Виды и свойства стали

Строение и свойства сталей и сплавов. Влияние углерода, легирующих элементов на свойства сталей. Классификация сталей по химическому составу, качеству, степени раскисления, структуре, прочности. Назначение углеродистой стали обыкновенного качества.

Рубрика Производство и технологии
Вид контрольная работа
Язык русский
Дата добавления 28.09.2011
Размер файла 600,3 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

1. Строение и свойства сталей и сплавов

Чистые металлы (содержание основного компонента 99,99- 99,999%) обладают низкой прочностью, поэтому их в технике используют редко (кроме Сu и Аl в электротехнике). Наиболее широко применяют в технике в качестве конструкционных материалов металлические сплавы.

Сплавом называют материал, состоящий из двух или большего числа химических элементов, являющихся компонентами сплава. В металлических сплавах основным компонентом (более 50%) является металл. Так же как и чистые металлы, сплавы построены из кристаллических зерен. У сплавов можно получать более высокие механические характеристики, электрическое сопротивление, стойкость к коррозии и т.д. Большинство сплавов, кроме сплавов с неорганической растворимостью компонентов в твердом состоянии, можно представить как систему, состоящую из нескольких фаз, находящихся в равновесии при определенных внешних условиях (температуре, давлении).

Сталями называют сплавы железа с углеродом и некоторыми другими химическими элементами. Содержание углерода в сталях может доходить до 2,14. Однако в сталях, применяемых в машиностроении и строительстве, углерода содержится не более 1,3%.

Детали машин и приборов, передающих нагрузку, должны обладать жесткостью и прочностью, достаточными для ограничения упругой и пластической деформации, при гарантированной надежности и долговечности, износостойкостью, твердостью. Из многообразия материалов в наибольшей степени этим требованиям удовлетворяют сплавы на основе железа - чугуны и особенно стали. Стали обладают высоким, наследуемым от железа, модулем упругости. Кроме комплекса этих важных для работоспособности деталей свойств, стали могут обладать и рядом других ценных качеств, делающих их универсальным материалом. При соответствующем легировании и технологии термической обработки сталь становится либо износостойкой, либо коррозионно-стойкой, либо жаростойкой и жаропрочной, а также приобретает особые магнитные, тепловые или упругие свойства. Сталям свойственны также хорошие технологические свойства. К тому же они сравнительно недороги.

Благодаря этим достоинствам стали - основной металлический материал промышленности. Разработано около 2000 марок сталей и сплавов на основе железа.

2. Структура стали

Сталь состоит из очень мелких частичек, называемых зернами. Зерна металла можно наблюдать на его изломе. Еще лучше зерна будут видны, если из металла вырезать небольшой кусочек, изготовить из него специальный образец-пластинку (так называемый шлиф) и рассмотреть этот образец под микроскопом. Микроскоп поможет нам ясно увидеть, что металл действительно состоит из зерен. Зернистое строение данного металла называется его структурой. Зерна могут различаться между собой по величине и форме. В одном куске металла зерна будут крупные, в другом мелкие, в третьем неоднородные (смешанные), в четвертом они будут вытянуты в каком-либо направлении и т.п. Величина и форма зерен любого металла не являются постоянными. Они изменяются в зависимости от его тепловой и механической обработки. В литом металле зерна чаще всего бывают крупные, в кованом они значительно мельче. В процессе прокатки или ковки зерна могут вытягиваться в направлении вдоль прокатки или ковки и одновременно суживаться в направлении поперек прокатки или ковки. Но помимо простых зерен железа феррита и зерен цементита в структуре стали имеются еще комбинированные (сложные) зерна, представляющие собой зерна феррита, внутри которых в виде длинных узких пластинок находятся маленькие зернышки цементита. Такие сложные комбинированные зерна называются зернами перлита. Из описания перлита следует, что его зерна не однородны, а представляют собой механическую смесь феррита и цементита. Особенность этой механической смеси в том, что соотношение между количеством феррита и количеством цементита в перлите совершенно определенное. В перлите содержится 86,5%; феррита и 13,5% цементита. Если это соотношение пересчитать на содержание углерода, то, зная содержание в цементите углерода, можно вычислить, что в перлите содержится 0,9% углерода (по последним данным 0,83%).Таким образом, при температуре не выше 720° в углеродистых сталях, находящихся в отожженном состоянии, могут быть зерна только трех типов: зерна феррита, зерна цементита и зерна перлита. Одновременно в одной какой-либо определенной стали могут быть следующие комбинации (сочетания) зерен: 1) зерна феррита и перлита; 2) только зерна перлита; 3) зерна перлита и цементита. Наличие того или иного сочетания зерен в стали зависит от процентного содержания в ней углерода. Структура всех углеродистых сталей, содержащих меньше 0,9% углерода, находящихся в отожженном состоянии, при нормальной температуре состоит из зерен феррита и зерен перлита. При этом чем больше в стали углерода, тем больше в ней зерен перлита и, наоборот, тем меньше зерен феррита. Стали этой группы называются доэвтектоидными сталями. Структура стали содержащей 0,9% углерода, состоит в отожженном состоянии при нормальной температуре из одних только зерен перлита. Эта сталь называется эвтектоидной сталью. Структура сталей, содержащих больше 0,9% углерода, состоит из зерен перлита и зерен цементита. Зерен феррита в этих сталях нет. Такие стали называются заэвтектоидными. При нагреве углеродистой стали любой марки никаких изменений в ее структуре не происходит до температуры 720°. При температуре 720° в стали происходит первое очень глубокое изменение структуры: зерна перлита превращаются в зерна аустенита. Это превращение заключается в том, что пластинчатые зерна цементита, которые образовали как бы каркас внутри зерна перлита, растворяются в окружающем их железе и равномерно по нему распределяются. Получившееся из зерна перлита зерно аустенита представляет собой уже не сложное зерно чистого железа, внутри которого были заключены пластинчатые зерна цементита, а однородное зерно твердого раствора углерода в железе. Превращение зерен перлита в зерна аустенита происходит в углеродистой стали всех марок, когда температура металла достигает 720°. Эта очень важная для теории и практики термической обработки температура называется нижней критической температурой. При нагреве углеродистых сталей выше 720° зерна аустенита будут увеличиваться, а зерна феррита уменьшаться, потому что зерна аустенита будут постепенно поглощать зерна феррита и растворять их в себе. Наконец, при какой-то температуре зерен феррита не останется вовсе - структура металла будет состоять из одних зерен аустенита. Та температура, при которой заканчивается полностью процесс растворения зерен феррита в зернах аустенита, называется верхней критической температурой. В отличие от нижней критической температуры, одинаковой для всех углеродистых сталей, верхняя критическая температура для сталей различных марок различна. Описанные изменения структуры углеродистых сталей при нагреве можно представить графически в виде диаграммы состояния«железо-углерод».В 1868 г. русский ученый Д.К. Чернов первый указал на превращения в стали, которые происходят при ее нагревании и охлаждении, на связь этих превращений со структурой и механическими свойствами металла. На основании работ Д.К. Чернова и была построена диаграмма железоуглеродистых сплавов. 

Рис. 1 - Диаграмма состояния железоуглеродистых сплавов

На диаграмме даны фазовый состав сплавов и их структура в интервале по составу от чистого железа до цементита (6,67% С). На оси абсцисс показано содержание углерода (С) в про центах по массе, на параллельной ей линии - содержание цементита, на оси ординат - температура.

Точка A на диаграмме отмечает температуру плавления чистого железа (1539°С), а точка D - цементита (1500°С). Линия ABCD является линией ликвидуса, а AHIECF - линией солидуса. Выше линии солидуса существует жидкий сплав (Ж) - жидкий раствор угле рода в железе.

При охлаждении жидких сплавов сначала происходит кристаллизация, а затем после отвердевания - фазовые структурные пре вращения вследствие полиморфизма железа и изменения растворимости углерода в аустените и феррите. Все эти изменения наблюдаются на диаграмме железо - углерод, причем эту сложную диаграмму при ее изучении разделяют на части, рассматривая каждую из них как двухкомпонентную диаграмму.

3. Влияние углерода и примесей на свойства сталей

Примеси, присутствующие в стали делят на четыре группы:

постоянные-марганец, кремний, фосфор и сера, если их содержание находится в пределах: до 0,8% Mn; до 0,4% Si; до 0,05% Р и до 0,05% S;

скрытые - азот, кислород, водород, присутствующие в любой стали, в очень малых количествах (тысячные доли процента);

случайные - например, мышьяк, свинец, медь и др., попадающие в сталь из-за того, что они содержатся в рудах или шихтовых материалах данного географического района или связаны с определенным технологическим процессом производства стали;

специальные (легирующие элементы) - их вводят в состав стали для получения нужных по условиям службы деталей свойств стали. В этом случае сталь называют легированной

При содержании углерода более 1,3% стали становятся слишком хрупкими, и существенно затрудняется их обработка режущим инструментом. На сегодняшний день стали являются основным конструкционным материалом для изготовления нагруженных деталей машин, сооружений, элементов подвижного состава. В электро- и радиотехнике стали (некоторые ее сорта) используют главным образом в качестве ферромагнетика и ограниченно - в качестве проводникового материала, а как конструкционный материал - в электроустановках при изготовлении несущих конструкций, органов управления и т.п.Кроме железа и углерода в сталях содержатся полезные и вредные примеси. Стали сочетают высокую жесткость с достаточной статической и циклической прочностью. Эти параметры можно менять в широком диапазоне за счет изменения концентрации углерода, легирующих элементов и технологий термической и химико-термической обработки. Изменив химический состав, можно получить, стали с различными свойствами, и использовать их во многих отраслях техники и народного хозяйства.

Если сталь имеет в своем составе только Fе, С и некоторое количество постоянной примеси, то такую сталь называют углеродистой. Если в углеродистую сталь специально введены один или несколько так называемых легирующих элементов (Сr, Ni, W и др.) с целью улучшения ее служебных и технологических свойств, то такую сталь называют легированной. При легировании могут возникать новые свойства, не присущие углеродистым сталям.

3.1 Влияние углерода на свойства стали

С изменением содержания углерода изменяется структура стали. В зависимости от содержания углерода она может иметь следующий вид:

< 0,8% C - Ф+П

0,81% C - П (100%)

> 0,81% C - П + ЦII.

Имея различную структуру, все стали состоят только из двух фаз: Ф и Ц.

Количество цементита возрастает в стали прямо пропорционально содержанию углерода. Феррит (Ф) - мягкая, пластичная фаза, твёрдость по Бринеллю - 80-90 НВ. Цементит (Ц) - твёрдая и хрупкая фаза 1000-1100 НV (>800 НВ), (НВ и НV - близки по значению). Технически чистое железо - мягкое, не содержит Ц или имеет ЦIII (его максимальное содержание в технически чистом железе может достигать - 0,29%). В доэвтектоидных сталях появляется цементит входящий в перлит (Ф+Ц), следовательно твёрдость будет возрастать. В эвтектоидной стали - цементита в перлите содержится 12%, остальное феррит. В заэвтектоидной стали появляется ЦII - 20,4%, а также цементит входящий в перлит ~ 10%, т.о.всего его около 30%.Следовательно, чем больше % С в стали, тем количество феррита уменьшается, а количество цементита увеличивается. С увеличением в стали углерода возрастает твёрдость, пределы прочности и текучести и уменьшаются относительное удлинение, относительное сужение и ударная вязкость. Твердость линейно повышается с увеличением углерода. Предел прочности (уВ) до 0,8 - 0,9% С растёт линейно, при дальнейшем увеличении углерода, т.е.у заэвтектоидных сталей, происходит выделение избыточного цементита (ЦII) по границам бывшего зерна аустенита, образующего сплошную сетку (скорлупу) - очень твёрдую и очень хрупкую, что и приводит к снижению предела прочности (при растяжении в сетке возникают напряжения, приводящие к разрушению).Относительное удлинение (д, %), относительное сужение (ш, %) по мере увеличения углерода непрерывно снижаются (рис. 1).

Существенное влияние углерода на вязкие свойства. Ударная вязкость (KCU) характеризует сопротивление металла хрупкому разрушению (распространению трещин).

Ударная вязкость (KCU) по мере увеличения содержания углерода до 0,6% резко снижается.

Рис. 2

Повышение содержания углерода облегчает переход стали в хладноломкое состояние. Влияние углерода на хладноломкость железа приведено на (рис. 2).

Каждая 0,1% С повышает температуру порога хладноломкости Тп.х. в среднем на 20?С и расширяет переходный интервал от вязкого к хрупкому состоянию.

Рис. 3 - Влияние углерода на хладноломкость железа

Температура перехода из вязкого в хрупкое состояние (рис. 3):

Рис. 4 - Переход из вязкого в хрупкое состояние

Тп.х. - температура перехода из вязкого в хрупкое состояние.

Порог хладноломкости - температурный интервал изменения характера разрушения от вязкого к хрупкому.

3.2 Влияние постоянных примесей на свойства сталей

Влияние кремния и марганца

Кремний (Si) и марганец (Мn) переходят в сталь в процессе её раскисления при выплавке. Они раскисляют сталь, т.е. соединяясь с кислородом закиси железа FeO, в виде окислов переходят в шлак:

2FeO + Si = 2Fe + SiO,

FeO + Mn = Fe + MnO.

Частично Si u Mn остаются в стали:

Si - 0,35 - 0,4%,

Mn - 0,5 - 0,8%.

Удаляя О2 - Si и Mn - повышают плотность металла (слитка).

Si - сильно повышает предел текучести, снижает пластичность (стали с высоким содержанием Si не годятся к глубокой, холодной вытяжке). Поэтому стали предназначенные для холодной штамповки и холодной высадки должны содержать минимальное количество Si.

Mn - заметно повышает прочность ув, ут, практически не снижая пластичности. Резко уменьшает красноломкость стали.

Влияние серы

Сера (S) является вредной примесью. Попадает в сталь из чугуна (из золы и руды).

Содержание серы:

S - 0,035 - 0,06% (0,018% S - качественная сталь). Сера образует с железом соединение FeS. Это соединение образуют с железом легкоплавкую эвтектику с температурой плавления - Тпл = 988?С.

Наличие эвтектики вызывает красноломкость, т.е. хрупкость при высоких температурах. При нагреве до 1000-1200?С эвтектика, располагающая по границам зёрен, расплавляется и при деформации (ОМД) в стали возникают надрывы и трещины.

Вывозят серу из стали с помощью марганца. Марганец обладает большим сродством к сере, чем железо, и образует соединение MnS с высокой температурой плавления Тпл = 1620?С:

FeS + Mn > MnS + Fe.

Сера и её соединения при комнатных и пониженных температурах способствует снижению ударной вязкости стали, т. к. разрушение металла идёт по сульфидным включениям (поэтому ударная вязкость металла (KCU) снижается) (рис. 5).

Рис. 5 - Влияние серы на вязкие свойства стали

Также сера снижает пластичность - д, ш%.

Сернистые включения ухудшают свариваемость и коррозионную стойкость. Сера облегчает обрабатываемость резанием.

Влияние фосфора

Фосфор (Р) является вредной примесью. Содержится в пределах 0,025-0,045% Р. Попадает в сталь в процессе производства из руды, топлива, флюсов. Растворяясь в феррите, фосфор сильно искажает решетку и увеличивает пределы прочности и текучести, но уменьшает пластичность и вязкость. Снижение вязкости тем значительнее, чем больше в стали фосфора.

Фосфор значительно повышает порог хладноломкости. Каждая 0,01% Р повышает порог хладноломкости стали на 20 - 25?С (для углерода такое же влияние оказывает каждая 0,1%).Фосфор обладает большой склонностью к ликвации (неоднородность распределения). Фосфор скапливается в серединных слоях слитка, по границам зёрен, сильно снижая ударную вязкость. Фосфор (Р) - усиливает ковалентную (хрупкую) связь и ослабляет металлическую. С понижением температуры хрупкость металла увеличивается (хладноломкость) (рис. 6). Фосфор облегчает обрабатываемость стали режущим инструментом (создавая хрупкость). Совместное присутствие в стали фосфора и меди (Р + Сu) - повышает сопротивление коррозии.

Рис. 6 - Влияние фосфора на хладноломкость стали (0,2% С, 1% Mn)

3.3 Влияние скрытых примесей на свойства сталей

Влияние азота, кислорода и водорода

Кислород (О2): образует неметаллические включения оксиды - FeO, MnO, Al2O3, SiO2.

Азот (N2): образует нитриды - Fe4N, Fe2N, AlN.

Кислород и азот в свободном виде располагаются в раковинах, трещинах и др. Эти включения значительно уменьшают ударную вязкость, повышают порог хладноломкости и уменьшают пластичность, при этом повышается прочность стали (рис. 7).

Рис. 7 - Влияние примесей внедрения кислорода (а) и азота (б) на вязкие свойства железа

Водород (Н2): при затвердевании часть водорода в атомарном состоянии остаётся в стали. При переходе атомарного водорода в молекулярный повышается давление до 150 МПа, образуя эллипсовидные впадины - флокены, которые являются неисправимым браком. Флокены способствуют сильному охрупчиванию стали.Частично удалить водород с поверхностного слоя можно путём нагрева до 150-180?С, лучше всего в вакууме ~ 10-2 - 10-3 мм. рт. ст. или нагрев до 800?С и выдержке, водород уходит и остаётся чистый металл.

3.4 Влияние легирующих элементов на свойства стали

Легирование стали, никелем повышает её прокаливаемость; этому же способствуют присадки марганца, молибдена, хрома, бора. Никель увеличивает также, вязкость и пластичность стали, понижает температуру порога хладноломкости. Однако никель дорог, поэтому его вводят в сочетании с марганцем или хромом. Понижение порога хладноломкости достигается также присадкой хрома, молибдена, вольфрама, ванадия, титана, ниобия и циркония, которые образуют дисперсные труднорастворимые в аустените карбиды и препятствуют росту зерна аустенита. Рост зерна аустенита задерживается также присадкой алюминия, присутствующего в виде дисперсных оксидов. Молибден и вольфрам повышают, также стойкость стали к отпуску. Кобальт (как и никель) полностью взаимно растворим с железом, и способствует понижению количества остаточного аустенита в закаленной стали. Содержание легирующих элементов в сталях может изменяться в очень широких пределах. Сталь считают легированной хромом или никелем, если содержание этих элементов составляет 1 % или более. При содержании ванадия, молибдена, титана, ниобия и других элементов более 0,1-0,5 % стали считают легированными этими элементами. Сталь является легированной и в том случае, если в ней содержатся только элементы, характерные для углеродистой стали, марганец или кремний, а их количество должно превышать 1 %. В конструкционных сталях легирование осуществляют с целью улучшения механических свойств - прочности, пластичности и т.д. Кроме того, при введении в сталь легирующих элементов меняются физические, химические и другие ее свойства. Нужный комплекс свойств достигается не только легированием, но и рациональной термической обработкой, в результате которой получается необходимая структура. Как правило, легирующие элементы существенно повышают стоимость стали, а некоторые из них к тому же являются дефицитными металлами, поэтому добавление их в сталь должно быть строго обосновано Существует несколько классификаций, позволяющих систематизировать стали, что упрощает поиск стали нужной марки с учетом ее свойств. Стали классифицируют по химическому составу, качеству, степени раскисления, структуре, прочности и назначению.

4. Классификация сталей

Стали классифицируют по химическому составу, качеству, степени раскисления, структуре, прочности и назначению.

По химическому составу стали классифицируют на углеродистые и легированные. В зависимости от концентрации углерода те и другие подразделяют на низко углеродистые (< 0,3 % С), среднеуглеродистые низкоуглеродистые (<0,3 % С), среднеуглеродистые (0,3-0,7 % С) и высокоуглеродистые (> 0,7 %С).

По качеству стали, классифицируют на обыкновенного качества, качественные, высококачественные. Под качеством стали понимается совокупность свойств, определяемых металлургическим процессом ее производства. Однородность химического состава, строения и свойства стали, а также её технологичность во многом зависят от содержания газов (водорода, кислорода) и вредных примесей - серы и фосфора. Стали обыкновенного качества бывают только углеродистыми (до 0,5 % С), качественные и высококачественные - углеродистыми и легированными.

По степени раскисления и характеру затвердевания стали классифицируют на спокойные, полуспокойные и кипящие.

Раскисление - процесс удаления из жидкого металла кислорода, проводимый с целью предотвращения хрупкого разрушения стали при горячей деформации.

Спокойные стали раскисляют марганцем, кремнием и алюминием. Они содержат мало кислорода и затвердевают спокойно без газовыделения. Кипящие стали раскисляют только марганцем. Перед разливкой в них содержится повышенное количество кислорода, который при затвердевании, частично взаимодействуя с углеродом, удаляется в виде СО. Выделение пузырей СО создает впечатление кипения стали, с чем и связано ее название. Полуспокойные стали по степени раскисления занимают промежуточное положение между спокойными и кипящими.

Классификация по назначению и применению.

Сталь подразделяют на конструкционные (общего и специального назначения и с особыми свойствами) и инструментальные. В конструкционных сталях общего назначении выделяют строительные и машиностроительные низколегированные стали, а также улучшаемые, цементируемые стали и стали повышенной обрабатываемости резанием (автоматные стали).К конструкционным сталям специального назначения и сталям с особыми свойствами относятся шарикоподшипниковые, рессорно-пружинные, высокопрочные, коррозионно-стойкие, жаростойкие и жаропрочные, сварочные и наплавочные стали, стали с особыми магнитными, электрическими и тепловыми свойствами, котельные, корпусные стали для судостроения и прочие. Инструментальные стали применяют для изготовления режущих, измерительных и ударно-штамповочных инструментов.

5. Углеродистые стали

На долю углеродистых сталей приходится 80 % от общего объема. Это объясняется тем, что углеродистые стали дешевы и сочетают удовлетворительные механические свойства с хорошей обрабатываемостью резанием и давлением. При одинаковом содержании углерода по обрабатываемости резанием и давлением они значительно превосходят легированные стали. Однако углеродистые стали менее технологичны при термической обработке. Из-за высокой критической скорости закалки углеродистые стали охлаждают в воде, что вызывает значительные деформации и коробление деталей. Кроме того, для получения одинаковой прочности с легированными сталями их следует подвергать отпуску при более низкой температуре, поэтому они сохраняют более высокие закалочные напряжения, снижающие конструкционную прочность.

По статистической прочности стали относятся преимущественно к сталям нормальной прочности. Углеродистые конструкционные стали выпускают двух видов: обыкновенного качества и качественные.

Стали обыкновенного качества выпускают в виде проката (прутки, балки, листы, уголки, трубы, швеллеры и т.п.) в нормализованном состоянии. В углеродистых сталях обыкновенного качества допускается содержание вредных примесей, а также газонасыщенность и загрязнённость неметаллическими включениями. И в зависимости от назначения и комплекса свойств подразделяют на группы: А, Б, В.

Стали маркируются сочетанием букв Ст и цифрой (от 0 до 6), показывающей номер марки, а не среднее содержание углерода в ней, хотя с повышением номера содержание углерода в стали увеличивается. Стали групп Б и В имеют перед маркой буквы Б и В, указывающие на их принадлежность к этим группам. Группа А в обозначении марки стали не указывается. Степень раскисления обозначается добавлением индексов: в спокойных сталях - «сп», полуспокойных - «пс», кипящих - «кп», а категория нормируемых свойств (кроме категории 1) указывается последующей цифрой. Стали группы А используют в состоянии поставки для изделий, изготовление которых не сопровождается горячей обработкой. В этом случае они сохраняют структуру нормализации и механические свойства, гарантируемые стандартом. Сталь марки Ст3 используется в состоянии поставки без обработки давлением и сваркой. Ее широко применяют в строительстве для изготовления металлоконструкций, в сельском хозяйственном машиностроении (валики, оси, рычаги, изготовляемые холодной штамповкой, а также цементируемые детали: шестерёнки, порневые пальцы).Стали группы Б применяют для изделий, изготавливаемых с применением горячей обработки (ковка, сварка и в отдельных случаях термическая обработка), при которой исходная структура и механические свойства не сохраняются. Для таких деталей важны сведения о химическом составе, необходимые для определения режима горячей обработки. Стали группы В дороже, чем стали групп А и Б, их применяют для ответственных деталей (для производства сварных конструкций).

Углеродистые стали обыкновенного качества (всех трех групп) предназначены для изготовления различных металлоконструкций, а также слабонагруженных деталей машин и приборов. Эти стали, используются, когда работоспособность деталей и конструкций обеспечивается жесткостью. Углеродистые стали обыкновенного качества широко используются в строительстве при изготовлении железобетонных конструкций. Способностью к свариванию и к холодной обработке давлением отвечают стали групп Б и В номеров 1-4, поэтому из них изготавливают сварные фермы, различные рамы и строительные металлоконструкции, кроме того, крепежные изделия, часть из которых подвергается цементации.

Низкоуглеродистые стали отличаются малой прочностью и высокой пластичностью в холодном состоянии. Эти стали в основном производят в виде тонкого листа и используют после отжига или нормализации для холодной штамповки с глубокой вытяжкой. Они легко штампуются из-за малого содержания углерода и незначительного количества кремния, что и делает их очень мягкими. Их можно использовать в автомобилестроении для изготовления деталей сложной формы. Глубокая вытяжка из листа этих сталей применяется при изготовлении консервных банок, эмалированной посуды и других промышленных изделий.

Среднеуглеродистые стали номеров 3 и 4, обладающие большой прочности предназначаются для рельсов, железнодорожных колес, а также валов, шкивов, шестерен и других деталей грузоподъемных и сельскохозяйственных машин. Применяют для изготовления небольших валов, шатунов, зубчатых колес и деталей, испытывающих циклические нагрузки. В крупногабаритных деталях больших сечений из-за плохой прокаливаемости механические свойства значительно снижаются.

Высокоуглеродистые стали 5 и 6, а также с повышенным содержанием марганца в основном используют для изготовления пружин, рессор, высокопрочной проволоки и других изделий с высокой упругостью и износостойкостью. Их подвергают закалке и среднему отпуску на структуру троостит в сочетании удовлетворительной вязкостью и хорошим пределом выносливости.

Углеродистые качественные стали.

Эти стали характеризуются более низким, чем у сталей обыкновенного качества, содержанием вредных примесей и неметаллических включений. Их поставляют в виде проката, поковок и других полуфабрикатов с гарантированным химическим составом и механическими свойствами.

Маркируют их двухзначными числами: 08, 10, 15, 20, 60, обозначающими среднее содержание углерода в сотых долях процента (ГОСТ 1050-88). Например, сталь 10 содержит в среднем 0,10 % С, сталь 45 - 0,45 % С и т.д.

Спокойные стали маркируют без индекса, полуспокойные и кипящие с индексами соответственно «пс» и «кп». Кипящими производят стали О8кп, 10кп, I5кп, I8кп, 2Окп; полуспокойными - О8пс, I0пс, I5пс, 2Опс. В отличие от спокойных кипящие стали практически не содержат кремния (не более 0.03 %‚:. в полуспокойных его количество ограничено 0.05 - 0.17 %.

Содержание марганца повышается по мере увеличения концентрации углерода от 0,25 До 0,80 %. Содержание азота для сталей, перерабатываемых в тонкий лист, ограничено 0,006 %; для остальных сталей - 0,008 %.Механические свойства зависят от толщины проката.

Качественные стали находят многостороннее применение в технике, так как в зависимости от содержания углерода и термической обработки обладают разнообразными механическими и технологическими свойствами.

Низкоуглеродистые стали по назначению подразделяют на две подгруппы.

1. Малопрочные и высокопластичные стали 08, 10. Из-за способности к глубокой вытяжке их применяют для холодной штамповки различных изделий. Без термической обработки в горячекатаном состоянии эти стали используют для шайб, прокладок, кожухов и других деталей, изготавливаемых холодной деформацией и сваркой.

2. Цементуемые - стали 15, 20, 25. Предназначены они для деталей небольшого размера (кулачки, толкатели, малонагруженные шестерни и т.п.), от которых требуется твердая, износостойкая поверхность и вязкая сердцевина. Они пластичны, хорошо штампуются и свариваются; используются для изготовления деталей машин и приборов невысокой прочности (крепежные детали, втулки, штуцеры и т.п.), а также деталей котлотурбостроения (трубы перегревателей, змеевики), работающих под давлением при температуре от - 40 до 425?С.

Среднеуглеродистые стали 30, 35, 40, 45, 50, 55 отличаются большей прочностью, но меньшей пластичностью, чем низкоуглеродистые. В улучшенном состоянии стали применяют для изготовления деталей небольшого размера, работоспособность которых определяется сопротивлением усталости (шатуны, коленчатые валы малооборотных двигателей, зубчатые колеса, маховики, оси и т.п.). При этом возможный размер деталей зависит от условий их работы и требований к прокаливаемости. Для деталей, работающих на растяжение - сжатие (например, шатуны), необходима однородность свойств металла по всему сечению и, как следствие, сквозная прокаливаемость. Размер поперечного сечения таких нагруженных деталей ограничивается 12 мм. для деталей (валы, оси и т.п.), испытывающих главным образом напряжения изгиба и кручения, которые максимальны на поверхности, толщина упрочненного при закалке слоя должна быть не менее половины радиуса детали. Возможный размер поперечного сечения таких деталей - 30 мм, для изготовления более крупных деталей, работающих при невысоких циклических и контактных нагрузках, используют стали 40, 45, 50.Их применяют после нормализации и поверхностной индукционной закалки с нагревом ТВЧ тех мест, которые должны иметь высокую твердость поверхности (40 - 58 NRC) и сопротивление износу (шейки коленчатых валов, кулачки распределительных валиков, зубья шестерён).Индукционной закалкой с нагревом ТВЧ упрочняют также поверхность длинных валов, ходовых винтов станков и других деталей, для которых важно ограничить деформации при термической обработке.

В машиностроении углеродистые качественные стали, используются для изготовления деталей разного, чаще всего неответственного назначения и являются достаточно дешевым материалом. В промышленность эти стали поставляются в виде проката, поковок, профилей различного назначения с гарантированным химическим составом и механическим свойствами. Качественные стали широко применяются в машиностроении и приборостроении, так как за счет разного содержания углерода в них, а соответственно и термической обработки можно получить широкий диапазон механических и технологических свойств.

6. Легированные стали и сплавы

сталь сплав углерод

Прочность, вязкость, жаро- и хладостойкость, а также коррозионная стойкость углеродистых сталей являются недостаточными для многих высоконагруженных деталей машин и строительных конструкций; инструменты из углеродистой инструментальной стали тверды, но не выдерживают повышенной скорости резания, так как размягчаются при нагреве уже до температуры 250 0C, кроме того, они хрупкие. Прокаливаемость углеродистой стали также невелика в связи с большой критической скоростью закалки, в результате этого на мартенсит закаливается только поверхностный слой заготовки, а внутренние слои закаливаются лишь на троостит или сорбит, а у заготовок больших размеров остаются вовсе не закалёнными. Таким образом, углеродистая сталь часто не отвечает повышенным требованиям машиностроения и инструментального производства. Вводимые в сталь легирующие элементы улучшают ее механические, физические и химические свойства. Выше было сказано, что для легирования стали, применяют хром, никель, марганец, кремний, вольфрам, молибден, ванадий, кобальт, титан, алюминий, медь и другие элементы. Марганец считается легирующим компонентом при массовом содержании более 1 %, а кремний - более 0,8 %. Большинство легированных сталей приобретают высокие физико-механические свойства лишь после термической обработки.

Суммарное массовое содержание легирующих элементов

По этому признаку легированная сталь делится на низколегированную (суммарное содержание их менее 2,5 %, среднелегированную (от 2,5 до 10 %) и высоколегированную (более 10 %).

Взаимодействие легирующих элементов с железом и углеродом.

С железом легирующие элементы образуют у-, так и a- твёрдые растворы, т.е. они могут входить в состав аустенита и феррита, упрочняя их. При этом легирующие элементы оказывают различное влияние на устойчивость аустенита: одни (например, никель) расширяют этот интервал и при достаточном массовом содержании определяют аустенит устойчивом даже при комнатной температуре (такие стали называют аустенитными). Другие (например, хром) уменьшают устойчивость аустенита и могут совсем устранить аустенитное превращение; при достаточном содержании таких элементов (например, более 13 % Cr) аустенита не существует и сталь вплоть до плавления остаётся ферритной. Аустенитные и ферритные стали заколки не принимают, так как они не имеют фазовых превращений в твёрдом состоянии.

По отношению к углероду легирующие элементы разделяют на две группы:

1) элементы, образующие с углеродом устойчивые химические соединения, - карбиды (хром, марганец, молибден, вольфрам, ванадий, цирконий, титан); карбиды могут быть простыми, например, Cr4C, MoC, и сложными легированными - [(Fe, Cr)7] C3; (Fe, W)4C и др. Они твёрже карбида железа и менее хрупкие;

2) элементы, не образующие в стали карбидов и входящие в твёрдый раствор - феррит (никель, кремний, кобальт, алюминий, медь); они оказывают графитизирующее действие.

Структура в отожженном состоянии.

По этому признаку различают доэвтектоидную, эвтектоидную, заэвтектоидную и ледебуритную легированные стали. По мере увеличения массового содержания хрома точки, аналогичные тачкам S и E на диаграмме состояния системы сплавов Fe-Fe3C, будут смещаться влево на соответствующих диаграммах состояния систем сплавов с хромом, т.е. массовое содержание углерода в легированном перлите и легированном аустените уменьшаются по мере увеличения количества хрома в сплавах. Это относится также и к сталям, легированным другими карбидообразующими элементами.

Доэвтектоидная сталь состоит из легированного перлита и избыточного легированного феррита, заэвтектоидная - из легированного перлита и легированных карбидов, а ледебуритная - из легированных ледебурита, перлита и карбидов. На диаграмме указана также область ферритных сталей, получающихся при большом массовом содержании и небольшом углерода.

Структура в нормализованном состоянии.

При небольшом массовом содержании никеля и углерода получается структура, состоящая из смеси феррита и цементита, которая, однако, характеризуется повышением дисперсности по мере увеличения в стали никеля и углерода, т.е. структура может быть перлитной, сорбитной или трооститной. На диаграмме соответствующая область характеризует перлитный класс сталей. Большее массовое содержание никеля и углерода в сталях приводит к образованию при их охлаждении на воздухе структуры мартенсита или аустенита; такие стали относят, соответственно, к мартенситному или аустенитному классу. Образование структуры аустенита объясняется тем, что при повышенном массовом содержании в стали элементов, растворяющихся в аустените (в частности никеля), мартенситное превращение в сравнении происходит при более низких температурах, при большом содержании этих элементов такое превращение осуществляется при температурах ниже 0 0С. Соответственно при охлаждении на воздухе до комнатной температуры в стали сохранится структура аустенита без мартенсита. При меньшем массовом содержании никеля и углерода мартенситная точка на соответствующей диаграмме будет лежать выше, так как мартеновское превращение в таких случаях происходит при более высокой температуре и охлажденная на воздухе сталь имеет структуру мартенсита. При небольшом содержании никеля и углерода скорость охлаждения на воздухе оказывается меньше критической скорости закалки и сталь, охлаждённая на воздухе до комнатной температуры, имеет структуру троостита, сорбита или перлита. Заштрихованные участки на диаграмме соответствуют составом сталей, занимающим положение промежуточных классов: перлитно-мартенситного и мартенситно-аустенитного.

Легированная сталь в зависимости от структуры и состояния, полученных при охлаждении на воздухе, делятся на пять классов (не включая промежуточных): перлитный, мартенситный, аустенитный, карбидный и ферритный.

Классификация по качеству.

Легированная сталь подразделяется на качественную (массовое содержание серы и фосфора не более 0,035 % каждого), высококачественную (не более 0,025 % каждого) и особовысококачественную (не более 0,015 % S и 0,025 % P), получаемую при рафинирующих переплавах.

Маркировка легированной стали.

В соответствии с ГОСТом для обозначения легирующих элементов приняты следующие буквы; Х - хром, Н - никель, Г - марганец, С - кремний, В - вольфрам, М - молибден, Ф - ванадий, К - кобальт, Т - титан, Ю - алюминий, Д - медь, П - фосфор, Р - бор, Б - ниобий, А - азот (ставить в конце маркировки запрещается), Е - селен, Ц - цирконий. Для обозначения легированной стали той или иной марки применяют определённое сочетание цифр и букв. Для стали конструкционной легированной принята маркировка, по которой первые две цифры указывают среднее массовое содержание углерода в сотых долях процента, если сталь содержит менее 0,1 % углерода, то первая цифра ноль, например 08, 05. Буквы в маркировке указывают наличие соответствующих легирующих элементов, а цифры, следующие за буквами, - процентное массовое содержание этих элементов в стали. Если за какой-либо буквой отсутствует цифра, то это значит, что сталь содержит данный элемент в количестве до 1,5 %, кроме элементов, присутствующих в малых количествах (для комплексно-легированных сталей). Например, марка 35X обозначает хромовую сталь с массовым содержанием С около 0,35 % и Сr до 1,5 %; 45Г2 - марганцевую сталь с массовым содержанием С около 0,45 % и Мn около 2 %; марка 38ХН3МФА - сталь, содержащую 0,33-0,4 % С, 1,2-1,6 % Сr, 3,0-3,5 % Ni, 0,35-0,45 % Мо, 0,1-0,18 % V, а также 0,25-0,5 % Мn, не указанного по маркировке, букву А в конце маркировки используют для обозначения высококачественной стали. Для обозначения особовысококачественной стали в конце маркировки ставят букву Ш (через дефис), например, 30ХГС-Ш.Для инструментальной легированной стали порядок маркировки по легирующим компонентам тот же, что и для конструкционных сталей, но содержание углерода указывается первой цифрой в десятых долях процента. Если цифра отсутствует, то сталь содержит около 1 % углерода.

Некоторые стали специального назначения имеют особую маркировку из букв, которые ставятся впереди цифр: А - автоматная, Ш - шарикоподшипниковая, Р - быстрорежущая, Е - магнитотвердая, Э - электротехническая, Св - сварочная, Нп - наплавочная и т.д.

Особенности термической обработки легированной стали.

Введение большинства легирующих элементов определяет повышение точек А1 и А3 в сравнении с их положением для углеродистой стали, поэтому температура нагрева легированной стали для закалки выше. Легированные стали имеют меньшую теплопроводность и требуют замедленного нагрева и более продолжительной выдержки для аустенизации в сравнении с углеродистой сталью. Все легирующие элементы (за исключение кобальта) уменьшают критическую скорость закалки, т.е. увеличивает инкубационный период переохлажденного аустенита («сдвигают» вправо кривые на диаграммах изотермического превращения); это определяет увеличение прокаливаемости заготовок. Карбидообразующие элементы, кроме того, определяют на диаграмме изотермического превращения две области 1 и 3 (рис. 3) минимальной устойчивости аустенита и область 2 между ними повышенной его устойчивости. Увеличению устойчивости переохлажденного аустенита обеспечивает возможность получения структуры мартенсита при закалке охлаждением в масле, на воздухе и в горячих средах.Многие легирующие элементы повышают устойчивость мартенсита против отпуска, поэтому для достижения требуемой прочности легированные стали при отпуске нагревают до более высоких температур, чем углеродистые.

Термомеханическая Обработка.

Некоторые марки легированной и углеродистой сталей упрочняют термомеханической обработкой (ТМО), при которой в единую операцию совмещают пластическую деформацию аустенита и закалку. После закалки производят низкий отпуск . Сталь после ТМО имеет повышенную прочность и ударную вязкость в 1,5-2 раза выше в сравнении со сталью той же марки после закалки и низкого отпуска.В зависимости от температуры, при которой производят деформацию, различают высокотемпературную (ВТМО) и низкотемпературную (НТМО) термомеханическую обработку. ВТМО применяют для углеродистой и легированной сталей. При этом сталь нагревают до температуры выше точки А3 (рис. 3, а), выдерживают для аустенизации, деформируют прокатной или ковкой (на схеме показано ломаной линией) для предупреждения поста зёрен аустенита их охлаждают. При НТМО (рис. 3 б) деформацию производят при температурах ниже рекристаллизации (зона рекристаллизации показана штриховкой) в области повышенной устойчивости аустенита, что возможно лишь для легированных сталей; рекристаллизация при этом не может возникнуть. Повышение прочности при ТМО определяется измельчением блоков зёрен аустенита и уплотнением дислокаций; эти особенности наследуются и мартенситом. НТМО дает наибольшее упрочнение (ув до 2800 МПа), однако при температурах НТМО аустенит менее пластичен, поэтому НТМО применяют для изделий простой формы (ленты, прутка) при небольших сечениях.

7. Конструкционные стали

Автоматные стали

Эти стали маркируют буквой А (автоматная) и цифрами, показывающими среднее содержание углерода в сотых долях процента. Если автоматная сталь легирована свинцом, то обозначение марки начинается с сочетания букв «АС». Чтобы не проявлялась красноломкость, в сталях увеличено количество марганца. Добавление в автоматные стали свинца, селена и теллура позволяет в 2-3 раза сократить расход режущего инструмента.

Улучшение обрабатываемости достигается модифицированием кальцием (вводится в жидкую сталь в виде силикокальция), который глобулизирует сульфидные включения, что положительно влияет на обрабатываемость, но не так активно, как сера и фосфор.

Сера образует большое количество сульфидов марганца, вытянутых в направлении прокатки. Сульфиды оказывают смазывающее действие, нарушая при этом сплошность металла. Фосфор повышает хрупкость феррита, облегчая отделение стружки металла во время процесса резания. Оба эти элемента способствуют уменьшению налипания на режущий инструмент и получению гладкой блестящей обрабатываемой поверхности.

Однако необходимо помнить, что повышение содержания серы и фосфора снижает качество стали. Стали, содержащую серу, имеют ярко выраженную анизотропию механических свойств и пониженную коррозионную стойкость.Стали А11, А12, А20 используют для крепежных деталей и изделий сложной формы, не испытывающих больших нагрузок, но к ним предъявляются высокие требования по точности размеров и чистоты поверхности.Стали А30 и А40Г предназначены для деталей, испытывающих более высокие напряжения.Свинец содержащие стали широко применяют для изготовления деталей двигателя.В автоматных селено содержащих сталях повышается обрабатываемость за счет образования селенидов, сульфоселенидов, которые обволакивают твердые оксидные включения и тем самым устраняют их истирающее действие. Кроме того, селениды сохраняют глобулярную форму после обработки давлением, поэтому практически не вызывают анизотропии свойств и не ухудшают коррозионную стойкость стали, как сера. Применение этих сталей снижает расход инструмента в два раза и до 30 % повышает производительность.

Конструкционные цементуемые стали

Карбидо- и нитридообразующие элементы (такие, как Cr, Mn, Mo и др.) способствуют повышению прокаливаемости, поверхностной твердости, износостойкости и контактной выносливости. Никель повышает вязкость сердцевины и диффузионного слоя и снижает порог хладноломкости. Цементуемые (нитроцементуемые) легированные стали по механическим свойствам подразделяют на две группы: стали средней прочности с пределом текучести менее 700 МПа (15Х, 15ХФ) и повышенное прочности с пределом текучести 700-1100 МПа (12Х2Н4А, 18Х2Н4МА и др.).

Хромистые (15Х, 20Х) и хромованадиевые (15ХФ) стали цементуются на глубину до 1,5 мм. После закалки (880 0С, вода, масло) и последующего отпуска (180 0С, воздух, масло) стали имеют следующие свойства: ув = 690-800 МПа, д = 11-12 % , KCU = 0,62 МДж/м2.

Хромомарганцевые стали (18ХГТ, 25ХГТ), широко применяемые в автомобилестроении, содержат по 1 % хрома и марганца (дешевого заменителя никеля в стали), а также 0,06 % титана. Их недостатком является склонность к внутреннему окислению при газовой цементации, что приводит к снижению твердости слоя и предела выносливости. Этот недостаток устраняется легированием стали молибденом (25 ХГМ). Для работы в условиях изнашивания используют сталь 20ХГР, легированную бором. Бор повышает прокаливаемость, и прочность стали, но снижает ее вязкость и пластичность.

Хромоникельмолибденовая (вольфрамовая) сталь 18Х2Н4МА (18Х2Н4ВА) относится к мартенситному классу и закаливается на воздухе, что способствует уменьшению коробления. Легирование хромоникелевых сталей W или Mo дополнительно повышает их прокаливаемость. Причем Мо существенно повышает прокаливаемость цементованного слоя, в то время как хром и марганец увеличивают прежде всего прокаливаемость сердцевины. В цементованном состоянии данную сталь применяют для изготовления зубчатых колес авиационных двигателей, судовых редукторов и других крупных деталей ответственного назначения. Эту сталь используют также как улучшаемую при изготовлении деталей, подверженных большим статическим и ударным нагрузкам.

Конструкционные улучшаемые стали

Улучшаемыми называют такие стали, которые используются после закалки с высоким отпуском (улучшения). Эти стали (40Х, 40ХФА, 30ХГСА, 38ХН3МФА и др.) содержат 0,3-0,5 % углерода и 1-6 % легирующих элементов. Стали закаливают с 820-880 0С в масле (крупные детали - в воде); высокий отпуск производят при 500-650 0С с последующим охлаждением в воде, масле или на воздухе (в зависимости от состава стали). Структура стали после улучшения - сорбит. Данные стали применяют для изготовления валов, шатунов, штоков и других деталей, подверженных воздействию циклических или ударных нагрузок. В связи с этим улучшаемые стали должны обладать высоким пределом текучести, пластичностью, вязкостью, малой чувствительностью к надрезу.

Стали относятся к мартенситному классу, слабо разупрочняются при нагреве до 300-400 0С. Из них изготавливают валы и роторы турбин, тяжело нагруженные детали редукторов и компрессоров.

Рессорно-пружинные стали

Пружины, рессоры и другие упругие элементы работают в области упругой деформации материала. В то же время многие из них подвержены воздействию циклических нагрузок. Поэтому основные требования к пружинным сталям - это обеспечение высоких значений пределов упругости, текучести, выносливости, а также необходимой пластичности и сопротивления хрупкому разрушению. Стали для пружин и рессор содержат 0,5-0,75 % С; их также дополнительно легируют кремнием (до 2,8 %), марганцем (до 1,2 %), хромом (до 1,2 %), ванадием (до 0,25 %), вольфрамом (до 1,2 %) и никелем (до 1,7 %). При этом происходит измельчение зерна, способствующее возрастанию сопротивления стали малым пластическим деформациям, а следовательно, ее релаксационной стойкости.

Широкое применение на транспорте нашли кремнистые стали. Однако они могут подвергаться обезуглероживанию, графитизации, резко снижающим характеристики упругости и выносливости материала. Устранение указанных дефектов, а также повышение прокаливаемости и торможение роста зерна при нагреве достигается дополнительным введением в кремнистые стали хрома, ванадия, вольфрама и никеля. Лучшими технологическими свойствами, чем кремнистые стали, обладает сталь 50ХФА, широко используемая для изготовления автомобильных рессор. Клапанные пружины делают из стали 50ХФА, не склонной к обезуглероживанию и перегреву, но имеющей малую прокаливаемость.

Термическая обработка легированных пружинных сталей (закалка 850-880 0С, отпуск 380-550 0С) обеспечивают получение высоких пределов прочности и текучести. Применяется также изотермическая закалка.

Максимальный предел выносливости получают при термической обработке на твердость HRC 42-48.Для изготовления пружин также используют холоднотянутую проволоку (или ленту) из высокоуглеродистых сталей 65, 65Г, 70, У8, У10 и др.

Пружины и другие элементы специального назначения изготавливают из высокохромистых мартенситных (30Х13), мартенситно-стареющих (03Х12Н10Д2Т), аустенитных нержавеющих (12Х18Н10Т), аустенитно-мартенситных (09Х15Н8Ю) и других сталей и сплавов.

Шарикоподшипниковые стали

Для обеспечения работоспособности изделий шарикоподшипниковая сталь должна обладать высокой твердостью, прочностью и контактной выносливостью. Это достигается повышением качества металла: его очисткой от неметаллических включений и уменьшением пористости посредством использования электрошлакового или вакуумно-дугового переплава.При изготовлении деталей подшипника широко используют шарикоподшипниковые (Ш) хромистые (Х) стали ШХ15СГ (последующая цифра 15 указывает содержание хрома в десятых долях процента - 1,5 %). ШХ15СГ дополнительно легирована кремнием и марганцем для повышения прокаливаемости. Отжиг стали на твердость порядка 190 НВ обеспечивает обрабатываемость полуфабрикатов резанием и штампуемость деталей в холодном состоянии. Закалка деталей подшипника (шариков, роликов и колец) осуществляется в масле с температур 840-860 0С. Перед отпуском детали охлаждают до 20-25 0С для обеспечения стабильности их работы (за счет уменьшения количества остаточного аустенита). Отпуск стали проводят при 150-170 0С в течение 1-2 ч.Детали подшипников качения, испытывающие большие динамические нагрузки, изготавливают из сталей 20Х2Н4А и 18ХГТ с последующей их цементацией и термической обработкой. Для деталей подшипников, работающих в азотной кислоте и других агрессивных средах, используется сталь 95Х18, содержащая 0,95 % С и 18 % Cr.


Подобные документы

  • Процентное содержание углерода и железа в сплаве чугуна. Классификация стали по химическому составу, назначению, качеству и степени раскисления. Примеры маркировки сталей. Расшифровка марок стали. Обозначение легирующих элементов, входящих в состав стали.

    презентация [1,0 M], добавлен 19.05.2015

  • Классификация, свойства, применение, маркировка углеродистых и легированных сталей. Влияние углерода и примесей на их свойства. Термическая обработка сплава 30ХГСА. Измерение твёрдости методом Роквелла. Влияние легирующих элементов на рост зерна стали.

    дипломная работа [761,3 K], добавлен 09.07.2015

  • Роль легирующих элементов в формировании свойств стали. Анализ и структура хромоникелевых сталей. Роль и влияние никеля на сопротивление коррозии. Коррозионные свойства хромоникелевых сталей. Характеристика ряда хромоникелевых сталей сложных систем.

    реферат [446,2 K], добавлен 09.02.2011

  • Классификация металлов: технические, редкие. Физико-химические свойства: магнитные, редкоземельные, благородные и др. Свойства конструкционных материалов. Строение и свойства сталей, сплавов. Классификация конструкционных сталей. Углеродистые стали.

    реферат [24,1 K], добавлен 19.11.2007

  • Классификация инструментальных сталей. Влияние легирующих элементов на структуру и свойства штамповых сталей. Химический состав стали 4Х5МФ1С. Влияние температуры закалки на структуру и твердость материала. Оценка аустенитного зерна и износостойкости.

    дипломная работа [492,5 K], добавлен 19.02.2011

  • Закаливаемость и прокаливаемость стали. Характеристика конструкционных сталей. Влияние легирующих элементов на их технологические свойства. Термическая обработка сплавов ХВГ, У8, У13 и их структуры после нее. Выбор вида и режима термообработки детали.

    курсовая работа [4,9 M], добавлен 12.01.2014

  • Свойства стали, ее получение и области применения. Классификация углеродистых сталей в зависимости от назначения, структуры, содержания углерода, качества. Качественные конструкционные углеродистые стали, их химический состав и механические свойства.

    контрольная работа [999,9 K], добавлен 17.08.2009

  • Принципы обозначения стандартных марок легированных сталей, их механические свойства. Влияние вредных примесей, величины зерна на свойства. Виды закалки, структура сплава после нее. Понятие свариваемости стали. Коррозионные повреждения нержавеющей стали.

    курсовая работа [5,1 M], добавлен 18.03.2010

  • Назначение и особенности эксплуатации инструментальных сталей и сплавов, меры по обеспечению их износостойкости. Требования к сталям для измерительного инструмента. Свойства углеродистых и штамповых сталей для деформирования в различных состояниях.

    контрольная работа [432,5 K], добавлен 20.08.2009

  • Классификация сталей. Стали с особыми химическими свойствами. Маркировка сталей и области применения. Мартенситные и мартенсито-ферритные стали. Полимерные материалы на основе термопластичных матриц, их свойства. Примеры материалов. Особенности строения.

    контрольная работа [87,0 K], добавлен 24.07.2012

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.