Описание процесса зонной плавки

Зонная плавка как метод очистки твёрдых веществ, основанный на различной растворимости примесей в твердой и жидкой фазах. Определение коэффициента распределения примесей. Основные этапы технологического процесса зонной плавки и его достоинства.

Рубрика Производство и технологии
Вид доклад
Язык русский
Дата добавления 04.10.2011
Размер файла 17,0 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

6

Челябинский Государственный университет

Кафедра химической технологии и вычислительной химии

Зонная плавка

Выполнили: Аскарова Жанна

Зырянова Юлия

Челябинск 2011 год

Зонная плавка

Зомнная пламвка (зомнная перекристаллизамция) -- метод очистки твёрдых веществ, основанный на различной растворимости примесей в твердой и жидкой фазах. Метод является разновидностью направленной кристаллизации, от которой отличается тем, что в каждый момент времени расплавленной является некоторая небольшая часть образца. Такая расплавленная зона передвигается по образцу, что приводит к перераспределению примесей. Если примесь лучше растворяется в жидкой фазе, то она постепенно накапливается в расплавленной зоне, двигаясь вместе с ней. В результате примесь скапливается в одной части исходного образца. По сравнению с направленной кристаллизацией этот метод обладает большей эффективностью. Метод был предложен В. Дж. Пфанном в 1952 году и с тех пор завоевал большую популярность. В настоящее время метод используется для очистки более 1500 веществ.

Очищаемое вещество помещают в лодочку из тугоплавкого материала. Основные требования к материалу лодочки:

-высокая температура плавления;

-материал лодочки не должен растворяться в очищаемом веществе или реагировать с ним. зонная плавка примесь растворимость

Лодочку помещают в горизонтальную трубу, у которой один конец может быть запаян или через него подают инертный газ. Если он запаян, то другой конец трубы соединен с вакуумной установкой.

Один конец образца расплавляется, затем расплавленная зона начинает двигаться вдоль слитка. Длина расплавленной зоны зависит от длины слитка и составляет несколько сантиметров. Вещество плавится либо индукционными токами, либо теплопередачей в печи сопротивления. Скорость движения составляет, как правило, от нескольких миллиметров до нескольких сантиметров в час. Движение может осуществляться либо за счет вытягивания лодочки через неподвижную печь, либо смещением зоны нагрева. Иногда для повышения эффективности увеличивают число проходов зоны или число зон. Распределение примеси характеризуется коэффициентом распределения, который равен

где СS -- концентрация примеси в твердой фазе, СL -- концентрация примеси в жидкой фазе.

Примеси, для которых коэффициент распределения K<1, концентрируются в расплавленной зоне и вместе с ней перемещаются к концу слитка. С другой стороны от расплавленной зоны образуются слои вещества, более чистого относительно примесей, для которых K<1. Те примеси, для которых K>1, наоборот, концентрируются в начале слитка. Если осуществить многократное прохождение расплавленной зоны, то примеси с K<1 соберутся в конце слитка. Для примесей с К > 1 метод мало эффективен. Самые чистые части слитка (из середины) используются для изготовления приборов. Таким методом можно очистить германий до образцов с удельным сопротивлением порядка 70 ом·см, в которых остается примерно один атом примеси на 1010 атомов германия.

Если расплав вступает в реакцию с материалом тигля (лодочки), или очищаемое вещество имеет высокую температуру плавления (>1500 °C), применяют бестигельную зонную плавку.

Описание

Заготовка и затравочный кристалл в виде стержней различного диаметра, устанавливаются соосно[1], их концы оплавляются и приводятся в соприкосновение. За последующее удержание расплавленной зоны между заготовкой и затравочным (либо частично готовым) кристаллом отвечают силы поверхностного натяжения расплава.

При понижении температуры расплавленной зоны возможно срастание заготовки и перекристаллизованного материала с последующим разломом места спайки и разрывом зоны. При перегреве зоны возможен пролив расплава из зоны. Подбор скоростей перетягивания, конфигурации зоны и тепловых полей, количества подводимой энергии, для исключения смерзания или пролива зоны является, строго говоря, нетривиальной задачей, особенно для слитков большого диаметра.

В случае большого диаметра итогового кристалла форма зоны может иметь вид двух капель связанных друг с другом тонким перешейком. Индуктивный нагревательный элемент в этом случае имеет плоскую часть, располагаемую непосредственно над периферическими областями монокристалла вокруг перешейка.

Заготовку и затравочный кристалл с формирующимся на нём готовым кристаллом, разделённые расплавленной зоной медленно перемещают вниз относительно зоны нагрева так, чтобы расплавленная зона постепенно поглощала всё новые участки заготовки, а внизу из зоны постепенно вытягивался уже готовый кристалл. При этом фактически заготовка постепенно расплавляется, а готовый кристалл постепенно растет из расплава, поступающего при оплавлении заготовки. Готовый кристалл также представляет собою стержень относительно небольшого диаметра.

Кристаллографической ориентацией готового кристалла можно управлять, устанавливая внизу затравочный монокристалл заданной ориентации.

Легированием кристалла можно управлять в относительно узких пределах путём введения легирующих элементов в газовую среду установки выращивания.

В общем случае диаметры итогового слитка и исходной заготовки могут не совпадать. Как правило, диаметр заготовки равен или меньше диаметра итогового кристалла (заготовки меньшего диаметра легче проплавить, но это приводит к уменьшению длины итогового кристалла и увеличению высоты и рабочего объёма установки).

Технологический процесс включает следующие стадии:

1. размещение в ростовой установке затравочного кристалла и заготовки, вакуумирование установки, создание защитной атмосферы при необходимости;

2. ввод в зону нагрева нижней части заготовки и оплавление её до образования небольшой капли;

3. ввод в зону разогрева затравочного кристалла и приведение его в контакт с каплей;

4. обратная подача (вверх) затравочного кристалла совместно с заготовкой для проплавления затравочного кристалла до участка с ненарушенной структурой;

5. прямая подача (вниз) затравочного кристалла совместно с заготовкой в ходе постепенного роста основного кристалла;

6. при проведении зонной очистки проход расплавленной зоны при прямой подаче вдоль всей длины одного и того же кристалла может повторяться несколько раз -- при этом примеси оттесняются из растущего кристалла в его нижнюю часть;

7. охлаждение и выгрузка кристалла из установки, подготовка установки к следующей плавке.

Достоинствами зонной плавки являются простота аппаратурного оформления, сравнительно невысокие температуры проведения процесса (по сравнению с ректификацией) и высокая эффективность очистки. Таким путем, например, очищается германий до содержания примесей порядка 10-8 %. С каждым годом все большее число веществ, предназначенных для самых ответственных целей, проходит очистку методом зонной плавки.

С равным успехом можно очищать неорганические и органические продукты. Правда, зонная плавка не всегда может быть успешно использована. Подобно тому как дробная кристаллизация неэффективна для очистки изоморфно сокристаллизующихся солей, так и зонная плавка неприменима, если два металла образуют твердые растворы. Например, зонной плавкой нельзя отделить Аu от Ag. Но основной недостаток -- невозможность масштабирования, так как скорость процесса определяется скоростью диффузии примеси. Поэтому метод применяется для конечной стадии очистки при получении особо чистых веществ. Максимальные габариты лодочки -- длина 50 см, толщина 2-3 см, длина расплавленной зоны 5 см.

Размещено на Allbest.ru


Подобные документы

  • Приминение бестигельной зонной плавки. Применение метода зонной плавки для глубокой очистки металлов, полупроводниковых материалов и других веществ. Оборудование для зонной плавки. Установки зонной плавки в контейнерах. Влияние электромагнитных полей.

    курсовая работа [831,7 K], добавлен 04.12.2008

  • Сущность метода зонной плавки. Физико-химические свойства германия. Применение германия в полупроводниковых приборах. Получение технического кремния восстановления природного диоксида SiO2 (кремнезем) в электрической дуге между графитовыми электродами.

    реферат [125,4 K], добавлен 25.01.2010

  • Теоретические сведения о процессах легирования. Физико-химические основы технологии микроэлектроники. Распределение примесей после зонной плавки. Анализ бинарной диаграммы состояния Si-Al. Расчет примеси в полупроводнике после диффузионного отжига.

    курсовая работа [2,0 M], добавлен 10.12.2015

  • Определение параметров процесса плавки стали в конвертере с верхней подачей дутья: расчет расход лома, окисления примесей металлической шихты, количества и состава шлака. Выход жидкой стали перед раскислением; составление материального баланса плавки.

    курсовая работа [103,4 K], добавлен 19.08.2013

  • Расчет материального баланса плавки в конвертере. Определение среднего состава шихты, определение угара химических элементов. Анализ расхода кислорода на окисление примесей. Расчет выхода жидкой стали. Описание конструкции механизма поворота конвертера.

    реферат [413,6 K], добавлен 31.10.2014

  • Особенности организации ведения плавки. Контролируемые признаки, методы и средства контроля покрытий. Окисление примесей и шлакообразование. Изменение состава металла и шлака по ходу плавки в кислородном конвертере. Применение неметаллических покрытий.

    контрольная работа [61,1 K], добавлен 17.05.2014

  • Расчет шихты для плавки, расхода извести, ферросплавов и феррованадия. Материальный баланс периода плавления. Количество и состав шлака, предварительное определение содержания примесей металла и расчет массы металла в восстановительном периоде плавки.

    курсовая работа [50,9 K], добавлен 29.09.2011

  • Дуговые печи, их виды и характеристики. Основы процесса вакуумной дуговой плавки с расходуемым электродом. Тепловые процессы, происходящие во время плавки. Преимущества вакуумных дуговых установок. Возможности вакуумного электродугового переплава.

    курсовая работа [3,4 M], добавлен 12.11.2014

  • Обоснование технологии переработки сульфидного медьсодержащего сырья. Достоинства и недостатки плавки. Химические превращения составляющих шихты. Расчет минералогического состава медного концентрата. Анализ потенциальных возможностей автогенной плавки.

    дипломная работа [352,2 K], добавлен 25.05.2015

  • Расчет шихты для получения медного штейна методом автогенной плавки "оутокумпу". Проведение расчета шихты для плавки окисленных никелевых руд в шахтной печи. Материальный баланс плавки агломерата на воздухе, обогащенном кислородом, без учета пыли.

    контрольная работа [36,4 K], добавлен 15.10.2013

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.