Применение неорганических материалов в медицине

Классификация и типы неметаллических материалов, сферы их практического применения в промышленности для медицинских нужд. Варка стекла, выработка стеклоизделий. Полимерные материалы, их свойства, оценка преимуществ и недостатков использования в медицине.

Рубрика Производство и технологии
Вид контрольная работа
Язык русский
Дата добавления 22.10.2011
Размер файла 509,2 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

Размещено на http://www.allbest.ru/

Неметаллические материалы

Неметаллические материалы включают значительный ассортимент материалов неорганического и органического происхождения - стекло и керамику, пластмассы, резину, древесные материалы, а также различные композиционные материалы.

Неметаллические материалы давно применяют как имеющие самостоятельное значение наряду с металлическими в тех случаях, когда от материалов требуются такие свойства, которыми металлические материалы не обладают.

Стекло и керамические материалы

Из неметаллических материалов стекло находит наибольшее применение в изготовлении медицинских изделий. По химической устойчивости, поверхностной твердости, прозрачности, дешевизне оно не имеет себе равных среди других материалов. Из стекла изготовляют лабораторную посуду, тару для упаковки, хранения и транспортировки лекарств, очковые линзы, элементы обычной и волоконной оптики для оптических и медицинских изделий, шприцы, термометры и др.

Стекло в отличие от металла не имеет кристаллической структуры; исключение составляют так называемые ситаллы, полученные совсем недавно. Обычное стекло при варке застывает не кристаллизуясь, образуя аморфное изотропное тело, механические свойства которого постоянны во всех направлениях. Стекло представляет собой гомогенный сплав различных окислов. В табл. 4 приведен химический состав основных марок стекла, применяемого Для изготовления медицинских изделий. Состав приведенных в таблице стекол является в известной степени типичным для нескольких марок. Так, нейтральное стекло (НС) выпускают четырех марок, оранжевое (ОС) - двух марок и т.д.

Стекло для медицинских изделий можно разделить на следующие основные виды: медицинское, химико-лабораторное, оптическое и специальное.

Стекло медицинское. В 1982 г. вступил в действие ГОСТ 19808-80, в котором установлены марки медицинского стекла и их физико-химические свойства. Необходимость стандартизации свойств стекла, применяемого для медицинских изделий, связана с тем, что от этого стекла требуются высокие показатели термо-, водо- и щелочестойкости, поскольку медицинские изделия из стекла, как правило, проходят стерилизацию паром. Достаточно сказать, что термостойкость, т.е. этот перепад температур, который должно выдерживать стекло без растрескивания, даже для марок тарного медицинского стекла должна быть не менее 120°С, а для нейтрального (ампульного) - 150°С.

Стандартами определены и методы испытания медицинских стекол на водо- и щелочестойкость (ГОСТ 19809-74 и ГОСТ 19810-74). Определение водостойкости основано на воздействии на измельченное стекло дистиллированной воды в автоклаве при температуре 121°С (имитация режима стерилизации). Водостойкость выражается количеством щелочных окислов в миллиграммах в пересчете на окись натрия Na2О, извлеченных из 1 г зерен стекла. Особенно высокая водостойкость должна быть у химически и термически стойкого стекла (ХТ) - не более 0,02 мг/г и стекла нейтрального (НС) - до 0,06 мг/г; водостойкость тарного стекла - не более 0,6-0,65 мг/г.

Щелочестойкость характеризует устойчивость стекла к растворам щелочей. Метод ее испытаний основан на воздействии кипящей смеси равных объемов 1 н. раствора карбоната натрия и 1 н. раствора едкого натра на поверхность стекла. Образец стекла площадью 10-15 см правильной геометрической формы в течение 3 ч находится в кипящем растворе (в серебряном сосуде).

Щелочестойкость (из двух параллельных определений) выражается потерей массы в миллиграммах на единицу площади. Нейтральное стекло (НС-1) и стекло НТО должно иметь этот показатель не ниже 85 мг/дм2, стекло ОС-90 мг/дм2, стекло ХТ - 110 мг/дм2.,

Химико-лабораторное стекло. Применяется для изготовления лабораторной посуды. Оно должно быть химически и термически стойким. Химическая стойкость - способность стекла противостоять различным химическим реагентам, т.е. иметь высокую водо-, щелоче- и кислотостойкость. Первые два показателя устанавливают аналогично тем же показателям медицинского стекла, но для определения водостойкости образец помещают не в автоклав, а в водяную баню и выдерживают в ней в течение 1 ч при температуре 98±0,5°С.

Кислотостойкость определяют по потере массы испытуемой пробы стекла при обработке кипящим 20,4% раствором хлористоводородной кислоты в течение 6 ч и выражают отношением потери массы к единице площади пробы. ГОСТ 21400-75 разделяет стекло в зависимости от химической и термической стойкости на шесть групп: ХС-1, ХС-2 и ХС-3-химически стойкое 1, 2 и 3-го классов, ТХС1 и ТХС2-термически и химически стойкое 1-го и 2-го классов, ТС - термически стойкое.

Стекло ХС всех трех классов должно иметь термическую стойкость не менее 120°С, стекла типа ТХС-190°С и стекло ТС - 250°С.

Оптическое стекло. Применяется для изготовления очковых линз и оптических элементов медицинских приборов. Выпускают семь сортов стекла типа крон и семь типа флинт, что позволяет подобрать стекла с нужным показателем преломления от 1,47 (легкий крон) до 1,755 (тяжелый флинт). Очковые стекла изготовляют в настоящее время из стекла типа крон с показателем преломления 1,52. Для изготовления очков-светофильтров с целью световой защиты глаз сварщиков, металлургов и др. применяют цветное стекло; синее, окрашенное окислами кобальта и железа, и желто-зеленое, окрашенное окислами железа, с различными коэффициентами пропускания светового потока.

Специальное стекло. К специальным видам стекол относятся специальные защитные стекла с большим содержанием окислов свинца, предназначенных для защитных ширм, ослабляющих энергию рентгеновского и гамма-излучений и снижающих дозу, действующую на людей, до допустимых значений.

Керамические материалы. Фарфор и фаянс - керамические материалы, получаемые в результате обжига при высокой температуре смеси, приготовленной из глины с добавлением кварцевого песка и полевого шпата. Фарфор содержит 45-50% глины, 30-35% кварца и 18-22% полевого шпата. Фаянс содержит 5 - 10% полевого шпата. Фарфор имеет в 3-5 раз большую прочность и в 10-15 меньшее водопоглощение, чем фаянс. Изделия из фарфора и фаянса после обжига покрывают глазурью, приготовленной из тех же компонентов с добавлением (16%) доломита и снова обжигают (глазуруют) при более высокой температуре (до 1500°С).

В лечебных учреждениях употребляются сделанные из фаянса и фарфора санитарно-технические изделия, подкладные судна, поильники и чашки, фарфоровые ступки и тигли. В стоматологии находят применение фарфоровые зубы.

Варка стекла и выработка стеклоизделий

Стекло изготовляют из материалов, в избытке имеющихся в природе: кварцевого речного песка, гидрокарбоната натрия, мела и пр. Стекло варят в специальных печах при температуре 1350-1600°С. Чем больше в составе стекла кварцевого песка (окись кремния), тем выше тугоплавкость и термостойкость полученного стекла.

Наибольшей термостойкостью обладает кварцевое стекло, состоящее более чем на 90% из окиси кремния. Оно варится при температуре до 2000°С и используется для изготовления термостойкой кварцевой лабораторной посуды, а также горелок к ультрафиолетовым облучателям; отсюда их название - «кварцевые» горелки.

От того, как ведется процесс варки стекла, зависит его качество. Стекло необходимо хорошо проварить, из него должны быть удалены воздушные пузыри, инородные тела, включения, попадающие в стекло от огнеупорной футеровки (облицовки) ванной печи и т.д. В оптическом стекле наиболее важно отсутствие дефектов, которые ухудшают качество оптики в приборах и в очковой оптике. Поэтому лучшие сорта оптического стекла чаще всего варят в печах небольшого объема (горшковых), где стекло хорошо проваривается.

Изделия из стекла вырабатывают на том же предприятии, где его получают (варят). При варке стекла протекают сложные физико-химические процессы, в результате которых из механической смеси сырьевых материалов (шихта) получают однородную гомогенную стекломассу. В процессе варки при высоких температурах стекло проходит ряд стадий: силикатообразование (получение спекшейся массы), стеклообразование (взаимное растворение силикатов и кремнезема), осветление (освобождение стекла от видимых пузырей), гомогенизация (приведение к однородности) и охлаждение (на 200-300°С для получения вязкости, необходимой для формообразования стекла).

Изготовление изделий из стекла возможно несколькими способами: отливка в формы, подобно чугуну, штамповка, прокатка, вытягивание в листы, трубки (дрот) и нити. Стекло можно сваривать, спекать и производить его механическую обработку (разрезание, шлифование). Ниже рассмотрены важнейшие методы получения стеклоизделий.

Вытягивание дрота. Из дрота (стеклянная трубка) вырабатывают многие изделия для медицинских целей: флаконы для антибиотиков и других лекарственных препаратов, ампулы, цилиндры для шприцев и др. На рис. 3 показана принципиальная схема получения дрота. Стекломасса непрерывной тонкой струей льется на сердечник-мундштук, сделанный изогнеупора (шамота) и имеющий внутри канал для подачи воздуха. Сердечник непрерывно вращается, наматывая на себя стекломассу. Стекломасса постепенно сползает с сердечника в виде бесконечной трубки, оттягиваемой специальной машиной, которая одновременно нарезает трубку на куски определенной длины. Нужный диаметр дрота и толщину его стенок получают путем изменения условий вытяжки. Следует отметить, что методом непрерывного вытягивания получают и листовое стекло.

Выработка изделий формованием. Под формованием понимают процессы, в результате которых бесформенная стекломасса становится изделием определенной формы. К способам формования относят прессование (ручное и машинное) и выдувание (ручное и машинное). На рис. 4 дана принципиальная схема прессования. В матрицу набирают определенную порцию стекла, которая при движении пуансона вниз перемещается и заполняет пространство между пуансоном и матрицей. Формовое кольцо помогает создать ровную поверхность верхнего края изделия. Матрицу делают разъемной, что позволяет легко извлечь изделие из формы.

Выдувание - один из самых древних и широко распространенных способов выработки стеклоизделий, позволяющих получать стеклянные сосуды разнообразных форм и размеров. Для изготовления крупных сосудов этот способ единственно возможный.

Технология выдувания может быть ручной и механизированной. В настоящее время ручное выдувание ииспользуют для выработки художественных изделий. Для производства банок, бутылей и другой массовой продукции применяют механизированное выдувание с помощью полуавтоматов или пресс-выдувание.

Схема пресс-выдувания приведена на рис. 5. Процесс получения изделия делится на две основные стадии: предварительное прессование черновой заготовки (I) и выдувание из нее изделия (II). Процесс происходит на одной машине сначала в черновой пресс-форме (1), затем в чистовой (2). Черновая форма цельная (не разъемная), чистовая-разъемная. Заготовку из черновой формы переносят в чистовую с помощью так называемых горловых щипцов (3), которые представляют собой часть формы, так как в них формируется горловая часть изделия, в данном случае - баночки.

В начале процесса (позиция а) в черновую форму вводят порцию стекла. Сверху формы накладывают в сомкнутом состоянии горловые щипцы. Пуансон (4) поднят вверх. Затем его опускают и производят черновое формование (позиция б). После этого пуансон уходит вверх и заготовку в горловых щипцах переносят в чистовую форму (позиция в); здесь сверху опускается дутьевая головка (5), плотно перекрывающая горловые щипцы, и в полость заготовки подается сжатый воздух, заставляющий ее принять форму внутренней полости чистовой формы (позиция г). После того как дутьевая головка и горловые щипцы удалены, половинки чистовой формы расходятся и изделие готово. Оно легко снимается с донной части формы (6). Методом пресс-выдувания изготовляют банки и бутылки с широким горлом.

Для производства ампул разной вместимости применяют выдувание вакуумным питанием на специальных машинах-автоматах.

Механическая обработка стекла. Ампулы, бутыли, аптекарская и лабораторная посуда не проходят дополнительной механической обработки после формования, за исключением банок с притертой пробкой, у которых горло и пробку шлифуют и притирают с помощью абразивного порошка.

Для очковых линз шлифование и полирование служит основой производства, поскольку точность геометрических размеров и чистота поверхности линзы не могут быть достигнуты при получении прессованием заготовки из стекломассы.

Термическая обработка стекла. Изделия из стекла при охлаждении на воздухе оказываются непрочными из-за внутренних напряжений, возникающих между слоями стекла вследствие их не равномерного охлаждения. Для исключения внутренних напряжний изделия медленно охлаждают в специальных тоннельных печах (лерах), на входе которых температура максимальная, а на выходе-минимальная.

Полимерные материалы

медицина промышленность неметаллический стеклоизделие

В настоящее время трудно представить себе медицину без полимерных систем для переливания крови, аппаратуру - без прозрачных полимерных трубок, предметы ухода - без резиновых грелок, пузырей для льда и т.д. Значительно обогатить ассортимент материалов, применяемых в медицине, позволили синтетические полимеры.

Полимерные материалы существенно отличаются от металлов и сплавов: их молекулы вытянуты в длинные цепочки, в результате чего полимеры имеют высокую молекулярную массу. Молекулы полимеров получают из исходных низкомолекулярных продуктов-мономеров-полимеризацией и поликонденсацией. При полимеризации молекулярная масса образовавшегося полимера равна сумме молекулярных масс вступивших в реакцию молекул мономера. Поликонденсация сопровождается выделением побочных низкомолекулярных продуктов, и молекулярная масса полученного полимера меньше молекулярных масс исходных веществ.

К полимерам поликонденсационного типа относятся фенолформальдегидные смолы, полиэфиры, полиуретаны, эпоксидные смолы. К высокомолекулярным соединениям полимеризационного типа относятся поливинилхлорид, полиэтилен, полистирол, полипропилен, полиметилметакрилат.

Высокополимерные и высокомолекулярные соединения являются основой органической природы - животных и растительных клеток, состоящих из белка. Так, хлопчатобумажные волокна, волокна древесины состоят из высокополимерных молекул целлюлозы.

Для изготовления медицинских изделий широко применяют как полимерные материалы, в основе которых лежит природное сырье, так и искусственные - синтетические полимерные материалы. Из полимерных материалов естественного происхождения изготовляют большинство перевязочных средств: вату, марлю и изделия из них, алигнин, а также нити шовных материалов (хирургический шелк). Полимеры являются основой пластмасс, используемых при изготовлении различных инструментов, частей медицинской аппаратуры и оборудования.

Эластомеры. Каучук и резина

Термином «эластомеры» постепенно заменяют название «синтетический каучук», а также натуральный каучук. Эластомерами называют полимеры, обладающие в широком температурном интервале высокой эластичностью - способностью подвергаться значительным (от нескольких сотен до 1000% и более) обратимым деформациям при сравнительно небольших действующих нагрузках. Первым эластичным материалом такого рода был натуральный каучук, который и в настоящее время не потерял своего значения в производстве эластомеров, в том числе и для медицинских изделий, благодаря своей нетоксичности.

Каучук получают из латекса (млечный сок бразильской гевеи), состоящего более чем наполовину из воды, в которой растворено 34-37% каучука, 2-2,7% белка, 1,65-3,4% смолы, 1,5-4,92% сахара. Каучук в латексе находится в виде глобул - шарообразных частиц диаметром от 0,15 до 3 мкм (средний размер частиц 0,17ч0,26 мкм).

В природном латексе происходит самопроизвольная коагуляция глобул, в результате чего образуются сгустки каучука. Этот процесс можно прекратить и законсервировать латекс добавкой 0,5% раствора аммиака.

Латекс имеет самостоятельное значение как исходное сырье для производства изделий методом макания (хирургические перчатки, соски, напальчники).

На плантациях, где приготовляют каучук как промышленное сырье, латекс коагулируют с помощью органических кислот, прокатывают в рифленые листы и коптят в камерах с дымом при температуре 50°С. Составные вещества дыма играют роль антисептиков и стабилизаторов окисления каучука. Такие листы толщиной 2,5ч3 мм с вафельным рисунком поверхности называют «смокетшит». Они служат наиболее употребительной формой сырого плантационного каучука. Данные элементного анализа очищенного каучука соответствуют эмпирической формуле С5Н8 (изопрен).

Синтетические каучуки получают путем полимеризации из мономеров с участием катализаторов (ускорителей) процесса. Первый советский синтетический каучук был получен С.Д. Лебедевым из технического спирта. Спирт в присутствии особого катализатора, содержащего соединения цинка и хрома, был превращен в газ бутадион, а затем в смеси с другим катализатором - металлическим натрием - отдельные молекулы бутадиона были соединены в длинные цепи, образовавшие основу синтетического каучука.

В настоящее время выпускают несколько видов синтетических каучуков, в том числе изопреновый, мало отличающихся от натурального. Для изделий медицинского назначения перспективен силоксановый (силиконовый) каучук, основная полимерная цепь которого состоит из атомов кремния и кислорода. Он термостоек и физиологически инертен. Сырьем для изготовления синтетических каучуков служат нефть, природный газ, каменный уголь.

Эластомеры. Превращение каучука или «сырой» каучуковой смеси в эластичную резину (материал с необходимыми эксплуатационными свойствами) осуществляют путем вулканизации. Вулканизация, подобно термообработке металлов и сплавов, приводит к изменению структуры каучука. При вулканизации осуществляется соединение (сшивание) молекул эластомера химическими связями в пространственную трехмерную сетку, в результате чего получают материал, обладающий необходимыми эластическими и прочностными свойствами (прочность, упругость, твердость, сопротивление разрыву и т.д.). Кроме того, при вулканизации происходит химическое взаимодействие эластомера с вулканизирующими веществами. Основным вулканизирующим веществом служит сера; применяют также теллур и селен. Чем больше к каучуку добавляют серы, тем более твердым и менее эластичным получается эластомер. При содержании серы от 35% и выше получают твердый эбонит.

В современном производстве, помимо вулканизаторов, широко применяют органические ускорители, присутствие которых снижает количество серы (до 2% вместо 10%) и температуру вулканизации. Существуют ультраускорители, благодаря которым вулканизация вместо температуры 130-150°С протекает при комнатной температуре.

Вулканизации подвергают отформованные изделия. Для придания будущему изделию из эластомера определенной формы и приготовления смеси для формования и последующей вулканизации производят пластификацию каучука путем разминания его на теплых гладких вальцах. Пластифицированный каучук смешивают с другими компонентами резиновой смеси: вулканизаторами, наполнителями, мягчителями, красителями, противостарителями, стабилизирующими добавками в специальных миксерах под давлением в несколько атмосфер и при температуре до 100°С. Это способствует равномерному смешению компонентов и получению пластичной массы, удобной для формования и выработки резиновых изделий.

Рецептура резин, применяемых для изготовления медицинских изделий, подлежит утверждению Министерством здравоохранения СССР, так как эти резины находятся в непосредственном контакте с тканями, кровью и лекарственными препаратами и не должны выделять в биологические среды вещества, которые могут изменять их активность. Резины не должны иметь неприятного запаха. Резины и резиновые изделия, подвергаемые стерилизации или дезинфекции, должны переносить без существенных потерь механических качеств один из рекомендуемых ОСТ методов обеззараживания. Так, резина для эластичных зондов и катетеров, подлежащих дезинфекции кипячением в воде, должна отвечать следующему требованию: после 100-кратного повторения этой процедуры сопротивление резины разрыву не должно снижаться более чем на 40% по отношению к первоначальному значению в новом изделии. Это по существу служит требованием достаточной долговечности изделия.

К резинам, предназначенным для изготовления отдельных групп изделий, предъявляют дополнительные требования, обеспечивающие выполнение изделиями их функционального назначения и надежность в работе. Так, к резинам, предназначенным для изготовления рентгеноконтрастных трубок и катетеров, предъявляют требование определенной рентгеновской непрозрачности. Иначе говоря, такие изделия должны иметь эквивалент свинца не менее 0,025. Резина, идущая на изготовление защитных фартуков для рентгенологов, при толщине 1,5 мм должна иметь свинцовый эквивалент не менее 0,3, т.е. по своим защитным свойствам должна соответствовать свинцовому листу толщиной 0,3 мм.

Аналогично формулируют требование, предъявляемое к латексным изделиям, представляющим собой тонкопленочные эластичные хирургические перчатки, соски, пипетки, напальчники и др. Об этих требованиях к функциональным качествам изделий будет говориться при описании этих изделий в соответствующих разделах.

Пластические массы

Пластическими массами называют полимерные материалы и их композиции с органическими и неорганическими веществами, способные при определенных условиях переходить в пластическое состояние и принимать заданную форму. Некоторые полимерные материалы, составляющие основу пластмасс, обладают такими свойствами, которые делают их незаменимыми для производства медицинских изделий (нетоксичность, инертность по отношению к биологическим средам, способность противостоять действию стерилизующих и дезинфицирующих агентов). В последние годы появились специальные пластики, модифицированные для медико-технических целей (рентгеноконтрастные пластики). С другой стороны, детали медицинского оборудования и аппаратуры, не вступающие в контакт с тканями организма, изготовляют из обычных технических пластиков, применяющихся в машиностроении или приборостроении. Из обширной номенклатуры полимеров и пластмасс здесь будут рассмотрены только те, которые находят применение при изготовлении медицинских изделий.

Основным веществом, образующим пластмассу, служит синтетическая смола. Для производства пластмасс применяют два типа смол: термопластичные и термореактивные. Смолы, сохраняющие способность плавиться при повторном нагревании и затвердевающие при охлаждении, называют термопластичными. Термореактивные смолы затвердевают при повышенной температуре и переходят в неплавкое и нерастворимое состояние, т.е. не допускают повторного прессования, являясь, таким образом, необратимыми.

Синтетические смолы, служащие основой пластмасс, можно применять в чистом виде; при этом чаще всего получают прозрачные пластмассы, называемые ненаполненными, например, органическое стекло (плексиглас), состоящее из чистой полимеризационной смолы - полиметилметакрилата. Во многих пластмассах синтетическая смола служит лишь для связывания наполнителя (органического или неорганического). Наполнители вводят в пластмассу для увеличения механической прочности и удешевления изделий. Наряду со смолой и наполнителем в пластмассу вводят различные добавки с целью придания ей новых свойств (для повышения прочности, водостойкости или сообщения пластмассе электропроводности). Добавки стеарина и стеарата кальция способствуют предотвращению прилипания пластмассы к пресс-форме и повышают текучесть пластмасс. В некоторые смолы вводят пластификатор для придания им большей пластичности, так как эти смолы без пластификатора излишне тверды и плохо поддаются переработке. В смолу иногда добавляют красители или минеральные пигменты для окраски пластмассы в нужный цвет. Все синтетические материалы и композиции в связи с наличием в их составе многих компонентов применяют для изготовления медицинских изделий только после обстоятельных токсикологических испытаний и получения разрешения на применение материалов строго определенной рецептуры от Министерства здравоохранения СССР.

Термопластичные материалы. Наиболее широкое применение для изготовления медицинских изделий нашел продукт полимеризации винилхлорида-поливинилхлорид (ПВХ), размягчающийся при нагревании и затвердевающий при охлаждении. Он не токсичен, стоек к действию щелочей, кислот, многих органических растворителей (спирт, бензин и масла). Химическая промышленность выпускает листы из поливинилхлоридного пластиката (винипласт), которые используют как подкладочную (толщина 0,2-0,4 мм) или компрессную (толщина 0,05-0,15 мм) клеенку. Широко используют в медицинской практике трубки и трубчатые изделия (катетеры, воздуховоды, дренажи и др.) из этого материала.

Перерабатывают в медицинские изделия и ряд других термопластов. Широкое распространение в медицине получил капрон - продукт полимеризации капролактама. Капрон физиологически нейтрален, обладает большой прочностью, стоек к действию щелочей, жиров, масел. Помимо капроновых нитей, применяемых в качестве шовного материала, из него изготовляют методом литья под давлением различные детали медицинской аппаратуры (втулки, подшипники, шестерни и др.).

Полистирол-продукт полимеризации стирола с участием пластификаторов или без них. Обладает весьма высокой водостойкостью, твердостью, устойчивостью к действию кислот и щелочей; служит прекрасным электроизоляционным материалом. К недостаткам полистирола относится его низкая термическая устойчивость и склонность к растрескиванию. Однако недостаток прочности полистирола устранен в так называемом ударопрочном полистироле, получаемом сополимеризацией стирола с различными каучуками. Детали из полистирола изготовляют методом литья под давлением. Это различные детали электромедицинской аппаратуры, посуда и потребительская тара (коробки), а также изделия одноразового пользования (шприцы).

Полиэтилен-продукт полимеризации этилена, напоминающий по внешнему виду парафин. Обладает высокой химической устойчивостью и служит прекрасным диэлектриком. Различают полиэтилен высокого давления (ПЭВД) и полиэтилен низкого давления (ПЭНД). ПЭВД-один из самых легких полимеров (плотность 0,93 г./см3). Он прочен и в то же время обладает большой эластичностью (гибкостью), сохраняя свои свойства при низких (до -70°С) и при довольно высоких температурах (выдерживает дезинфекцию кипячением). ПЭВД устойчив к воздействию кислот, щелочей, спиртов и других растворителей, почти не адсорбирует влаги. Стабилизированный полиэтилен применяют для изготовления шприц-тюбиков. ПЭНД более прочен и менее эластичен, чем ПЭВД. Этот пластик является одним из самых дешевых и допускает переработку в изделие любым способом (литье, прессование, экструзия, штамповка). Для уменьшения старения (деструкции) ПЭНД стабилизируют. Он хорошо окрашивается в массе. Применяется для изготовления предметов ухода за больными и упаковки медикаментов.

Полипропилен-продукт полимеризации пропилена, твердый прозрачный полимер. Превосходит полиэтилен по химической стойкости, механическим свойствам и теплостойкости (рабочая температура до 130°С). Применяется при изготовлении элементов для соединения трубок и шлангов газовой аппаратуры (коннекторов), деталей и узлов аппаратов искусственного кровообращения, а также упаковочной пленки.

Пентапласт-простой хлорированный полиэфир. Более устойчив к нагреванию по сравнению с ПВХ: может выдерживать до 400 циклов паровой стерилизации, стоек к химическим стерилизационным растворам. Пентапласт нашел пока ограниченное применение для изготовления шприцев, чашек Петри, колб, пипеток, но имеет хорошие перспективы для более широкого использования.

Полиэтилентрефталат (лавсан) - сложный эфир трефталевой кислоты и этиленгликоля. Теплостойкий полимер, по прочности превосходящий многие полимеры (предел прочности около 1700 кгс/см2). Ареактивен по отношению к тканям организма. Применяется в качестве шовного материала.

Поликарбонат (дифлон) - сложный полиэфир угольной кислоты. Стоек в воде, кислотах и щелочах. Изделия из него можно многократно (до 100 раз) стерилизовать паром. Прозрачен и прочен. Применяется для изготовления изделий высокой точности (шприцы, мерные цилиндры и др.).

Полиуретан-продукт взаимодействия диизоцианатов с многоатомными спиртами. Устойчив к действию кислот и щелочей, не темнеет при нагревании. Изделия, полученные из этого продукта литьем под давлением, отличаются высокой механической прочностью, хорошо выдерживают дезинфекцию кипячением.

Фторопласты по праву могут быть названы благородными пластиками, так как по устойчивости к действию агрессивных сред они превосходят даже благородные металлы-золото и платину. Фторопласты являются также самыми тяжелыми пластиками - представляют собой полимеры производных этилена, в которых атомы водорода заменены фтором. В практике производства медицинских изделий нашел применение фторопласт-4, который используют для протезирования клапанов сердца и деталей слухового аппарата. Из него изготовляют ряд ответственных деталей медицинской аппаратуры. Он может подвергаться стерилизации при 190-200°С и выдерживает такого же порядка низкие температуры. Изделия из фторопласта изготовляют механической обработкой.

Термореактивные пластмассы. Из термореактивных пластмасс в изготовлении изделий медицинской техники нашли применение фенопласты и аминопласты. Термореактивные пластмассы допускают только влажную обработку.

Фенопласты изготовляют на основе фенольно- и креозольно-формальдегидных смол. Изделия из этих смол обладают сравнительно высокой теплостойкостью и водостойкостью, высокой механической прочностью, хорошими изолирующими свойствами, стойки к растворам кислот и щелочей. Из фенопластов изготовляют штепсели, розетки, патроны, выключатели, детали электромедицинских аппаратов, корпуса тонометров и сфигмоманометров, различные ручки, маховички и другие детали.

Аминопласты изготовляют из мочевиноформальдегидных смол и целлюлозы (наполнитель), красителей и фосфата цинка. Из этих пластиков путем прессования получают детали, имеющие яркую окраску различных цветов. Эти пластики используют при изготовлении деталей аппаратуры и приборов (цветные кнопки в электрокардиографах, выключатели, переключатели и т.д.).

Некоторое применение в медицинских изделиях находят пластики на основе эфиров целлюлозы, в частности целлулоид, который применяют для изготовления очковых оправ.

Размещено на Allbest.ru


Подобные документы

  • Выбор сырьевых материалов для производства стекла. Технологическая схема приготовления шихты, проведение контроля ее качества, способы транспортировки. Варка стекла в печах периодического и непрерывного действия. Декорированная обработка стеклоизделий.

    курсовая работа [380,2 K], добавлен 16.10.2010

  • Применение металлов и сплавов в городском хозяйстве. Понятие о металлических и неметаллических материалах, способы их изготовления, области применения, технологии производства, способы обработки и использования. Стандартизация конструкционных материалов.

    методичка [831,2 K], добавлен 01.12.2009

  • Нормативные материалы для нормирования труда, их применение. Сущность, разновидность, требования, разработка нормативных материалов. Методические положения по разработке нормативных материалов. Отраслевые нормативы. Классификация нормативов по труду.

    реферат [73,3 K], добавлен 05.10.2008

  • Краткий обзор и характеристики твердых материалов. Группы металлических и неметаллических твердых материалов. Сущность, формирования строения и механические свойства твердых сплавов. Производство и применение непокрытых и покрытых твердых сплавов.

    реферат [42,3 K], добавлен 19.07.2010

  • Типы кристаллических решёток металлов и дефекты их строения. Свойства и области применения карбида кремния. Электропроводность жидких диэлектриков и влиянии на неё различных факторов. Виды, свойства и применение неметаллических проводниковых материалов.

    контрольная работа [1,5 M], добавлен 09.10.2010

  • Современные клеи, свойства, виды и области применения клеящих материалов. Лакокрасочные материалы и их основные компоненты, классификация по виду, химическому составу, основному назначению. Основные свойства и использование лакокрасочных материалов.

    контрольная работа [31,3 K], добавлен 25.11.2011

  • Пластические массы (пластмассы) как основной тип неметаллических материалов. Основные технологические и эксплуатационные свойства пластмасс. Термопластичные и термореактивные материалы. Классификация пластмасс в зависимости от их основного назначения.

    реферат [16,6 K], добавлен 10.01.2010

  • Классификация композиционных материалов, их геометрические признаки и свойства. Использование металлов и их сплавов, полимеров, керамических материалов в качестве матриц. Особенности порошковой металлургии, свойства и применение магнитодиэлектриков.

    презентация [29,9 K], добавлен 14.10.2013

  • Материалы с малой плотностью (легкие материалы), получение и способы их обработки. Химический состав стекла, его свойства и типы. Основы современной технологии получения стекла. Применение стекломатериалов в авиастроении, автомобилестроении, судостроении.

    курсовая работа [1,7 M], добавлен 27.05.2013

  • Типы композиционных материалов: с металлической и неметаллической матрицей, их сравнительная характеристика и специфика применения. Классификация, виды композиционных материалов и определение экономической эффективности применения каждого из них.

    реферат [17,4 K], добавлен 04.01.2011

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.