Разработка технологического процесса термической обработки стальной детали – рессорной пружины 60С2

60С2 как качественная легированная конструкционная рессорно-пружинная сталь, её применение и химический состав. Рессора как упругий элемент подвески транспортного средства, её механические и физические свойства, процесс термической обработки.

Рубрика Производство и технологии
Вид контрольная работа
Язык русский
Дата добавления 19.05.2011
Размер файла 211,6 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru

ФГОУ ВПО «Московский государственный агроинженерный университет им. В.П. Горячкина» Факультет: ТС в АПК Кафедра «Материаловедение»

Контрольная работа

по дисциплине «Материаловедение»

тема: «Разработка технологического процесса термической обработки стальной детали - рессорной пружины 60С2»

Выполнил студент 2-го курса группы

26-ТС Литягин Иван Игоревич

Москва 2010

1. Сталь 60С2 - качественная легированная конструкционная рессорно-пружинная сталь.

Применение: тяжелонагруженные пружины, торсионные валы, пружинные кольца, цанги, фрикционные диски, шайбы пружинные.

Таблица. Химический состав в % материала 60С2

C

Si

Mn

Ni

S

P

Cr

Cu

0.57-0.65

1.5-2

0.6-0.9

до 0.25

до 0.035

до 0.035

до 0.3

До 0.2

2. Закономерности образования аустенита в углеродистой стали в основных чертах остаются справедливыми и для легированной стали. Однако введение в сталь легирующих элементов смещает температурные границы протекания процессов при нагревании.

Присутствие легирующих элементов вызывает, прежде всего, сдвиг критических точек по температуре по отношению к их положению в нелегированной стали, т. е. на диаграмме Fe-Fe3C. В сталях, легированных одним элементом, смещение критических точек, в общих чертах, направлено так же, как в бинарных сплавах этого элемента с железом.

Объясняется это тем, что углерод в количествах, допускаемых в стали, не изменяет принципиально температурных границ существования равновесных ферритной и аустенитной фаз по сравнению с тем, что наблюдается в бинарных сплавах железа с легирующими элементами.

Соответственно элементы группы никеля (Ni, Со, Мn) понижают критические точки Асх и Ас3, а элементы группы хрома (Сг, Мо, W, V, Si, Ti, А1, В, Nb, Zr) их повышают. Эффект влияния основных элементов на положение точки Асх показан.

При содержании в стали одновременно двух и более легирующих элементов, влияющих на критические точки стали в одном и том же направлении, обычно критические точки оказываются соответственно пониженными или повышенными больше, чем в результате воздействия только одного из присутствующих элементов. В случае содержания в стали элементов с противоположным влиянием на критические точки конечный эффект может быть различным и зависит от количественного соотношения элементов.

Влияние элементов проявляется также в сдвиге критических точек не только по температуре, но и по концентрации. Такую сталь условимся в дальнейшем обозначать термином «однолегированная», в отличие от сложнолегированной, содержащей более одного легирующего элемента. Термин же «высоколегированная» будем применять в общепринятом смысле для обозначения повышенного процента легирующих элементов, независимо от их числа.

Легированная сталь иллюстрирует действие элементов на концентрацию углерода в эвтектоиде. Как видно из фигуры, легирующие элементы понижают содержание углерода в эвтектоиде и, следовательно, сдвигают эвтектоидную точку 5 (см. диаграмму Fe-Fe3C) в сторону меньших концентраций.

Большинство элементов понижает также и предел растворимости углерода в т-железе. Следовательно, легирующие элементы сдвигают точку Е (см. диаграмму Fe-Fe3C) в сторону меньших концентраций. Присутствие легирующих элементов в стали крайне существенно отражается на скорости превращений при нагревании.

Последнее объясняется тем, что легированные карбиды характеризуются значительно большей устойчивостью, чем нелегированные, а также тем, что скорость диффузии углерода в присутствии ряда легирующих элементов (Мn, Сг, W, Мо и др.) сильно замедляется.

Существенное значение имеет также чрезвычайно низкую скорость диффузии самих легирующих элементов в стали. Между тем, процессы превращения в стали при нагревании реализуются исключительно в результате перемещений атомов углерода и легирующих элементов за счет диффузии. Понятно поэтому, что указанные факторы оказывают решающие влияния на скорость превращений при нагревании.

Практически превращения в легированной стали при нагревании сильно замедляются, протекают при непрерывном нагреве в широком интервале температур и требуют для своего завершения значительно больших промежутков времени, чем это необходимо для превращений в углеродистой стали.

В сложнолегированной стали, содержащей в своем составе активные карбидообразующие элементы, эти превращения, как в отношении полного растворения карбидов, так и выравнивания (гомогенизации) состава аустенита в условиях обычного нагрева, как правило, не успевают пройти до конца.

Например, даже в случае нагрева до температур, на несколько сотен градусов превышающих равновесных критических точек, обычно не достигается полного растворения карбидов титана, циркония, ниобия и ванадия.

3. Рессора -- упругий элемент подвески транспортного средства. Рессора передаёт нагрузку с рамы или кузова на ходовую часть (колёса, опорные катки гусеницы и т. д.) и смягчает удары и толчки при прохождении по неровностям пути. В пружинной рессоре в качестве рабочего упругого элемента используется пружина. Могут использоваться цилиндрические, конические, параболоидные или тарельчатые пружины. В основном испытывает пластические нагрузки. Поэтому подбирается материал, восстанавливающий свою форму.

рессора пружина термическая обработка

4. Механические свойства при Т=20єС материала 60С2

sT

d5

y

KCU

Термообр

МПа

МПа

%

%

кДж / м2

1270

1175

6

25

Закалка 870є C, масло, Отпуск 470є C

Обозначение:

Sв - Предел кратковременной прочности, [МПа]

sT - Предел пропорциональности (предел текучести для остаточной деформации), [МПа];

d5 - Относительное удлинение при разрыве, [%];

y - Относительное сужение, [%];

KCU - Ударная вязкость, [кДж/м2];

HB - Твердость по Бринеллю4

Температура критических точек материала 60С2.

Ac1=770,

Ac3(Acm)=820,

Ar3(Arcm)=770,

Ar1=700, Mn=305

5. Основное и вспомогательное оборудование выбираю в зависимости от габаритных размеров детали, соответственно индукционный нагреватель BALTECH HI-1612 с внутренним диаметром индуктора 10х10х150мм, частота тока 80 Гц либо индукционный нагреватель ВЧ-4А с внутренним диаметром индуктора 180x330x410. Габаритные размеры детали 8х8х130мм.

6. Физические свойства материала 60С2

T

E 10-5

a106

l

r

C

Град

МПа

1/Град

Вт/(м·град)

кг/м3

Дж/(кг·град)

20

2.12

28

7680

100

2.06

11.8

29

7660

510

200

1.98

12.7

29

7630

510

300

1.92

13.3

30

7590

520

400

1.81

13.7

30

7570

535

500

1.78

14.1

30

7520

565

600

1.58

14.5

29

585

700

1.44

14.4

29

620

800

1.34

12.2

28

700

Обозначение:

T- Температура, при которой получены данные свойства, [Град];

E - Модуль упругости первого рода, [МПа];

a - Коэффициент температурного (линейного) расширения (диапазон 20o-T), [1/Град];

l - Коэффициент теплопроводности (теплоемкость материала), [Вт/(м·град)];

r - Плотность материала, [кг/м3];

C - Удельная теплоемкость материала (диапазон 20o-T), [Дж/(кг·град)];

Твердость материала 60С2 после отжига HB=269;

Твердость материала 60С2 без термообработки HB=302.

Технологические свойства материала 60С2:

Свариваемость: не применяется для сварных конструкций.

Флокеночувствительность: не чувствительна.

Склонность к отпускной хрупкости: не склонна.

Свариваемость:

без ограничений - сварка производится без подогрева и без последующей термообработки;

ограниченно свариваемая - сварка возможна при подогреве до 100-120 град. и последующей термообработке;

трудносвариваемая - для получения качественных сварных соединений требуются дополнительные операции: подогрев до 200-300 град. при сварке, термообработка после сварки - отжиг.

Микроструктура:

Список используемой литературы

1. http://www.scmetal.ru/

2. Марочник сталей

3. «Технология горячей обработки материалов». Под ред. Н.М. Челнокова, М., 1992г.

Размещено на Allbest.ru


Подобные документы

  • Характеристика стали 60С2А, химический состав и механические свойства. Структурные превращения в стали при термической обработке. Выбор оборудования для обработки детали. Разработка технологии термообработки и маршрутной технологии изготовления пружины.

    курсовая работа [2,7 M], добавлен 05.12.2014

  • Сталь конструкционная углеродистая обыкновенного качества общего назначения, низколегированная для сварных конструкций, конструкционная легированная и повышенной обрабатываемости, подшипниковая и рессорно-пружинная, инструментальная легированная.

    методичка [7,7 M], добавлен 09.11.2010

  • Расшифровка марки стали 25, температуры критических точек, химический состав, механические свойства и назначение. Построение графика химико-термической обработки стальной детали с указанием температуры нагрева, времени выдержки и скорости охлаждения.

    курсовая работа [444,5 K], добавлен 20.05.2015

  • Ознакомление с методикой разработки технологического процесса термической обработки деталей: автомобилей, тракторов и сельскохозяйственных машин. Расшифровка марки заданной стали, описание ее микростуктуры, механических свойств до термической обработки.

    контрольная работа [46,9 K], добавлен 05.12.2008

  • Химический состав и физико-механические свойства материала. Описание термической обработки стали, массы детали. Определение припусков на механическую обработку. Выбор режущего и измерительного инструмента. Расчёт режимов резания при точении и шлифовании.

    курсовая работа [601,8 K], добавлен 06.04.2015

  • Общая характеристика методов термической обработки. Разработка операций термической обработки детали. Температура нагрева, продолжительность выдержки в печи, скорость охлаждения. Оборудование для термической обработки. Дефекты термической обработки.

    курсовая работа [249,8 K], добавлен 29.05.2014

  • Конструкционные стали с повышенным содержанием углерода. Качество и работоспособность пружины. Маркировка и основные характеристики пружинных сталей. Основные механические свойства рессорно-пружинной стали после специальной термической обработки.

    курсовая работа [25,4 K], добавлен 17.12.2010

  • Характеристика марки стали 40Х, её химический состав и механические свойства. Выбор вида и способа термической обработки и назначение режимов. Выбор последовательности всех операций обработки. Выбор оборудования для поверхностной закалки детали.

    контрольная работа [238,7 K], добавлен 21.05.2012

  • Сущность назначения резца и его применение. Анализ технологических свойств и химического состава быстрорежущих сталей. Этапы технологического процесса предварительной и упрочняющей термической обработки, выбор приспособлений, дефекты и их устранение.

    курсовая работа [28,1 K], добавлен 11.12.2010

  • Описание работы зубчатого колеса и предъявляемые к нему требования. Химический состав, механические свойства и температуры критических точек стали 18ХГТ. Технология химико-термической обработки зубчатого колеса из стали 18ХГТ, контроль качества.

    контрольная работа [3,1 M], добавлен 29.11.2014

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.