Проблемы воды и общий фон развития мембранных технологий
Технологическая сущность фильтрования воды. Конструкция и техническая характеристика фильтр-пресса, описание его работы. Фильтры периодического действия. Периодичность работы и циклограмма фильтр-пресса. Объем фильтрата, полученный за время фильтрации.
Рубрика | Производство и технологии |
Вид | курсовая работа |
Язык | русский |
Дата добавления | 07.09.2011 |
Размер файла | 269,0 K |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
Размещено на http://www.allbest.ru/
ВВЕДЕНИЕ
фильтр пресс вода циклограмма
Фильтрование - процесс разделения неоднородных сред при помощи пористых перегородок. К процессам фильтрования относится разделение неоднородных жидкостей (суспензий, шламов, пульп) на твердую и жидкую фазу. Разделение суспензии производится при помощи фильтра. В простейшем случае он является сосудом, разделенным на две части фильтровальной перегородкой. Фильтровальные перегородки почти всегда размещаются на различных опорных устройствах. Суспензию помещают в одну часть этого сосуда таким образом, чтобы она соприкасалась с фильтровальной перегородкой. В частях сосуда по разные стороны от фильтровальной перегородки создается разность давления, под действием которой жидкость проходит через ее поры, а твердые частицы задерживаются на ней. Таким образом, суспензия разделяется на фильтрат и влажный осадок. Фильтрование является гидродинамическим процессом, скорость которого прямо пропорциональна разности давлений, создаваемой по обеим сторонам фильтровальной перегородки и, обратно пропорциональна сопротивлению, испытываемому жидкостью при движении через поры перегородки и слой образовавшегося осадка.
1. Технологическая сущность фильтрования воды
При движении воды через сетки, ткани, пористые материалы достигается извлечение из нее взвешенных веществ. Процесс осуществляется либо на поверхности, либо в глубине фильтрующего материала. Поверхностное фильтрование происходит при движении воды через объемные элементы из пористых материалов значительной толщины (патронные фильтры и фильтры из пористой керамики); сетчатые или тканевые перегородки (фильтрование под давлением или под вакуумом, микрофильтрование); жесткие проницаемые каркасы с предварительно нанесенным фильтрующим слоем (намывные фильтры трубчатой, рамной или барабанной конструкции).
В зависимости от свойств применяемых фильтрующих основ и извлекаемых из воды примесей процесс фильтрования состоит из следующих трех явлений: отложения, фиксации и отрыва. Механизм отложения бывает двух видов: механическое задержание извлекаемых примесей и отложение взвешенных частиц в порах. При механическом процеживании из воды извлекаются все частицы, превышающие размеры пор фильтрующей основы или пор, формируемых задержанными частицами, которые сами образуют фильтрующий слой. При этом чем меньше размеры пор фильтрующей основы, тем более высоким будет достигаемый эффект.
Фильтрование через пористую основу может сопровождаться отложениями задержанных примесей на ее поверхности или внутри ее.
Отложение взвешенных веществ в порах фильтрующей основы происходит, если их размер меньше размера пор и траектория движения частиц приводит к их контакту с поверхностью поровых каналов. Этому способствуют: диффузия за счет броуновского движения; прямое столкновение; инерция частиц; прилипание за счет ван-дер-ваальсовых сил; осаждение под действием гравитационных сил; вращательное движение под действием гидродинамических сил.
Фиксирование частиц примесей воды на поверхности и в порах фильтрующего материала обусловлено малыми скоростями движения жидкости, силами когезии и адсорбции.
При извлечении из воды примесей воды фильтрованием происходит уменьшение порового пространства фильтрующего материала вследствие осаждения частиц. Это влечет за собой увеличение скорости потока и изменение его режима: от ламинарного к турбулентному. В этом случае задержанные частицы примесей будут частично отрываться и перемещаться потоком глубже в поры фильтрующего материала и даже выноситься с фильтратом.
Выбор поверхностного или объемного фильтрования обусловлен требуемым качеством фильтрата, свойствами воды и ее загрязнений, а также экономическими соображениями. Тот или иной вид фильтрования сопряжен с определенными капитальными и эксплуатационными затратами, которые, в свою очередь, определяются предварительной обработкой воды, способами промывки аппаратов, степенью автоматизации процесса и способов контроля за ним.
Поверхностное фильтрование может осуществляться на тонких сетчатых перегородках, на объемных пористых элементах из твердых материалов или на жестких каркасах с предварительно нанесенным фильтрующим слоем.
Фильтрование через сетчатые перегородки осуществляют на открытых или напорных аппаратах (фильтрах). При этом различают три вида фильтрования: макрофильтрование, при котором извлекают из воды частицы крупностью более 150 мкм, микрофильтрование - извлекают частицы размером 1...150 мкм и ультра-фильтрование - извлекают частицы размером 0,004...0,4 мкм.
Путем макрофильтрования (макропроцеживание) через металлические перфорированные пластины или металлическую проволочную сетку с размером отверстий более 0,3 мм (барабанные сетки) извлекают грубодисперсные примеси, плавающие примеси, насекомые, травы, водоросли, ветки и т.п., имеющие размеры от 0,2 до нескольких миллиметров. Макрофильтрование осуществляют на вращающихся макроситах и ситах с укрепленным скребком, работающих с низкими потерями напора, и на неподвижных или вращающихся самоочищающихся ситах и механических фильтрах, работающих под давлением. Вращающиеся макросита, применяемые в процессе подготовки питьевой воды и воды для орошения, представляют собой или горизонтально располагаемые барабаны, или вращающиеся сита из непрерывной сетки. Их подача варьируется от нескольких литров до кубических метров в секунду.
Барабанные сетки (БС), размещаемые на водозаборе или площадке очистных сооружений, до подачи в воду реагентов используют для грубого процеживания воды. Размер ячеек сетки из нержавеющей стали или полимеров 0,5Ч0,5 мм. Рабочая сетка размещается между поддерживающими сетками с размером отверстий 10Ч10 мм. Интенсивность фильтрования на БС принимают 25...62 л/с на 1 м2 смоченной площади макросетки, так как барабан только на 2/3 диаметра погружен в воду. Расход воды на промывку барабанных сеток, подаваемой под давлением 0,2 МПа, составляет до 0,5% суточного расхода. Потери напора на макросетке составляют до 0,1 м.
Схема работы аппарата следующая. Из бокового канала исходная вода через перфорированную часть соосно расположенного полого вала вводится внутрь вращающегося барабана, фильтруется через сетку и проникает в камеру, а далее через окна отводится в канал фильтрата. При засорении сетки и достижении максимального перепада уровней воды автоматически включается промывное устройство, которое промывает полосу сетки на верхней образующей барабана. Промывная вода собирается воронками и по глухой части полого вала отводится за пределы аппарата.
Вращающееся сито представляет собой ряд чередующихся фильтровальных полотен, выполненный из плетеных металлических бронзовых или стальных прутьев диаметром 0,25…1 мм, смонтированных на жестком каркасе с размером ячеек 0,3...3 мм. Скважность сита составляет 50...60%. Скорость фильтрования по отношению к площади сита погруженной в воду, составляет 0,35...0,4 м/с. Предпочтительно фильтровать обрабатываемую воду изнутри наружу, что облегчает промывку сетки и удаление задержанных примесей. Потери напора 0,2...0,5 м. вод. ст.
Для извлечения из воды крупных плавающих частиц рекомендуются сита в виде неподвижной стальной пластины с отверстиями 2...5 мм. Излеченные примеси удаляются скребком или щеткой, укрепленной на конце цепи (для прямого наклонного сита), или вращающимся устройством (для круглых сит); и сбрасываются в сборник. Плоские сита целесообразно располагать в подводящих каналах шириной до 2,5 м, потери напора до 0,5 м. вод. ст.
Неподвижные или вращающиеся самоочищающиеся сита с размером отверстий 0,25...2 мм используют для извлечения из воды относительно крупных взвесей. Обычно неподвижные сита состоят из решетки, изготовленной из тонких прутьев, расположенных под переменным углом и смонтированных в жесткой раме. Прутья могут быть круглого, прямоугольного или треугольного сечения. Обрабатываемая вода подается в верхнюю часть сита, а осадок непрерывно удаляется с поверхности сита специальным устройством.
Вращающиеся сита состоят из цилиндрической решетки с горизонтальной осью вращения. Решетка образуется стальными прутьями трапецеидального профиля. Сито медленно вращается с линейной скоростью 0,1...0,3 м/с. Задерживаемые примеси остаются на решетке и снимаются с нее неподвижным скребком. Вращающиеся и неподвижные сита рассчитаны на подачу воды до 1 тыс. м3/ч, допустимые потери напора 2 м. вод. ст.
За рубежом для глубокого осветления воды широко используют механические напорные фильтры: циклонные, вращающиеся со съемными фильтровальными элементами из фарфора или стали (размер отверстий 0,1...1,6 мм), и автоматические фильтры с множеством фильтровальных трубок с отверстиями 125 мкм и более и вращающимся промывным устройством.
Основная цель микрофильтрования - удаление планктона, содержащегося в поверхностных водах. При этом, конечно, удаляются взвешенные частицы большого размера и частицы растительного животного происхождения, содержащиеся в воде. В зависимости от изменения расходов воды и способности частиц содержащихся в ней, забивать фильтровальные сетки используют различные устройства для регулирования скорости вращения барабана и один или несколько рядов промывных форсунок
Оптимальные результаты эффективности микрофильтрования достигаются путем поддержания более или менее постоянных потерь напора, обусловленных частичном забиванием сеток задержанными частицами. Эффективность работы установки ограничена несколькими факторами: промытая фильтровальная сетка не обеспечивает надлежащего задержания в начале фильтроцикла и степень очистки при этом определяется только размерами ячеек; планктон никогда не удаляется полностью. Он может опять размножаться, особенно если повысится температура воды; яйца некоторых низших ракообразных могут легко проходить через фильтровальную сетку и развиваться, в результате чего в последующих резервуарах могут быть обнаружены видимые невооруженным глазом организмы; из-за опасности коррозии фильтровальной сетки или ее подложки нельзя применять предварительное хлорирование воды перед микрофильтрами; поверхность микрофильтров должна быть достаточно велика, чтобы обеспечить удаление большого количества планктона, развивающегося в определенные периоды года. Если она мала, то в периоды интенсивного развития планктона и во время паводков производительность водоочистного комплекса может значительно снизиться.
Металлические или пластмассовые фильтровальные сетки в большинстве случаев имеют размеры ячеек от 20 до 40 мкм и в исключительных случаях 10 мкм. Чем меньше размер ячеек, тем больше должна быть площадь поверхности микрофильтра. Так, при размере ячеек 35 мкм скорость фильтрования должна быть не более 35 м/ч в расчете на общую площадь поверхности микрофильтра (50 м/ч в пересчете на погруженную поверхность микрофильтра), а в расчете на пиковую концентрацию взвешенных веществ - 10 м/ч.
Эффективность снижения содержания взвешенных веществ в результате микрофильтрования составляет 50...80%, в среднем около 65%. Для сравнения отметим, что хорошо работающий отстойник обеспечивает снижение содержания взвешенных веществ на 80...90% без предварительного хлорирования и на 95...99% с предварительным хлорированием.
Микрофильтры (МФ) конструктивно ничем не отличаются от барабанных сит, за исключением размеров сетки, натянутой по образующей барабана. Скорость вращения барабана МФ принимается 0,1...0,5 м/с. Барабаны МФ погружают в воду на диаметра в камеру, которая предназначена для сбора фильтрата.
Интенсивность фильтрования назначается в пределах 10...25 л/ (с•м2) полезной площади микросетки, погруженной в воду.
Исследования В.Ф. Соколова, Я.Я. Кару показали, что микрофильтры задерживают до 75% диатомовых и до 95% синезеленых водорослей, и до 100% задерживается зоопланктон. Микрофильтры целесообразно использовать при содержании фитопланктона более 1000 клеток в 1 см3 исходной воды.
2. Описание работы фильтр-пресса
Основным рабочим органом любого фильтра является фильтрующая перегородка. Последняя может быть одинарной из различных тканей - бязь, бельтинг, лавсан, нейлон и специальный капрон, керамические и металлические материалы - или состоять из двух слоев - один слой ткани и другой слой осадка из уплотненных взвешенных частиц. Уплотненный слой, или осадок, образующийся в большинстве случаев при фильтровании полидисперсных суспензий, частицы взвесей которых тиксотропны, является основным рабочим органом фильтра.
В процессе фильтрования толщина слоя осадка и его гидравлическое сопротивление увеличиваются. Исходя из этого, процесс фильтрования ведут двумя способами: при постоянном давлении фильтруемой среды, поступающей на процесс (при этом уменьшается скорость фильтрования); при постоянной скорости фильтрования и переменном возрастающем давлении.
Существуют различные конструкции фильтров, работающих периодически и непрерывно. В пищевой промышленности используются в основном фильтры периодического действия. Наиболее распространен в пищевой промышленности фильтр-пресс, который используется для тонкой очистки воды.
Фильтр-пресс IIP 19,5 - 565Ч60/13С предназначен для тонкой очистки воды и состоит из станины 1, на которой смонтированы задняя упорная плита 2, передняя нажимная плита 3 и плиты 4 установленные на два горизонтальных стержня 5.
Насос 6, нагнетающий воду в канал 7, приводится в движение электродвигателем 8. Нажимная плита 3 перемещается винтом 9 при помощи маховика 10. Уплотнение плит 4 производится винтом 9 с помощью рычага 11 или механическим приводом. Собранные в пакет плиты с размещенными между ними фильтрующими пластинами плотно сжимаются. При этом фильтрующие пластины делят зазор между двумя плитами на две части, что достигается благодаря ребристой поверхности плит. Поэтому различают четные и нечетные отсеки. Если исходная вода поступает в четный отсек, очищенная вода будет выходить из нечетного отсека.
Каждая плита имеет по два фасонных прилива с отверстиями. Эти приливы расположены в двух углах четных плит с одной стороны, в нечетных плитах - с противоположной стороны. Таким образом, при сборе плит в пакет создаются два канала в четных и два канала в нечетных плитах, соединенных с полостями, образуемыми каждой парой плит с разделяющей их фильтрующей пластиной.
При работе фильтра фильтруемая вода нагнетается в каналы четных плит, затем через отверстия в них поступает в отсеки для исходной воды и под давлением проходит через фильтрующие пластины, при этом частицы взвесей задерживаются, а очищенная вода попадает в отсеки для конечной очищенной воды, затем по двум каналам нечетных пластин выходит из фильтра в сборник для очищенной воды.
Таблица № 3
Техническая характеристика фильтр-пресса
Производительность, дал/ч |
950 |
|
Площадь фильтрующей поверхности, м2 |
20,5 |
|
Максимальное давление фильтрования, МПа |
0,95 |
|
Потребляемая мощность, кВт |
5,5 |
|
Габаритные размеры, мм |
2950x1090x1240 |
|
Масса, кг |
1575 |
Пластинчатый (камерный) фильтр-пресс состоит из ряда рифленых плит, помещенных между задней упорной и передней нажимной плитами. Плиты своими ручками упираются на продольные опорные балки. Плиты отлиты из силумина, поверхность покрывают защитным слоем.
Фильтрующим элементом камерных фильтров является фильтровальный картон, помещенный между плитами. Уплотнения между плитами создают, зажимая набор плит с помощью ручного зажима. Набор плит в зажатом состоянии образует ряд камер, каждая из которых разделена на две половины фильтрующим материалом.
В верхнем и нижнем углах каждой плиты имеются два прилива с отверстиями для получения после сборки общих каналов, сообщенных с рифлеными полостями на обеих сторонах плиты. Толщина прилива равна двум толщинам тела плиты. При сборке фильтр-пресса плиты укладывают так, чтобы приливы соседних плит располагались по разные стороны фильтр-пресса. В собранном фильтр-прессе образуются четыре общих канала; по двум из них - верхнему и нижнему - с одной стороны фильтр-пресса подается неочищенная вода, по двум другим, расположенным на противоположной стороне, - отводится очищенная вода.
Контактные (привалочные) поверхности плит уплотнены фильтровальным материалом, а каналов - специальными резиновыми прокладками.
Вода в фильтр-прессе фильтруется через пористую перегородку и постепенно накапливающийся слой осадка. Подачу неочищенной воды на перегородку осуществляют под давлением насосом, установленным на раме фильтр-пресса.
Неочищенная вода, проходя по каналам через отверстие в нижней части плит, распределяется по напорным камерам, продавливается через фильтр-картон, поступает в каналы для очищенной воды, а оттуда в отводящий водопровод и сборник.
Для сбора капель воды, просачивающихся через фильтровальный картон, под набором плит смонтирован поддон.
Фильтр-пресс снабжен необходимой запорной арматурой. Контроль за работой фильтр-пресса ведут с помощью пробно-спускных краников, фонарей и манометров. Аппарат снабжен четырьмя домкратами для создания устойчивости при стационарной работе.
При подготовке к работе на специальном столе производят сборку фильтровальных секции, затем надевают их на полый вал и закрепляют зажимной гайкой. Днище закрывают и затягивают с помощью рым-болтов. Для герметизации под днище подкладывают резиновую прокладку. После этого можно приступить к процессу.
После того как перепад давления на фильтре достигнет 0,18 МПа, процесс фильтрации прекращают и приступают к мойке фильтра. Для этого воду из внутренней полости выпускают через нижний кран, соединяют корпус фильтра с компрессором и воздушным давлением отфильтровывают остаток воды до уровня полого вала. Остаток воды ниже уровня полого вала вытесняют сжатым воздухом через пробковый кран, размещенный в нижней части съемного днища. Корпус фильтра заполняют наполовину водой. Включают электродвигатель, соединенный с редуктором, и чехлы, вращаясь в чистой проточной воде в течение 30-40 минут, полностью промываются. После промывки подачу воды прекращают и остаток ее из корпуса сливают через тот же кран в днище. Затем включают компрессор, который через полый вал подает в течение 20-30 минут в чехлы воздух для просушивания.
При использовании таких фильтров в качестве намывных между плитами закладываются специальные рамы с редкими перегородками или без них, предназначенные для увеличения пространства перед фильтрационной пластиной; для намывного слоя.
В качестве фильтрующих пластин в пластинчатых фильтрах применяют картон марок T и Ш. Производительность картона марки T на 25-30% выше, чем картона марки Ш. Для стерилизующей фильтрации служат отечественные пластины СФ, с недавнего времени отечественная промышленность выпускает также пластины КТФ-1, КТФ-2, КОФ-3.
3. ФИЛЬТРЫ ПЕРИОДИЧЕСКОГО ДЕЙСТВИЯ (ФИЛЬТР-ПРЕССЫ)
Цикл фильтрования состоит из следующих операций: подготовки фильтрата, фильтрование, промывка осадка, выгрузка осадка.
Производительность фильтра зависит главным образом от толщины осадка и возрастает при ее уменьшении. В связи с этим необходимо чаще удалять осадок, чтобы его толщина не возрастала. Однако, частое удаление осадка связано с частым повторением циклов работы и ростом вспомогательного времени, поэтому следует установить оптимальную производительность цикла фильтрования, когда обеспечивается максимальная производительность. Последнюю можно найти если найти максимум выражающей ее функции.
Не приводя детального вывода, выражение для максимальной производительности для поверхности фильтра в 1 м можно представить в следующем виде:
, (3.7)
Где
, (3.8)
, (3.9)
, (3.10)
В этих выражениях - вспомогательное время; - динамическая вязкость промывной воды; -давление при промывке; -число одновременно промываемых слоев осадка; и -начальная и конечная концентрация растворимого вещества в промывной жидкости; -константа промывки.
Минимальная продолжительность цикла работы фильтра:
, (3.11)
при этом время фильтрации
, (3.12)
время промывки
, (3.13)
Полная максимальная производительность фильтра:
, (3.14)
Здесь площадь фильтрования:
, (3.15)
При этом объем фильтра:
, (3.16)
и толщина осадка:
, (3.17)
В этих формулах не учтена стоимость операций. Для определения оптимального режима работы фильтра находят минимум функции, выражающей зависимость затрат на работу фильтра от стоимости отдельных опёраций.
Затраты на работу установки, включающей фильтров,
, (3.18)
где - общий объем фильтрата, подлежащего удалению из суспензии; Т-затраты на время одного цикла работы фильтра; -объем фильтрата с 1 м площади фильтрования за цикл: - площадь поверхности фильтрата
Затраты на проведение одного цикла работы фильтра:
, (3.19)
где - затраты на проведение рабочих операций фильтрации и промывки, причем производственные затраты на фильтрацию, затраты на амортизацию фильтр-прессов (стоимость фильтр-пресса, время его амортизации, число рабочих суток в году, число рабочих часов в сутках); - затраты на проведение вспомогательных операций (затраты на разгрузку, сборку и разборку фильтр-пресса).
После подстановки выражения (3.19) в уравнение (3.18) его диференцируют и приравнивают производную к нулю. Тогда получают:
, (3.20)
откуда вспомогательное время
, (3.21)
Оптимальная толщина слоя, а следовательно и оптимальная толщина плиты
, (3.22)
Оптимальная продолжительность цикла работы фильтра:
, (3.23)
При этом время фильтрации
, (3.24)
время промывки
, (3.25)
Оптимальная производительность фильтра:
, (3.26)
Оптимальное число фильтров для получения фильтрата в количестве :
, (3.27)
Минимальные затраты на работу одного фильтр-пресса за цикл:
, (3.28)
Минимальные затраты на работу нескольких фильтров:
, (3.29)
Затраты при максимальной производительности фильтра:
, (3.30)
Минимальное число фильтр-прессов:
, (3.31)
Если , то:
, (3.32)
Учитывая, что стоимость фильтрации и промывки для автоматического фильтр-пресса ПФАКМ равна стоимости вспомогательных операций, указанный фильтр следует рассчитывать по формулам для максимальной производительности, минимальных толщин осадка и объема фильтрата за минимальный цикл фильтрования (2.7 - 2.9). Необходимо также учитывать, это максимально возможная толщина осадка не должна превышать 35 мм, а вспомогательное время составляет 1-2 мин.
Строение фильтровальных плит
Фильтр-пресс представляет собой набор фильтровальных плит с фильтровальными перегородками. В простейшем случае каждая камерная фильтровальная плита является опорой для фильтровальной перегородки и представляет из себя лист с дренажной поверхностью и выступом по периметру (привалочной поверхностью).
В плите выполнены отверстия для подачи суспензии (на рисунке в центре плиты) и отверстия и внутренние каналы для сбора и отвода фильтрата (на рисунке по углам плиты). Для проведения продувки или промывки осадка через отверстия и каналы отвода фильтрата, они выполняются только с одной стороны плиты (на рис. показаны голубым цветом) при этом плиты, объединяются в пакет так, чтобы каналы соседних плит располагались поочередно слева и справа (или сверху и снизу). Когда фильтровальные плиты соединяются в единый пакет отверстия подачи суспензии и отвода фильтрата образуют коллектора, а между внутренними дренажными поверхностями соседних плит образуются так называемые камеры.
Каждая камера с двух сторон окружена фильтровальной перегородкой. Конструкция фильтровальной перегородки предусматривает возможность поступления суспензии внутрь камеры.
4. Периодичность работы и циклограмма фильтр-пресса
Фильтр-пресс относится к фильтрам периодического действия. Это означает, что работа фильтр-пресса заключается в циклическом выполнении ряда операций. В общем случае циклограмма работы фильтр-пресса выглядит следующим образом:
1. Зажим фильтр-пресса (обязательная операция)
2. Фильтрование (обязательная операция)
3. Предварительное прессование осадка (для плит с отжимными диафрагмами - мембранами)
4. Продувка дренажа
5. Промывка осадка водой (или другой жидкостью)
6. Прессование осадка (для плит с мембранами)
7. Просушка осадка (продувка)
8. Продувка коллектора
9. Сброс давления из мембран (для плит с мембранами)
10. Разжим фильтр-пресса (обязательная операция)
11. Открытие поддона
12. Выгрузка осадка (обязательная операция)
13. Закрытие поддона
14. Во время зажима фильтр-пресса фильтровальные плиты соединяются в единый пакет. Механизм зажима может быть разный: механический, электромеханический, гидравлический. Давление зажима предусматривает предотвращение течей между плитами в последующих операциях.
Во время фильтрования суспензия подается на фильтр-пресс и, собственно, происходит разделение суспензии на жидкую и твердую фазу. Разность давления в подавляющем большинстве случаев создается или давлением подающего насоса или давлением воздуха при передавливании суспензии из монжуса.
В начале фильтрования происходит заполнение камер суспензией. При дальнейшей подаче суспензии на фильтровальной перегородке нарастает слой осадка, заполняя в конце всю камеру.
Во время предварительного прессования осадка под подвижную мембрану подается прессующая среда. Под действием давления мембраны осадок дополнительно обезвоживается и уплотняется.
Во время продувки дренажа сжатым воздухом освобождается дренажная поверхность от остатков фильтрата для последующей подачи промывных жидкостей или воздуха просушки.
Во время промывки осадка в одну пару (по вертикали) коллекторов отвода на осадок подается фильтрата промывная жидкость, которая, проходя через слой осадка, промывает осадок от остатков фильтрата.
Во время прессования осадка под мембрану подается прессующая среда с большим давлением, чем при предварительном прессовании. Под действием давления мембраны осадок обезвоживается от остатков промывной жидкости.
Во время просушки осадка в одну пару (по вертикали) коллекторов отвода фильтрата на осадок подается сжатый воздух, который, проходя через слой осадка, вытесняет остатки промывной жидкости или фильтрата.
Во время продувки коллектора сжатый воздух подается по направлению, обратному подаче суспензии. При этом коллектор подачи суспензии освобождается от находящейся там суспензии.
Во время сброса давления из мембран прессующая среда выводится из фильтр-пресса.
Во время разжима фильтр-пресса снимается давление зажима фильтр-пресса.
Во время открытия поддона открывается проем под фильтр-прессом, открывая устройство сбора или удаления осадка.
Во время выгрузки осадка фильтровальные плиты отводят друг от друга. При этом осадок под собственным весом с помощью автоматизированных устройств или вручную отделяется от фильтровальной перегородки и удаляется из камерного пространства.
Во время закрытия поддона закрывается проем под фильтр-прессом, защищая устройство сбора осадка от случайных протечек суспензии, фильтрата или промывных жидкостей.
5. Расчет фильтр-пресса
Определить необходимое число фильтр-прессов для тонкой очистки Q=4 м3/ч водной суспензии, толщину осадка в раме фильтра, а также продолжительность фильтрования и промывки, если давление p=3,5?104 Па, удельное сопротивление осадка rос=0,9?1012 м/кг, плотность фильтруемой водной суспензии сф=1050 кг/м3, плотность сухого осадка сос =2500 кг/м3, динамический коэффициент вязкости фильтруемой воды µ=1,25?10-3 Па?с, концентрация сухого вещества в водной суспензии с1=0,1 кг/кг и в осадке с2=0,9 кг/кг, число одновременно промываемых слоев осадка nc=2, начальная концентрация растворимого вещества в промывной жидкости =5% и конечная =0,1%, константа промывки kпр=3, сопротивление фильтрующей перегородки R=1,065?1010 м-1, площадь поверхности фильтрования Fф=50 м2, вспомогательное время =0,5 ч. Количество твердой фазы осадка:
(4.1)
где -плотность фильтруемой водной суспензии, кг/м3;
-концентрация сухого вещества в водной суспензии, кг/кг;
- концентрация сухого вещества в осадке, кг/кг.
Объем влажного осадка в 1 м3 фильтрата:
(4.2)
где - количество твердой фазы осадка, ;
- плотность сухого осадка, ;
- концентрация сухого вещества в осадке, кг/кг.
Константы уравнений фильтрования и промывки:
(4.3)
где - динамический коэффициент вязкости фильтруемой воды, Па?с;
- удельное сопротивление осадка, ;
- количество твердой фазы осадка, ;
- давление, Па.
(4.4)
где - начальная концентрация растворимого вещества в промывной жидкости,%;
- и конечная концентрация растворимого вещества в промывной жидкости,%;
-константа промывки.
(4.5)
где - динамический коэффициент вязкости фильтруемой воды, Па?с;
- удельное сопротивление осадка, ;
- количество твердой фазы осадка, ;
-число одновременно промываемых слоев осадка; -давление, Па
(4.6)
где и - константы уравнений фильтрования.
(4.7)
где и - константы уравнений фильтрования.
Условный объем фильтрата, соответствующий сопротивлению фильтрующей перегородки:
(4.8)
где R - сопротивление фильтрующей перегородки, ; - удельное сопротивление осадка, ; - количество твердой фазы осадка,
Максимальная производительность фильтр-пресса при тонкой очистке воды:
(4.9)
где -площадь поверхности фильтрования;
и -константы уравнений промывки;
-вспомогательное время;
-условный объем фильтрата, соответствующий сопротивлению фильтрующей перегородки.
Необходимое число фильтр-прессов:
(4.10)
где -производительность фильтр-пресса при тонкой очистке воды, ;
- максимальная производительность фильтр-пресса при тонкой очистке воды, .
Минимальная производительность цикла работы фильтра:
(4.11)
где -условный объем фильтрата, соответствующий сопротивлению фильтрующей перегородки;
-константа уравнений промывки;
-вспомогательное время.
Минимальный удельный объем фильтрата, полученный за время фильтрации:
(4.12)
где -вспомогательное время; -константа уравнений промывки.
Продолжительность фильтрации:
(4.13)
где -вспомогательное время;
-константа уравнений промывки; и
- константы уравнений фильтрования.
Продолжительность промывки:
(4.14)
где -вспомогательное время;
-константа уравнений промывки; и
- константы уравнений фильтрования.
Толщина осадка в раме фильтра:
(4.15)
где -минимальный удельный объем фильтрата, полученный за время фильтрации;
-объем влажного осадка в 1 м3 фильтрата.
Список литературы
1. Белогорский А.А., Лапшин В.К. "Проблемы воды и общий фон развития мембранных технологий". Журнал "Пиво и напитки", 2006, № 2. С.74-75.
2. Антипов Н.И., Кретов С.А. Машины и аппараты пищевых производств. Том 1. М.: Высшая школа, 2001. С.541-557.1384 с.
3. Колосков С.П., Комаров А.Ф. Подготовка воды в пищевой промышленности. М.: Пищепромиздат, 1969. С.136-152.304 с.
4. Николадзе Г.И. Технология очистки природных вод. М.: Пищепромиздат, 1986. С.129-148.272 с.
Размещено на Allbest.ru
Подобные документы
Проблемы воды и общий фон развития мембранных технологий. Химический состав воды и золы ячменя. Технологическая сущность фильтрования воды. Описание работы фильтр-пресса и его расчет. Сравнительный анализ основных видов фильтров для очистки воды.
курсовая работа [3,5 M], добавлен 08.05.2010Сущность процесса фильтрования. Фильтровальные перегородки, вакуумные фильтры непрерывного действия, ленточные фильтр-прессы, пылесосы. Удаление жидкости из веществ и материалов тепловыми способами в процессе сушки. Виды сушилок, принцип их действия.
презентация [289,8 K], добавлен 06.12.2015Общая характеристика способа производства и анализ проекта горизонтального гидравлического пресса. Расчет главного цилиндра, плунжера пресса, колонн, контейнера, бака наполнения. Описание смазки пресса. Техника безопасности во время работы пресса.
курсовая работа [752,1 K], добавлен 17.02.2014Понятие фильтрования как процесса разделения неоднородной жидких и газовых систем. Скорость фильтрации и ее цели. Характеристика видов фильтрования. Фильтровальные аппараты периодического и непрерывного действия. Основные положения теории фильтрования.
презентация [2,7 M], добавлен 19.02.2013Анализ конструкции шнекового пресса ВПО-20 и принципа его действия. Техническое обоснование выбора пресса. Проведение инженерных расчетов: кинематического расчета привода, технологического и прочностного расчета пресса. Монтаж и эксплуатация пресса.
курсовая работа [6,5 M], добавлен 28.07.2010Пылегазоочистное оборудование, его назначение и применение. Рукавные фильтры ФРСО компании "Ранком-Энерго": общий вид, описание и принцип действия, модельный ряд, схемы и габаритные чертежи; классификация по способу регенерации фильтровального материала.
реферат [4,9 M], добавлен 29.04.2011Характеристика цеха ЦМИ-1 ОАО "Комбинат "Магнезит". Назначение, конструкция, принцип работы пресса "Лайс". Грузоподъемные механизмы, применяемые при монтаже. Технология монтажных работ и сдача пресса в эксплуатацию. Оценка трудоемкости монтажных работ.
дипломная работа [1,5 M], добавлен 21.11.2016Мембранная технология очистки воды. Классификация мембранных процессов. Преимущества использования мембранной фильтрации. Универсальные мембранные системы очистки питьевой воды. Сменные компоненты системы очистки питьевой воды. Процесс изготовления ПКП.
реферат [23,1 K], добавлен 10.02.2011Исследование устройства и принципа действия фрикционного пресса. Техническая характеристика и описание основных узлов станка. Требования к электроприводу и автоматике. Выбор рода тока и величины питающего напряжения. Расчет мощности электродвигателя.
курсовая работа [2,8 M], добавлен 16.02.2016Техническая характеристика обрезного однокривошипного закрытого пресса. Описание устройства и принцип работы. Определение основных размеров главного вала эксцентрикового типа. Прочностной расчет основных узлов конструкции пресса. Энергетические затраты.
курсовая работа [1,2 M], добавлен 27.04.2010