Классификация теплообменных аппаратов
Устройство и сферы применения кожухотрубчатых, двухтрубных, витых, погружных, оросительных, ребристых, спиральных, пластинчатых, графитовых, элементных теплообменников. Преимущества и недостатки использования каждого из видов теплообменных аппаратов.
Рубрика | Производство и технологии |
Вид | реферат |
Язык | русский |
Дата добавления | 02.11.2011 |
Размер файла | 313,5 K |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
Размещено на http://www.allbest.ru/
Содержание
Введение
1. Кожухотрубчатые теплообменники
2. Двухтрубные теплообменники типа “труба в трубе”
3. Витые теплообменники
4. Погружные теплообменники
5. Оросительные теплообменники
6. Ребристые теплообменники
7. Спиральные теплообменники
8. Пластинчатые теплообменники
9. Графитовые теплообменники
10. Элементные (секционные) теплообменники
Заключение
Список литературы
Введение
Теплообменник, теплообменный аппарат - устройство, в котором осуществляется передача теплоты от горячего теплоносителя к холодному (нагреваемому). Теплоносителями могут быть газы, пары, жидкости. В зависимости от назначения теплообменные аппараты используют как нагреватели и как охладители. Применяется в технологических процессах нефтеперерабатывающей, нефтехимической, химической, газовой и других отраслях промышленности, в энергетике и коммунальном хозяйстве.
1. Кожухотрубчатые теплообменники
Основными элементами кожухотрубчатых теплообменников являются пучки труб, трубные решетки, корпус, крышки, патрубки. Концы труб крепятся в трубных решетках развальцовкой, сваркой и пайкой.
Рис. 1. ? Кожухотрубчатый теплообменник
Для увеличения скорости движения теплоносителей с целью интенсификации теплообмена нередко устанавливают перегородки как и трубном, так и межтрубном пространствах.
Кожухотрубчатые теплообменники могут быть вертикальными, горизонтальными и наклонными в соответствии с требованиями технологического процесса или удобства монтажа. В зависимости от величины температурных удлинений трубок и корпуса применяют кожухотрубчатые теплообменники жесткий, полужесткой и нежесткой конструкции.
Аппараты жесткой конструкции используют при сравнительно небольших разностях температур корпуса и пучка труб; эти теплообменники отличаются простотой устройства.
В кожухотрубчатых теплообменниках нежесткой конструкции предусматривается возможность некоторого независимого перемещения теплообменных труб и корпуса для устранения дополнительных напряжений от температурных удлинений.
Нежесткость конструкции обеспечивается сальниковым уплотнением на патрубке или корпусе, пучком U-образных труб, подвижной трубной решеткой закрытого и открытого типа.
В аппаратах полужесткой конструкции температурные деформации компенсируются осевым сжатием или расширением специальных компенсаторов, установленных па корпусе. Полужесткая конструкция надежно обеспечивает компенсацию температурных деформаций, если они не превышают 10-15 мм, а условное давление в межтрубном пространстве составляет не более 2,5 кгс/см2.
2. Двухтрубные теплообменники типа “труба в трубе”
Теплообменники этого типа состоят из ряда последовательно соединенных звеньев. Каждое звено представляет собой две соосные трубы. Для удобства чистки и замены внутренние трубы обычно соединяют между собой «калачами» или коленами. Двухтрубные теплообменники, имеющие значительную поверхность нагрева, состоят из ряда секций, параллельно соединенных коллекторами. Если одним из теплоносителей является насыщенный пар, то его, как правило, направляют в межтрубное (кольцевое) пространство. Такие теплообменники часто применяют как жидкостные или газожидкостные. Подбором диаметров внутренней и наружной труб можно обеспечить обеим рабочим средам, участвующим в теплообмене, необходимую скорость для достижения высокой интенсивности теплообмена.
Преимущества двухтрубного теплообменника: высокий коэффициент теплоотдачи, пригодность для нагрева или охлаждения сред при высоком давлении, простота изготовления, монтажа и обслуживания.
Недостатки двухтрубного теплообменника - громоздкость, высокая стоимость вследствие большого расхода металла на наружные трубы, не участвующие в теплообмене, сложность очистки кольцевого пространства.
Рис. 2. ? Двухтрубный теплообменник типа “труба в трубе”
3. Витые теплообменники
Поверхность нагрева витых теплообменников компонуется из ряда концентрических змеевиков, заключенных в кожух и закрепленных в соответствующих головках. Теплоносители движутся по трубному и межтрубному пространствам. Витые теплообменники широко применяют в аппаратуре высокого давления для процессов разделения газовых смесей методом глубокого охлаждения. Эти теплообменники характеризуются способностью к самокомпенсации, достаточной для восприятия деформаций от температурных напряжений.
Рис. 3. ? Витой теплообменник
4. Погружные теплообменники
Теплообменники этого типа состоят из плоских или цилиндрических змеевиков (аналогично витым), погруженных в сосуд с жидкой рабочей средой. Вследствие малой скорости омывания жидкостью и низкой теплоотдачи снаружи змеевика погружные теплообменники являются недостаточно эффективными аппаратами. Их целесообразно использовать, когда жидкая рабочая среда находится в состоянии кипения или имеет механические включения, а также при необходимости применения поверхности нагрева из специальных материалов (свинец, керамика, ферросилид и др.), для которых форма змеевика наиболее приемлема.
5. Оросительные теплообменники
Оросительные теплообменники представляют собой ряд расположенных одна над другой прямых труб, орошаемых снаружи водой. Трубы соединяют сваркой или на фланцах при помощи «калачей». Оросительные теплообменники применяют главным образом в качестве холодильников для жидкостей и газов или как конденсаторы. Орошающая вода равномерно подается сверху через желоб с зубчатыми краями. Вода, орошающая трубы, частично испаряется, вследствие чего расход ее в оросительных теплообменниках несколько ниже, чем в холодильниках других типов. Оросительные теплообменники - довольно громоздкие аппараты; они характеризуются низкой интенсивностью теплообмена, но просты в изготовлении и эксплуатации. Их применяют, когда требуется небольшая производительность, а также при охлаждении химически агрессивных сред или необходимости применения поверхности нагрева из специальных материалов (например, для охлаждения кислот применяют аппараты из кислотоупорного ферросилида, который плохо обрабатывается).
6. Ребристые теплообменники
кожухотрубчатый оросительный пластинчатый теплообменник
Ребристые теплообменники применяют для увеличения теплообменной поверхности оребрением с той стороны, которая характеризуется наибольшими термическими сопротивлениями. Ребристые теплообменники (калориферы) используют, например, при нагревании паром воздуха или газов. Важным условием эффективного использования ребер является их плотное соприкосновение с основной трубой (отсутствие воздушной прослойки), а также рациональное размещение ребер.
Ребристые теплообменники широко применяют в сушильных установках, отопительных системах и как экономайзеры
7. Спиральные теплообменники
В спиральных теплообменниках поверхность нагрева образуется двумя тонкими металлическими листами, приваренными к разделительной перегородке (керну) и свернутыми в виде спиралей. Для придания листам жесткости и прочности, а также для фиксирования расстояния между спиралями к листам с обеих сторон приварены дистанционные бобышки. Спиральные каналы прямоугольного сечения ограничиваются торцовыми крышками. Уплотнение каналов в спиральных теплообменниках осуществляют различными способами. Наиболее распространен способ, при котором каждый канал с одной стороны заваривают, а с другой уплотняют плоской прокладкой. При этом предотвращается смешение теплоносителей, а в случае неплотности прокладки наружу может просачиваться только один из теплоносителей. Кроме того, такой способ уплотнения дает возможность легко чистить каналы.
Если материал прокладки разрушается одним из теплоносителей, то один канал заваривают с обеих сторон (“глухой” канал), а другой уплотняют плоской прокладкой. При этом “глухой" канал недоступен для механической очистки.
Уплотнение плоской прокладкой обоих открытых (сквозных) каналов применяют лишь в тех случаях, когда смешение рабочих сред (при нарушении герметичности) безопасно и не вызывает порчи теплоносителей.
Сквозные каналы также можно уплотнить, при более или менее постоянном давлении в каналах, спиральными U-образными манжетами, прижимаемыми силой внутреннего давления к выступам в крышке.
Спиральные теплообменники отличаются компактностью, малыми гидравлическими сопротивлениями и значительной интенсивностью теплообмена при повышенных скоростях теплоносителей.
Недостатки спиральных теплообменников - сложность изготовления и ремонта, невозможность применения их при давлении рабочих сред свыше 10 кгс/см2.
Рис. 4. ? Спиральный теплообменник
8. Пластинчатые теплообменники
В последнее время распространены пластинчатые разборные теплообменники, отличающиеся интенсивным теплообменом, простотой изготовления, компактностью, малыми гидравлическими сопротивлениями, удобством монтажа и очистки от загрязнений.
Эти теплообменники состоят из отдельных пластин, разделенных резиновыми прокладками, двух концевых камер, рамы и стяжных болтов. Пластины штампуют из тонколистовой стали (толщина 0,7 мм). Для увеличения поверхности теплообмена и турбулизации потока теплоносителя проточную часть пластин выполняют гофрированной или ребристой, причем гофры могут быть горизонтальными или расположены “в елку” (шаг гофр 11,5; 22,5; 30 мм; высота 4-7 мм).
К пластинам приклеивают резиновые прокладки круглой и специальной формы для герметизации конструкции; теплоноситель направляют либо вдоль пластины, либо через отверстие в следующий канал.
Движение теплоносителей в пластинчатых теплообменниках может осуществляться прямотоком, противотоком и по смешанной схеме. Поверхность теплообмена одного аппарата может изменяться от 1 до 160 м2, число пластин - от 7 до 303.
В пластинчатых теплообменниках температура теплоносителя ограничивается 150°С (с учетом свойств резиновой прокладки), давление не должно превышать 10 кгс/см2.
Рис. 5. ? Пластинчатый теплообменник
9. Графитовые теплообменники
Эти теплообменники составляют отдельную группу. Высокая коррозионная стойкость и значительная теплопроводность делают графит незаменимым в некоторых производствах. Промышленностью выпускаются блочные, кожухотрубчатые, оросительные теплообменники и погружные теплообменные элементы.
Блочный графитовый теплообменник представляет собой один или несколько прямоугольных или цилиндрических блоков, имеющих две системы непересекающихся, перпендикулярных отверстий, создающих перекрестную схему движения теплоносителей. Каждая система отверстий имеет графитовые крышки для ввода и вывода рабочих сред. На крышки накладывают металлические плиты и систему стягивают болтами, создавая в графите наименее опасные напряжения сжатия.
10. Элементные (секционные) теплообменники
Эти теплообменники состоят из последовательно соединенных элементов-секций. Сочетание нескольких элементов с малым числом труб соответствует принципу многоходового кожухотрубчатого аппарата, работающего на наиболее выгодной схеме - противоточной. Элементные теплообменники эффективны в случае, когда теплоносители движутся с соизмеримыми скоростями без изменения агрегатного состояния. Их также целесообразно применять при высоком давлении рабочих сред. Отсутствие перегородок снижает гидравлические сопротивления и уменьшает степень загрязнения межтрубного пространства. Однако по сравнению с многоходовыми кожухотрубчатыми теплообменниками элементные теплообменники менее компактны и более дороги из-за увеличения числа дорогостоящих элементов аппарата-трубных решеток, фланцевых соединений, компенсаторов и др. Поверхность теплообмена одной секции применяемых элементных теплообменников составляет 0,75-30 м2, число трубок - от 4 до 140.
Рис 6. ? Элементный теплообменник
Заключение
Теплообменники по способу передачи теплоты подразделяют на поверхностные, где отсутствует непосредственный контакт теплоносителей, а передача тепла происходит через твёрдую стенку, и смесительные, где теплоносители контактируют непосредственно. Поверхностные теплообменники в свою очередь подразделяются на рекуперативные и регенеративные, в зависимости от одновременного или поочерёдного контакта теплоносителей с разделяющей их стенкой.
Список литературы
1. Теплотехника. / Под ред. А.П. Баскакова. 2-е изд., перераб. - М.: Энергоатомиздат, 1991. - 224 с.
2. Лариков Н.Н. Теплотехника. - М.: Стройиздат, 1985. - 432 с.
3. Сидельников Л.Н., Юренов В.Н. Котельные установки промышленных предприятий. - М.: Энергоатомиздат, 1988. - 528 с.
4. Бэр Г.Д. Техническая термодинамика. - М.: Мир, 1977. - 518 с.
5. Радченко И.В. Молекулярная физика. - М.: Наука, 1965. - 480 с.
6. Павлов К.Ф., Романков П.Г., Носков А.А. Процессы и аппараты химической технологии. - М.: Химия, 1987. - 622 с.
7. Панкратов Г.П. Теплотехника. - М.: Высшая школа, 1986. - 248 с.
Размещено на Allbest.ru
Подобные документы
Ознакомление с конструкцией теплообменных аппаратов нефтепромышленности; типы и конструктивное исполнение кожухотрубчатых установок. Описание технологического и механического расчета оборудования. Выбор конструкционных материалов и фланцевого соединения.
дипломная работа [3,3 M], добавлен 17.04.2014Применение теплообменных аппаратов типа "труба в трубе" и кожухотрубчатых для нагрева уксусной кислоты и охлаждения насыщенного водяного пара. Обеспечение должного теплообмена и достижения более высоких тепловых нагрузок на единицу массы аппарата.
курсовая работа [462,6 K], добавлен 06.11.2012Классификация теплообменных аппаратов и теплоносителей. Конструкции трубчатых, пластинчатых и спиральных аппаратов поверхностного типа. Определение поверхности нагрева, длины и количества секций прямоточного водяного обогревателя горячего водоснабжения.
курсовая работа [961,6 K], добавлен 23.04.2010Изучение конструкции и принципа работы спиральных теплообменников. Рабочие среды спиральных теплообменных аппаратов. Расчет тепловой нагрузки, скорости теплоносителя в трубах, расхода воды, критериев Рейнольдса и Нуссельта, коэффициентов теплоотдачи.
контрольная работа [135,3 K], добавлен 23.12.2014Основная роль теплообменных аппаратов при работе современных двигателей внутреннего сгорания (ДВС). Классификация теплообменных аппаратов ДВС. Охладители воды и масла. Водо-водяные и воздухо-водяные охладители. Охладители наддувочного воздуха ДВС.
реферат [611,2 K], добавлен 20.12.2013Технология ремонта центробежных насосов и теплообменных аппаратов, входящих в состав технологических установок: назначение конденсатора и насоса, описание конструкции и расчет, требования к монтажу и эксплуатации. Техника безопасности при ремонте.
дипломная работа [3,8 M], добавлен 26.08.2009Сравнительная характеристика выпарных теплообменных аппаратов, физико-химическая характеристика процесса. Эксплуатация выпарных аппаратов и материалы, применяемые для изготовления теплообменников. Тепловой расчет, уравнение теплового баланса аппарата.
курсовая работа [1,5 M], добавлен 03.10.2010Общие сведения о теплообменных аппаратах: их конструктивное оформление, характер протекающих в них процессов. Классификация теплообменников по назначению, схеме движения носителей, периодичности действия. Конструкции основных поверхностных аппаратов.
реферат [3,5 M], добавлен 15.10.2011Классификация теплообменных аппаратов применяемых в нефтегазопереработке. Назначение испарителей. Обслуживание и чистка теплообменников. Определение температур холодного теплоносителя. Расход греющего пара. Определение диаметров штуцеров испарителя.
курсовая работа [463,2 K], добавлен 14.03.2016Анализ возможных схем теплообменников, учёт их конструктивных особенностей. Конструкции трубчатых, пластинчатых и спиральных аппаратов поверхностного типа. Выбор конструктивной схемы прибора. Тепловой расчёт конструкция графитового теплообменника.
курсовая работа [639,4 K], добавлен 11.08.2014