию и т.д.

Таким образом, эта технология колорирования базируется не на диффузионно-сорбционных процессах, а на процессах физики и химии полимеров, на явлениях адгезии и физикомеханике полимеров.

Как было сказано ранее, все классы красителей, кроме пигментов, объединенные общим диффузионно-сорбционным механизмом колорирования, проявляют специфику в химическом взаимодействии с волокном. В этом отношении их можно подразделить на следующие группы в зависимости от характера сорбции красителя волокном:

- физическая обратимая сорбция: прямые красители на целлюлозных волокнах, дисперсные красители на синтетических волокнах;

- химическая сорбция с образованием обратимой ионной связи: кислотные красители на белковых волокнах, катионные красители на полиакриловых волокнах;

- химическая сорбция с образованием необратимой ковалентной связи: активные красители на целлюлозных, белковых, полиамидных волокнах;

- образование нерастворимых пигментов во внутренней структуре волокон: кубовые, сернистые, нерастворимые азокрасители на целлюлозных волокнах.

Из всех этих комбинаций красителей и волокон следует выделить самый «молодой» класс активных красителей (появился в 1956 г.), которые с целлюлозными, белковыми и полиамидными волокнами в определенных условиях (pH, температура) образуют ковалентную связь, что обеспечивает исключительно устойчивую окраску к мокрым обработкам. По существу впервые был реализован революционный принцип образования химически, ковалентно (структурно) окрашенных макромолекул волокнообразующего полимера.

Ковалентное связывание активных красителей с волокнами обусловлено протеканием нуклеофильных реакций замещения или присоединения (в зависимости от строения активных красителей). Такой механизм требует наличия в волокнах нуклеофильных групп, которые имеются только у целлюлозных (-OH), белковых (-OH, - NH2) и полиамидных (-NH2) волокон, и ограничивает область применения этого интересного класса красителей этими волокнами.

С точки зрения химических превращений интересны кубовые и сернистые красители. Эти красители имеют свои технологические особенности, связанные с тем, что они изначально являются не красителями, а пигментами и их необходимо перевести в водорастворимую форму, создать условия для диффузии их в этой форме в волокно и сорбции в его структуре, а затем вернуть им первоначальную форму пигмента (в кристаллическом состоянии) и тем самым обеспечить высокую устойчивость окраски. Кубовые и сернистые красители являются по своему строению и химическим свойствам окислительно-восстановительными системами. Их восстановленная форма растворима в сильнощелочных растворах, а при окислении они теряют растворимость. На этих окислительно-восстановительных процессах, дополняющих диффузионно-сорбционные явления, основана технология колорирования кубовыми и сернистыми красителями.

Заключительная отделка текстильных материалов. Как новый дом без внутренней отделки и инженерных коммуникаций не пригоден для жилья, так и суровый текстильный материал только после отделки на химической стадии технологии и ее последней стадии - аппретировании становится готовым текстильным материалом с комплексом потребительских свойств.

Большинству текстильных материалов, используемых в быту и особенно в технике, придается износостойкость к определенным видам разрушающего воздействия (механо-, термо-, хемо-, фото-, биодеструкция). Чаще всего материал в изделии испытывает одновременно несколько разрушающих воздействий. Поэтому очень важно выделить доминирующий вид разрушения и соответственно обеспечить защиту текстильного материала и изделия от этого вида разрушения. При общей радикальной природе процессов разрушения от всех факторов воздействия (отдельно стоит биодеструкция) каждый из этих факторов имеет свой специфический механизм действия и требует соответствующих специальных средств защиты. Эта технология имеет много общего с проблемой деструкции (старения) и стабилизации полимеров, глубоко проработанной в рамках химической физики, а механизм светостарения окрашенных текстильных материалов и их светостабилизации смыкается с проблемами фотохимии окрашенных веществ. Помимо общего требования к текстильным материалам - износостойкости, к ним предъявляются дополнительно специальные требования, учитывающие конкретное назначение материала: для одежды - формоустойчивость; для постельного белья - гидрофильность; для плащевых материалов - водоотталкивание; для спецодежды - маслоотталкивание, пониженная горючесть; для палаточных тканей и геотекстиля - гидро- и биостойкость.

Все эти и другие свойства текстильным материалам придаются с помощью специальных препаратов - аппретов. Присутствие аппретирующего препарата на текстильном материале в количестве от 1 до 5% от массы материала придает ему целиком специфические свойства: гидрофильные препараты обеспечивают гидрофильность, гидрофобные и олеофобные препараты - гидрофобность и олеофобность, биоцидные препараты - биологическую стойкость и биоактивность (вплоть до лечебных свойств), антипирены - огнезащищенность и т.д. Другими словами, аппрет, находящийся на текстильном материале в относительно небольшом количестве, переносит свои свойства на всю массу, на весь объем, на всю поверхность материала.

Для того, чтобы перечисленные потребительские свойства текстильного материала сохранялись после стирки, в процессе нанесения аппрета реализуют тот же химический принцип, что и в случае активных красителей, т.е. образование прочной ковалентной связи между волокном и аппретом. Для этого используют разнообразные методы и приемы полимерной химии. Это. полимераналогичные превращения между волокном и аппретом; получение привитых сополимеров; полимеризация или поликонденсация нового полимера на текстильном материале; нанесение пленки готового полимера.

Для каждого вида аппрета характерны свои химические и физико-химические превращения, которые протекают, как правило, при высоких температурах (150-180°С) и с участием катализаторов.

Размещено на Allbest.ru


Подобные документы

  • Современные направления моды в области колорирования волос, обоснование выбора модели прически. Способы колорирования и методы их выполнения. Особенности колорирования светлых, рыжих и темных волос. Аппаратура, инструменты и приспособления для работы.

    курсовая работа [333,3 K], добавлен 07.05.2013

  • Комплекс, производящий товары народного потребления. Общая характеристика легкой промышленности в России. Особенности планирования подготовки производства предприятий легкой промышленности. Сырьевая база, структура производственных мощностей и ресурсы.

    контрольная работа [56,5 K], добавлен 27.04.2009

  • Легкая промышленность: характеристика отрасли и ее роль в межгосударственных отношениях стран СНГ. Средний уровень развития информационных технологий на предприятиях. Обоснование преимуществ внедрения в производство автоматизированных систем управления.

    курсовая работа [614,9 K], добавлен 29.05.2009

  • Изучение и анализ деятельности предприятия легкой промышленности - швейной фабрики "Бердчанка". Функции, состав и оборудование экспериментального цеха, особенности подготовительного производства. Организация работы раскройного и швейного цехов фабрики.

    отчет по практике [594,8 K], добавлен 22.03.2011

  • История развития промышленности, изготавливающей одежду. Проблемы изобретателей швейной машины. Индустриальный прорыв Зингера. Изготовление одежды в больших объёмах с появлением швейной машины. Типовая производственная структура швейного предприятия.

    реферат [725,4 K], добавлен 08.03.2011

  • Товары легкой промышленности как весомая часть внутреннего рынка. Обоснование выбора модели. Функциональные, эстетические, эргономические, гигиенические и эксплуатационные требования к изделию. Выбор материала и режимов технологической обработки.

    контрольная работа [22,6 K], добавлен 30.03.2009

  • Состояние текстильной промышленности Российской Федерации. Валовое производство шерсти по странам СНГ. Удельный вес легкой промышленности в общем объеме производства. Характеристика готовой продукции и полуфабрикатов. Обоснование выбора ассортимента.

    дипломная работа [3,5 M], добавлен 13.07.2011

  • Порошковая металлургия. Основными элементами технологии порошковой металлургии. Методы изготовления порошковых материалов. Методы контроля свойств порошков. Химические, физические, технологические свойства. Основные закономерности прессования.

    курсовая работа [442,7 K], добавлен 17.10.2008

  • Применение сорбционных процессов в промышленности. Физико-химические свойства торфа, технологическая схема производства сорбентов. Расчет технологического оборудования и числа работы в сутки. Модель сырьевых баз предприятий торфяной промышленности.

    курсовая работа [203,2 K], добавлен 20.01.2012

  • Современные тенденции в развитии материаловедения мебельной промышленности. Древесные породы, применяемые в плотничных работах. Физические и механические свойства древесины. Круглые лесоматериалы, клееные деревянные конструкции, полимерные материалы.

    курсовая работа [518,0 K], добавлен 10.02.2016

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.