Устройство и обслуживание электродвигателей
Общие сведения об электродвигателях. Электрический привод и схемы его замкнутых структур. Типовые схемы управления электродвигателями постоянного и переменного тока. Обслуживание и ремонт электродвигателей. Правила техники безопасности и охрана труда.
Рубрика | Производство и технологии |
Вид | дипломная работа |
Язык | русский |
Дата добавления | 12.05.2011 |
Размер файла | 889,9 K |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
Размещено на http://www.allbest.ru/
Введение
электродвигатель ремонт обслуживание
Электрические машины широко применяют на электрических станциях, в промышленности, на транспорте, в авиации, в системах автоматического управления и регулирования, в быту. Они преобразуют механическую энергию в электрическую (генераторы) и, наоборот, электрическую энергию в механическую.
Любая электрическая машина может использоваться как генератор, так и двигатель. Это её свойство называется обратимостью. Она может быть также использована для преобразования одного рода тока в другой (частоты, числа фаз переменного тока, напряжения) в энергию другого вида тока. Такие машины называются преобразователями.
Электрические машины в зависимости от рода тока электрической установки, в которой они должны работать, делятся на машины постоянного тока и машины переменного тока. Машины переменного тока могут быть как однофазными, так и многофазными. Наиболее широкое применение получили асинхронные двигатели и синхронные двигатели и генераторы.
Принцип действия электрических машин основан на использовании законов электромагнитной индукции и электромагнитных сил.
Электрические двигатели, используемые в промышленности, быту выпускают сериями, которые представляют собой ряд электрических машин возрастающей мощности, имеющих однотипную конструкцию и удовлетворяющих общему комплексу требований. Широко применяются серии специального назначения.
1. Общие сведения об электрических двигателях
Классификация электрических двигателей
Электрический двигатель - машина, предназначенная для преобразования электрической энергии в механическую.
Электрические двигатели классифицируют:
По принципу действия электрические двигатели различают:
Переменного тока (асинхронные, синхронные)
Постоянного тока (с независимым, параллельным, последовательным и смешанным возбуждением).
По форме исполнения электрические двигатели делят на 9 групп. Наиболее распространенны следующие типы:
На лапах с подшипниковыми щитами, горизонтальным валом. На лапах с подшипниковыми щитами, фланцем на подшипниковом щите, вертикальным валом. Без лап с подшипниковыми щитами, фланцем на одном подшипниковом щите
По степени защиты от соприкосновения с токоведущими частями и попадания во внутрь посторонних тел, пыли, влаги выполняют различные модификации:
- Открытые электрические машины выполнены без специальных приспособлений для предохранения от случайного соприкосновения с вращающимися и токоведущими частями, она также не имеет специальных приспособлений для предотвращения попадания внутрь машины посторонних предметов. Их устанавливают только в машинных залах.
- Закрытые электрические машины снабжены специальными приспособлениями при помощи, которых корпус машины отделяется от окружающей среды, но не настолько плотно, чтобы считать её герметической. Предназначается для использования в пыльных помещениях и на открытом воздухе.
- Защищенная электрическая машина снабжена специальными приспособлениями для предохранения от случайного прикосновения к её вращающимся и токоведущим частям, а также для предотвращения попадания внутрь машины посторонних предметов. Предназначается для установки в закрытых помещениях.
- Каплезащищенная электрическая машина снабжена приспособлениями для предохранения её внутренних частей от попадания капель влаги, падающих отвесно.
- Брызгозащищенные электрические машины снабжены приспособлениями для предохранения от попадания внутрь её брызг, падающих под углом до 45 градусов к вертикали с любой стороны.
- Водозащищённые электрические двигатели выполнены таким образом, что при обливании их вода не проникает внутрь машины.
- Взрывобезопасная машина выполнена таким образом, что она может противостоять взрыву внутри неё газов, которые могут там накопиться, и не допускать воспламенения взрывчатых или горючих газов содержащихся в окружающей среде при искрении внутри машины. Предназначается для установки на угольных шахтах и некоторых химических заводах.
- Герметическая электрическая машина выполнена таким образом, что все отверстия её закрыты настолько плотно, что при определенном наружном давлении исключается всякое сообщение между внутренним пространством машины и окружающей средой.
По способу охлаждения электрические машины классифицируют:
- Естественно охлаждаемая электрическая машина не имеет приспособлений для усиления охлаждения. Этот тип охлаждения обычно применяется в машинах открытого типа.
- Вентилируемая машина снабжена специальными приспособлениями для усиления охлаждения.
- Электрическая машина с самовентиляцией оснащена вентилирующими приспособлениями на её вращающейся части.
- Электрическая машина с независимой вентиляцией имеет вентиляционные устройства, не связанные с вращающейся частью машины.
- Электрическая машина с проточной вентиляцией охлаждается воздухом внешней среды.
- Продуваемая электрическая машина снабжена вентиляционными устройствами, прогоняющими воздух через внутренние части машины.
- Обдуваемая электрическая машина снабжена для охлаждения вентиляционными устройствами, обдувающими наружные части машины.
По номинальным режимам работы выделяют три основных режима работы.
- Продолжительный режим - электрический двигатель работает при постоянной нагрузке R,н. При этом за время работы температура всех частей двигателя достигает установившегося значения t,уст.
- Кратковременный режим --- периоды неизменной номинальной нагрузки чередуются с периодами отключения двигателя. За время работы под нагрузкой двигатель не успевает нагреться до установившейся температуры, а за время остановки охладиться до температуры окружающей среды. Различают двигатели с длительностью включения 10, 30, 60 и 90 минут.
- Повторно-кратковременный режим --- кратковременные периоды t,p неизменной номинальной нагрузки чередуются с периодами t,n отключения электрического двигателя. За время работы электрический двигатель не успевает нагреться до установившейся температуры, а за время паузы не успевает охладиться до температуры окружающей среды.
Повторно-кратковременный режим характеризуется относительной продолжительностью включения
где t,p -- время работы при номинальной нагрузке
t,n -- время отключения электрического двигателя
Предусмотрены следующие номинальные повторно-кратковременные режимы: 15, 25, 40 и 60%.
Устройство электрических двигателей
Электрические машины постоянного тока, как и какие-либо другие электрические машины - это электромеханические преобразователи энергии. Машины постоянного тока способны работать и как в режиме электрического двигателя, так и в режиме генератора постоянного тока. Двигатели постоянного тока используются гораздо чаще, чем генераторы постоянного тока. Это объясняется важными преимуществами этих двигателей. Возможностью плавно, простыми способами и в широких пределах регулировать частоту вращения. Значительным пусковым моментом и одновременно незначительным пусковым током. Способностью к перегрузкам.
Приведенные позитивные качества двигателей постоянного тока обуславливает широкое их применение в системах автоматического управления, автомобильном, железнодорожном, морском транспорте, городском транспорте и т. д.
Кроме позитивных качеств у таких двигателей есть также негативные качества. Самым главным недостатком является присутствие в конструкции ненадежного узла - «щетко-коллекторного» механизма, искрение которого под нагрузкой делает невозможной эксплуатацию этих двигателей во взрывоопасных помещениях. Этот главный недостаток уменьшает область применения электрических двигателей постоянного тока. Сложная технология изготовления, необходимость особенного ухода за машиной также весомые недостатки.
Производство и широкое применение мощных силовых транзисторов и тиристоров для изготовления специальных источников электрической энергии с переменной частотой и напряжением, предназначенных для питания и частотного управления скоростью вращения асинхронного двигателя, приводит к вытеснению ними двигателей постоянного тока из областей их традиционного применения.
В последнее время созданы и успешно применяются двигатели постоянного тока, в которых механический коллектор заменен бесконтактным коммутатором на полупроводниковых элементах.
Конструктивно машина постоянного тока состоит из неподвижного статора и подвижного ротора, разделенных между собой воздушным зазором.
Статор состоит из станины, к которой прикреплены сердечники основных и дополнительных полюсов. На этих сердечниках размещены катушки обмотки возбуждения и обмотки дополнительных полюсов. Станина, а также сердечники основных и дополнительных полюсов являются частью магнитопровода. Обмотка возбуждения образует магнитодвижущую силу (МДС) возбуждения и соответственно основной магнитный поток. Обмотка дополнительных полюсов образует МДС для компенсации реакции якоря и облегчает условия коммутации (устраняет искрение на скользящих контактах «щетка-коллектор»).
Сердечники основных полюсов или их наконечники, изготавливают шихтованными (из стальных штампованных листов), а дополнительные массивными или также шихтованными. Это делается с целью уменьшения потерь мощности от вихревых токов, которые наводятся в основных полюсах из-за пульсаций магнитного потока во время вращения якоря.
Полюса крепятся к станине с помощью болтов. Катушки основных и дополнительных полюсов изготавливают из изолированного медного провода круглого или прямоугольного сечения. Кроме приведенных выше обмоток, в наконечниках основных полюсов, машин постоянного тока со сложными условиями коммутации (прокатные двигатели, специального назначения и др.), размещают компенсационную обмотку, которая подключается последовательно с обмоткой якоря так, чтобы магнитный поток от неё был направленным навстречу потоку от тока якоря и полностью компенсировал бы его реакцию.
Якорь крепится на валу, состоит из сердечника (который является частью магнитопровода машины), обмотки и коллектора. Сердечник якоря, который перемагничивается с частотой f , собирают из листов электротехнической стали. В пазы сердечника вкладывают секции обмотки якоря. В каждом пазу уложено две части разных секций обмоток, одна поверх другой. Концы обмоток припаивают к соответствующим пластинам коллектора. Секции могут быть одновитковыми и многовитковыми. Якорь соединен со статором с помощью подшипниковых щитов, а на якоре закрепляются подшипники. Выводы от обмоток возбуждения и якорной группы размещают в клемной коробке. Вся машина крепится к фундаменту с помощью лап. Для охлаждения машины предусмотрены вентиляционные каналы.
Особым конструкционным компонентом электрических машин постоянного тока является коллектор. В основном коллектор изготавливают виде цилиндра, который собран из пластин из твердой меди. Между пластинами размещены изоляционные прокладки из миканита. Над коллектором устанавливают щетки, которые размещаются в щеткодержателях, укрепленных на подшипниковом щите с помощью траверсы. Щетки прижимаются к коллектору с помощью пружин, прижим которых можно регулировать.
Если обмотку возбуждения подключить к источнику электрической энергии, то по обмотке возбуждения будет протекать электрический ток. Под действием этого тока будет образовываться основное магнитное поле электрической машины. С помощью основных полюсов, в частности наконечников этих полюсов, формируется равномерное распределение индукции по дуге цилиндрической поверхности ротора. Обмотка возбуждения вместе с магнитопроводами статора и ротора называется индуктором, т.е. той частью машины, которая образует основное магнитное поле.
В результате взаимодействия магнитного поля обмоток якоря и магнитного поля полюсов создается вращающий момент и якорь машины приходит во вращение. Т.о. электрическая энергия преобразовывается в механическую энергию. Момент развиваемый электрическим двигателем вычисляется по формуле:
M=kFI
где, M развиваемый момент электрическим двигателем
F магнитный поток эл.дв., Вб.
I ток обмотки якоря, А
k конструктивная постоянная машины
При вращении якоря в проводниках его обмотки индуцируется ЭДС, направление которой противоположно направлению тока, поэтому её называют противо-ЭДС или обратной ЭДС. Эта ЭДС играет роль регулятора потребляемой мощности, т.е. изменение потребляемого тока происходит вследствие изменения противо-ЭДС. Приложенное напряжение уравновешивается противо-ЭДС, падением напряжения в обмотке якоря и щеточных контактах. Следовательно:
U=E+IRя
Ток в обмотке якоря и частота его вращения определяются по формулам:
I= (U-E)/Rя
и, n= (U-IRя)/ (сF)
где, с постоянная, определяется конструкцией машины.
Условием установившегося режима двигателя является равенство вращающего и тормозного момента. Если вращающий момент, развиваемый двигателем Мэ, уравновешен тормозным моментом Мт, то частота вращения якоря остается постоянной. При нарушении равновесия моментов появляется дополнительный момент, создающий положительное или отрицательное ускорение вращения якоря. Если увеличить нагрузку (тормозной момент на валу двигателя Мт) то равновесие моментов нарушится (Мэ<Мт) и частота вращения якоря начнется уменьшаться. При этом уменьшается противо-ЭДС, что вызывает увеличение как тока в якоре, так и вращающего момента двигателя. Изменение частоты вращения, противо-ЭДС и тока в якоре происходит до восстановления равновесия моментов, т.е. до тех пор пока вращающий момент не окажется вновь равным тормозному моменту на валу двигателя.
Если равновесие моментов не восстанавливается и тормозной момент остается всегда больше вращающегося момента (Мт >Мэ), то частота вращения уменьшается непрерывно до остановки двигателя. Такие случаи могут возникать при больших тормозных моментах на валу и значительных понижениях напряжения в сети.
При уменьшении нагрузки на валу двигателя (Мэ>Мт) вращение якоря начнет ускоряться, что вызовет увеличение противо-ЭДС в его обмотке. Ток в обмотке якоря уменьшится и снизится вращающий момент двигателя. Изменение частоты, противо-ЭДС и тока в якоре будет протекать также до восстановления равновесия моментов (Мэ=Мт).
Однако в электрических двигателях постоянного тока сравнительно часто создаются условия, при которых равновесие моментов не восстанавливается при любом изменении частоты, так что вращающий момент всегда остается больше тормозного момента на валу двигателя (Мэ>Мт). В таких случаях частота вращения якоря непрерывно увеличивается, теоретически стремясь к бесконечности. Практически при значительном превышении номинальной частоты машина разрушается --- разрываются бандажи, скрепляющие лобовые соединения обмотки, проводники обмотки выходят из пазов и т.д. Такой аварийный режим называется разносом двигателя.
Направление вращения якоря эл.двигателя постоянного тока зависит от полярности полюсов и от направления тока в проводниках обмотки якоря. Т.о. для реверсирования двигателя, т.е. для изменения направления вращения якоря, нужно либо изменить полярность полюсов, переключив обмотку возбуждения, либо изменить направление тока в обмотке якоря.
Обмотка возбуждения обладает значительной индуктивностью и переключение ее нежелательно. Поэтому реверсирование двигателей постоянного тока обычно производится переключением обмотки якоря.
Магнитное поле электрических машин постоянного тока состоит из двух частей: основного магнитного поля и магнитного поля якоря. Ток Iв, который протекает по обмотке возбуждения с числом витков wв, образует магнитодвижущую силу (МДС) обмотки В.
Fв=Iвwв
Под действием магнитодвижущей силы образуется магнитный поток Фо основного магнитного поля, который замыкается через основные полюса, магнитопровод статора и ротора и дважды пересекает воздушный зазор. Магнитный поток Фо основного поля вычисляют по закону Ома для магнитной цепи:
где, Rб - воздушные зазоры, Rп - основные полюса, Rс - сопротивление статора, Rр - сопротивление ротора. Fп - магнитодвижущая сила обмотки одного полюса, которая связана с МДС возбуждения зависимостью: Fв=2Fп.
Чтобы уменьшить пульсацию, необходимо распределить индукцию основного магнитного поля в воздушном зазоре как можно равномернее. Это достигается путем выбора формы наконечника основного полюса.
Магнитное поле якоря возбуждает проводники с током обмотки якоря, распределение которых вдоль дуги поверхности ротора равномерное. Влияние магнитного поля якоря на основное магнитное поле машины называется реакцией якоря. Реакция якоря имеет негативное влияние на работу машины постоянного тока:
искажается равномерное распределение магнитной индукции вдоль дуги зазора
вследствие насыщения магнитопровода уменьшается основной магнитный поток
Чтобы уменьшить негативное влияние реакции якоря, применяют:
-- компенсационную обмотку. Компенсационная обмотка включается последовательно с обмоткой якоря, пропуская по ней ток якоря. Магнитный поток якоря и компенсационной обмотки возбуждаются одним и тем же током и направлены встречно. Таким образом происходит компенсация негативного влияния реакции якоря.
-- дополнительные полюса. Обмотку дополнительного полюса включают последовательно с обмоткой якоря, поэтому магнитное дополнительных полюсов зависит от тока якоря. Дополнительные полюса размещают так, чтобы магнитное поле якоря и дополнительных полюсов были противоположными друг другу и таким образом компенсировалось влияние реакции якоря.
Сила Ампера - это взаимодействие, а также сила взаимодействия любого магнитного поля на проводник с током.
На каждый проводник длинной L обмотки якоря с током Iа, который находится в магнитном поле с индукцией В, действует сила Ампера, значение которой равняется:
Fi=BIaL
Направление силы Ампера определяется по правилу левой руки.
Момент силы Ампера одного проводника, который лежит в пазу ротора диаметром D, равняется:
M=NM1=NBIaL(D/2)
Преобразуя формулу можно получить:
М=СмФоIя
где, Фо -- магнитный поток Iя -- поток якоря См -- конструктивная постоянная двигателя, которая вычисляется по формуле
См=рN/2pa
Ток якоря вычисляется:
Ея - электродвижущая сила якоря Rя - сопротивление обмотки якоря
U - приложенное напряжение
Основное магнитное поле машины образуется током в обмотке возбуждения. В зависимости от того как включается обмотка, различают такие способы возбуждения (Рис.1):
независимое, в котором обмотка возбуждения питается от независимого источника питания (рисунок А);
параллельное, в котором обмотка возбуждения включается параллельно обмотке якоря (рисунок Б);
последовательное, в котором обмотка возбуждения и обмотка якоря включены последовательно (рисунок В);
смешанное, с параллельной и последовательной обмоткой возбуждения (рисунок Г);
Рис.1
Кроме того, электрические машины постоянного тока могут возбуждаться постоянными магнитами. Начала и концы обмоток возбуждения, согласно стандартам, обозначаются так:
обмотка якоря -Я1;Я2
обмотка дополнительных полюсов - Д1;Д2
компенсационная обмотка - К1;К2
обмотка возбуждения независимая - М1;М2
обмотка возбуждения параллельная -Ш1;Ш2
обмотка возбуждения последовательная - С1;С2
В машинах постоянного тока при работе происходят потери энергии, которые складываются из трех составляющих.
Первой составляющей являются потери в стали Рст на гистерезис и на вихревые токи, возникающие в сердечнике якоря. При вращении якоря машины сталь его сердечника непрерывно перемагничивается. На её перемагничивание затрачивается мощность, называемая потерями на гистерезис. Одновременно при вращение якоря в магнитном поле в сердечнике его индуцируются вихревые токи. Потери на гистерезис и на вихревые токи, называемые потерями в стали, обращаются в теплоту и нагревают сердечник якоря.
Потери в стали зависят от магнитной индукции и частоты перемагничивания сердечника якоря. Магнитная индукция определяет эдс машины или, иначе, напряжение, а частота перемагничивания зависит от частоты вращения якоря. Поэтому при работе машины постоянного тока в режиме генератора или двигателя потери в стали будут постоянными, не зависящими от нагрузки, если напряжение на зажимах якоря и частота его вращения постоянны.
Ко второй составляющей относятся потери энергии на нагревание проводов обмотки возбуждения и якоря проходящими по ним токами, называемые потерями в меди, -- Роб. Потери в обмотке якоря и в щеточных контактах зависит от тока в якоре, т.е. являются переменными -- меняются при изменении нагрузки.
Третья составляющая -- механические потери Рмех, представляющие собой потери энергии на трение в подшипниках, трение вращающихся частей о воздух и щеток о коллектор. Эти потери зависят от частоты вращения якоря машины. Поэтому механические потери также постоянны и не зависят от нагрузки.
Кпд машины в процентах h=Р2/Р1·100%, где Р2 -- полезная мощность, Р1 -- потребляемая машиной мощность.
При работе машины в режиме двигателя потребляемая мощность Р1=I, полезная мощность Р2=UI-Рст-Роб-Рмех;
Универсальные коллекторные двигатели
Принципиально любой двигатель постоянного тока может работать от сети переменного тока, так как развиваемый двигателем вращающий момент, зависящий от произведения тока в якоре и магнитного поля полюсов, не меняет направления при одновременном изменении направления тока в якоре и магнитного потока полюсов.
Для создания достаточно большого вращающего момента необходима одновременность изменения направления тока в якоре и магнитного потока полюсов, т.е. совпадение по фазе тока в якоре и магнитного потока полюсов. В двигателе последовательного возбуждения ток в якоре является одновременно и током возбуждения. Пренебрегая углом сдвига фаз между током возбуждения и магнитным потоком, можно считать их изменения одновременными.
При малых мощностях коллекторные двигатели делают универсальными, т.е. предназначенными для работы как от сети переменного, так и от сети постоянного тока. Такие двигатели обычно выполняют без компенсационной обмотки. При работе от сети постоянного тока двигатель включается зажимами «0» и «--», а при работе от сети переменного тока -- зажимами «0» и «1». Таким образом, при работе на переменном токе число витков обмотки возбуждения значительно меньше, чем при работе на постоянном токе, так что коэффициент мощности оказывается сравнительно высоким, несмотря на отсутствие компенсационной обмотки.
Однофазные коллекторные двигатели переменного тока малой мощности находят применение в установках автоматики, связи и бытовых целей.
Электромагнитное излучение, сопровождающее работу коллекторного двигателя, создает помехи радиоприему. При работе коллекторного двигателя уровень создаваемых ими радиопомех не должен превышать установленных норм. Радиопомехи от коллекторного двигателя распространяются в виде электромагнитного излучения и в виде электрических сигналов через электросеть.
Для подавления электромагнитных излучений применяют экранирование электрических двигателей. В качестве экрана используют заземленный корпус двигателя. Если в подшипниковом щите со стороны коллектора имеются окна или корпус двигателя и передний подшипниковый щит (со стороны коллектора) изготовлены из пластмассы, то неметаллические части закрывают металлической сеткой и заземляют.
Для подавления радиопомех, проникающих в электрическую сеть, применяют разнообразные фильтры. В качестве фильтров используют конденсаторы, включенные между каждым токоведущим проводом и заземленным корпусом двигателя. Значение емкости С подбирают опытным путем. Конденсаторы должны быть рассчитаны на рабочее напряжение двигателя. Часто конденсаторные фильтры располагают в коробке выводов двигателя.
Двигатели переменного тока
Общие сведения об асинхронных двигателях
Асинхронный двигатель имеет такие позитивные качества, как несложная технология изготовления, простота эксплуатации, высокая надежность и способность к перегрузкам, отсутствие искрения. Благодаря этим свойствам асинхронный двигатель нашел широкое применение в промышленности для привода станков и механизмов, а также сельскохозяйственных машинах разного назначения. Однако управление частотой вращения асинхронного двигателя в широком диапазоне значительно сложнее, чем двигателя постоянного тока. Это ограничивает применение асинхронных двигателей в тех случаях, когда необходимо изменять частоту вращения двигателя в широких пределах. Однако следует отметить, что в последнее время, в связи с быстрым развитием силовой электроники, с появлением мощных полупроводниковых тиристоров и транзисторов, параметры которых постоянно улучшаются, возросло применение асинхронных двигателей с частотным регулированием скорости вращения. Асинхронные двигатели постепенно вытесняют двигатели постоянного тока, особенно в тех случаях, где искрение недопустимо, например в нефтяной, газовой и химической промышленности
Наиболее распространенные среди электрических двигателей получил трехфазный асинхронный двигатель, впервые сконструированный известным русским электриком М.О. Доливо-Добровольским в 1890году.
Асинхронный двигатель отличается простотой конструкции и несложностью обслуживания. Как и любая машина переменного тока, асинхронный двигатель состоит из двух основных частей - ротора и статора. Асинхронная машина обладает свойством обратимости, то есть может быть использована как в режиме генератора, так и в режиме двигателя. Из-за ряда существенных недостатков асинхронные генераторы практически не применяются, тогда, как асинхронные двигатели получили очень широкое распространение.
Многофазная обмотка переменного тока создает вращающееся магнитное поле, частота вращения которого в минуту рассчитывается по формуле:
N1=60f1/p
где: n- частота вращения магнитного поля статора;
f - частота тока в сети;
р - число пар полюсов.
Если ротор вращается с частотой, равной частоте вращения магнитного поля статора, то такая частота называется синхронной.
Если ротор вращается с частотой, не равной частоте магнитного поля статора, то такая частота называется асинхронной.
В асинхронном двигателе рабочий процесс может протекать только при асинхронной частоте, то есть при частоте вращения ротора, не равной частоте вращения магнитного поля.
Номинальная частота вращения асинхронного двигателя зависит от частоты вращения магнитного поля статора и не может быть выбрана произвольно. При стандартной частоте промышленного тока f1=50Гц возможные синхронные частоты вращения (частоты вращения магнитного поля)
N1=60f1/p=3000/p
Работа асинхронного электродвигателя основана на явлении, названном “диск Араго - Ленца”
Это явление заключается в следующем: если перед полосами постоянного магнита поместить медный диск, свободно сидящий на оси, и начать вращать магнит вокруг его оси при помощи рукоятки, то медный диск будет вращаться в том же направлении
Это объясняется тем, что при вращении магнита его магнитное поле пронизывает диск и индуктирует в нем вихревые токи. В результате взаимодействия вихревых токов с магнитным полем магнита, возникает сила, приводящая диск во вращение. На основании закона Ленца направление всякого индуктивного тока таково, что он противодействует причине, его вызвавшей. Поэтому вихревые токи в теле диска стремятся задержать вращение магнита, но, не имея возможности сделать это, приводят диск во вращение так, что он следует за магнитом. При этом частота вращения диска всегда меньше, чем частота вращения магнита.
В асинхронных двигателях постоянный магнит заменен вращающимся магнитным полем, создаваемым трехфазной обмоткой статора при включении ее в сеть переменного тока.
Вращающееся магнитное поле статора пересекает проводники обмотки ротора и индуктирует в них ЭДС, то есть электродвижущую силу. Если обмотка ротора замкнута на какое-либо сопротивление или накоротко, то по ней под действием индуктируемой электродвижущей силы проходит ток.
В результате взаимодействия тока в обмотке ротора с вращающемся магнитным полем обмотки статора создается вращающейся момент, под действием которого ротор начинает вращаться по направлению вращения магнитного поля.
Если предположить, что в какой-то момент времени частота вращения ротора оказалась равной частоте вращения поля статора, то проводники обмотки ротора не будут пересекать магнитное поле статора и тока в роторе не будет. В этом случае вращающийся момент станет равным нулю и частота вращения ротора уменьшится по сравнению с частотой вращения поля статора, пока не возникнет вращающейся момент, уравновешивающий тормозной момент, который складывается из момента нагрузки на валу и момента сил трения в машине.
Асинхронная машина кроме двигательного режима может работать в генераторном режиме и режиме электромагнитного тормоза.
Генераторный режим возникает в том случае, когда ротор с помощью постоянного двигателя вращается в направлении вращения магнитного поля с частотой вращения, большей частоты вращения магнитного поля. Если ротор под действием посторонних сил начнет вращаться в сторону, противоположную направлению вращения магнитного поля, то возникает режим электромагнитного тормоза.
Режим электромагнитного тормоза начинается при n=0.
Для изменения направления вращения ротора, то есть для реверсирования двигателя, необходимо изменить направление вращения магнитного поля, созданного обмотками статора. Это достигается изменением чередования фаз обмоток статора, для чего следует поменять местами по отношению к зажимам сети любые два из трех проводов, соединяющих обмотку статора с сетью.
Вне зависимости от направления вращения ротора его частота n всегда меньше частоты вращения магнитного поля статора.
Сердечник статора, представляющий собой полый цилиндр, его набирают из отдельных листов электротехнической стали толщиной 0,5-0,35мм. Для сердечников асинхронных двигателей применяются холоднокатаные электротехнические стали марок 2013,02312,02411 и другие. Листы или пластины штампуют с впадинами (пазами), изолируют лаком или окалиной для уменьшения потерь на вихревые потоки, собирают в отдельные пакеты и крепят в станине двигателя.
К станине прикрепляют также боковые щиты с помещенными на них подшипниками, на которые опирается вал ротора. Станину устанавливают на фундамент.
В продольные пазы статора укладывают проводники его обмотки, которые соединяют между собой так, что образуется трехфазная система. На щитке машины имеется шесть зажимов, к которым присоединяются начала и концы обмоток каждой фазы. Для подключения обмоток статора к трехфазной сети они могут быть соединены звездой или треугольником, что дает возможность включать двигатель в сеть с двумя разными линейными напряжениями.
Например, двигатель может работать от сети с напряжением 220 и 127в. На щитах машины указаны оба напряжения сети, на которые рассчитан двигатель, то есть 220/127в или 380/220в.
Для более низких напряжений, указанных на щитке, обмотка статора соединяется треугольником, для более высоких - звездой.
При соединении обмотки статора треугольником на щитке машины верхние зажимы объединяют перемычками с нижними, а каждую пару соединенную вместе зажимов подключают к линейным проводам трехфазной сети. Для включения звездой три нижних зажима на щитке соединяют перемычками в общую точку, а верхние подключают к линейным проводам трехфазной сети.
Роторы асинхронных электродвигателей выполняют двух видов: с короткозамкнутой и фазной обмотками. Первый вид двигателей называют асинхронными двигателями с короткозамкнутым ротором, а второй - асинхронными двигателями с фазным ротором или асинхронными двигателями с контактными кольцами. Наибольшее распространение имеют двигатели с короткозамкнутым ротором.
Сердечник ротора также набирают из стальных пластин толщиной 0,5мм, изолированных лаком или окалиной для уменьшения потерь на вихревые токи.
Пластины штампуют с впадинами и собирают в пакеты, которые крепят на валу машины. Из пакетов образуются цилиндры с продольными пазами, в которых укладывают проводники обмотки ротора. В зависимости от типа обмотки асинхронные машины могут быть с фазным и короткозамкнутым ротором. Короткозамкнутая обмотка ротора выполняется по типу беличьего колеса. В пазах ротора укладывают массивные стержни, соединенные на торцевых сторонах медными кольцами. Часто короткозамкнутую обмотку ротора изготовляют из алюминия. Алюминий в горячем состоянии заливают в пазы ротора под давлением. Такая обмотка всегда замкнута накоротко и включение сопротивления в нее невозможно. Фазная обмотка ротора выполнена подобно статорной, то есть проводники соответствующим образом соединены между собой, образуя трехфазную систему. Обмотки трех фаз соединены звездой. Начала этих обмоток подключены к трем контактным медным кольцам, укрепленным на валу ротора. Кольца изолированы друг от друга и от вала и вращаются вместе с ротором. При вращении колец поверхности их скользят по угольным или медным щеткам, неподвижно укрепленным над кольцами. Обмотка ротора может быть замкнута на какое-либо сопротивление или накоротко при помощи указанных выше щеток.
Двигатели с короткозамкнутым ротором проще и надежнее в эксплуатации, значительно дешевле, чем двигатели с фазным ротором. Однако двигатели с фазным ротором обладают лучшими пусковыми и регулировочными свойствами.
В настоящее время асинхронные двигатели выполняют преимущественно с короткозамкнутым ротором и лишь при больших мощностях и специальных случаях используют фазную обмотку ротора.
Асинхронные двигатели производят мощностью от нескольких десятков ватт до 15000кВт при напряжениях обмотки статора до 6кВ.
Между статором и ротором имеется воздушный зазор, величина которого оказывает существенное влияние на рабочие свойства двигателя.
Наряду с важными положительными качествами - простой конструкции и обслуживания, малой стоимостью - асинхронный двигатель имеет и некоторые недостатки, из которых наиболее существенным является относительно низкий коэффициент мощности. У асинхронного двигателя соsj при полной нагрузке может достигать значения 0,85-0,9; при недогрузках двигателя его соs резко уменьшается и при холостом ходе составляет 0,2-0,3.
Низкий коэффициент мощности асинхронного двигателя объясняется большим потреблением реактивной мощности, которая необходима для возбуждения магнитного поля. Магнитный поток в асинхронном двигателе встречает на своем пути воздушный зазор между статором и ротором, который в большей степени увеличивает магнитное сопротивление, а следовательно, и потребляемую двигателем мощность.
В целях повышения коэффициента мощности асинхронных двигателей воздушный зазор стремятся делать наиболее минимальным, доводя его у малых двигателей (порядка 2-5кВт) до 0,3мм. В двигателях большой мощности воздушный зазор приходится увеличивать по конструктивным соображениям, но все же он не превышает 2-2,5мм. (справочные данные в таблице см. Таблица1)
Вал ротора вращается в подшипниках, которые укреплены в боковых щитах, называемых подшипниковыми щитами. Главным образом это подшипники качения и только в машинах большой мощности иногда используются подшипники скольжения.
Подшипниковые щиты прикрепляют болтами к корпусу статора. В корпус запрессовывают сердечник статора.
Таблица1: Допустимые величины зазора между ротором и статором асинхронных двигателей
Частота вращения, об/мин |
Зазор, мм., при мощности электрического двигателя, кВт |
||||||||||
до 0.2 |
0,2 1,0 |
1,0 2,5 |
2,5 5,0 |
5,0 10,0 |
10 20 |
20 50 |
50 100 |
100 200 |
200 300 |
||
500 -- 1500 |
0,2 |
0,25 |
0,3 |
0,35 |
0,4 |
0,4 |
0,5 |
0,65 |
0,8 |
1,0 |
|
3000 |
0,25 |
0,3 |
0,35 |
0,4 |
0,5 |
0,65 |
0,8 |
1,0 |
1,25 |
1,5 |
Рабочие характеристики асинхронного двигателя представляют собой зависимости скольжения S, частоты вращения ротора n2, развиваемого момента M, потребляемого тока I1, расходуемой мощности P1, коэффициента мощности cosj и кпдh от полезной мощности P2 на валу машины. Эти характеристики снимаются при естественных условиях работы двигателя, т.е. двигатель не регулируемый, частота тока f1 и напряжение U1 сети остаются неизменными, а изменяется только нагрузка на валу двигателя.
Скольжение представляет собой отношение частоты вращения магнитного поля статора относительно вращающегося ротора к частоте поля статора: S=ns/n1=(n1-n2)/n1. где, n1 -частота вращения маг. поля статора n2 -частота вращения ротора ns - отношение n1-n2
При увеличении нагрузки на валу двигателя скольжение возрастает, причем при больших нагрузках скольжение увеличивается несколько быстрее, чем при малых. При номинальной нагрузке скольжение обычно составляет S=3ч5%. Частота вращения ротора составляет:
n2=n1(1-S)=(60f1/p)(1-S)
При увеличении нагрузки на валу двигателя скольжение возрастает, а частота вращения будет уменьшаться. Однако изменение частоты вращения при увеличении нагрузки от 0 до номинальной незначительно и не превышает 5%.
Вращающий момент M, развиваемый двигателем, уравновешен тормозным моментом на валу Мт и моментом Мо, идущим на преодоление механических потерь.
M=Mт+Мо=P2/W2+Mo
где, Р2 - полезная мощность двигателя, W -- угловая скорость ротора.
Ток I1 потребляемый двигателем из сети, неравномерно изменяется с увеличением нагрузки на валу двигателя. При холостом ходе cosj мал и ток имеет большую реактивную составляющую. При малых нагрузках на валу двигателя активная составляющая тока статора меньше реактивной составляющей, поэтому активная составляющая тока незначительно влияет на ток I1. При больших нагрузках активная составляющая тока статора становится больше реактивной и изменение нагрузки вызывает значительные изменения I1.
Коэффициент мощности изменяется в зависимости от нагрузки на валу двигателя. При холостом ходе cosj мал (порядка 0,2), так как активная составляющая тока статора (обусловленная потерями мощности в машине) мала по сравнению с реактивной составляющей этого тока, создающей магнитный поток. При увеличении нагрузки на валу cosj возрастает (достигая значения 0,8 -0,9) в результате увеличения активной составляющей тока статора. При очень больших нагрузках происходит некоторое уменьшение cosj, так как вследствие значительного увеличения скольжения и частоты тока в роторе возрастает реактивное сопротивление обмотки ротора.
Коэффициент полезного действия АД. С увеличением нагрузки на валу двигателя кпд резко увеличивается, а затем уменьшается. Наибольшего значения кпд достигает при такой нагрузке, когда механические потери и потери мощности в стали, не зависящие от нагрузки равны потерям мощности в обмотках статора и ротора, зависящим от нагрузки.
Однофазные асинхронные двигатели
Однофазные асинхронные двигатели широко применяют при небольших мощностях (до 1-- 2 кВт). Такой двигатель отличается от обычного трехфазного тем, что на статоре помещается однофазная обмотка. Ротор однофазного асинхронного двигателя имеет фазную или короткозамкнутую обмотку. Особенностью однофазного двигателя является отсутствие начального или пускового момента, т.е. при включении такого двигателя в сеть ротор его будет оставаться неподвижным.
Если же под действием какой-либо внешней силы вывести ротор из состояния покоя, то двигатель будет развивать вращающийся момент. Отсутствие начального момента является существенным недостатком однофазных асинхронных двигателей. Поэтому они всегда снабжаются пусковым устройством.
Пуск однофазного двигателя осуществляется включением двух обмоток в одну общую для них однофазную сеть. Для получения угла сдвига фаз между токами в обмотках, примерно равного ±p/2 (четверть периода), одну из обмоток (рабочую) включают в сеть непосредственно или с пусковым активным сопротивлением, а вторую обмотку (пусковую) --- последовательно с катушкой или с конденсатором.
Пусковая обмотка включается только на период пуска в ход. В момент когда ротор приобретает определенную частоту вращения, пусковая обмотка отключается от сети центробежным выключателем или специальным реле и двигатель работает как однофазный. В качестве однофазного двигателя может быть использован любой трехфазный асинхронный двигатель. При работе трехфазного двигателя в качестве однофазного рабочая, или главная, обмотка, состоящая из двух последовательно соединенных фаз, являющаяся пусковой, или вспомогательной, обмоткой, включается в сеть через пусковой элемент - резистор, катушку или конденсатор.
Конденсаторный двигатель представляет собой однофазный асинхронный двигатель с двумя обмотками на статоре и короткозамкнутым ротором. Вспомогательная обмотка рассчитана на длительное прохождение тока и остается включенной не только при пуске в ход двигателя, но и при работе. При работе конденсаторного двигателя возникает вращающееся магнитное поле, которое улучшает его рабочие свойства. При увеличении емкости конденсатора возрастает пусковой момент двигателя. Однако увеличение емкости батареи конденсаторов в рабочем режиме нежелательно, так как это ведет к снижению частоты вращения и кпд. Поэтому конденсаторные двигатели выполняют с двумя батареями конденсаторов - рабочей и пусковой.
Синхронные двигатели переменного тока
Синхронные двигатели получили менее широкое применение чем асинхронные двигатели. В основном их используют в электроустановках, где требуется постоянная частота вращения. Они обладают высоким коэффициентом мощности cosj и могут работать как синхронные компенсаторы реактивной энергии.
Устройство. Синхронный двигатель состоит из неподвижного статора и вращающегося ротора. В пазах статора размещена обмотка переменного тока, получающая питание от сети, а в роторе обмотка возбуждения. Синхронные двигатели средней и большой мощности выполняют с электромагнитным возбуждением. В этом случае расположенная на роторе обмотка возбуждения получает питание от источника постоянного тока через контактные кольца. Для машин малой мощности применяют постоянные магниты без обмотки возбуждения. Ротор синхронного двигателя с явновыраженными и неявновыраженными полюсами.
Принцип действия. В синхронном двигателе момент на валу машины создается благодаря взаимодействию вращающегося магнитного поля статора и постоянного магнитного поля ротора. Частота вращения ротора в синхронном двигателе не зависит от нагрузки и равна частоте вращения поля статора. Вращение ротора только с синхронной частотой -- характерная особенность синхронного двигателя. Для пуска синхронного двигателя в полюсных наконечниках ротора уложена пусковая обмотка, выполненная наподобие короткозамкнутой обмотки ротора асинхронных двигателей. Наличие её позволяет пускать двигатель как асинхронный. При достижении ротором угловой скорости 0,95w0 в его обмотку подают постоянный ток и двигатель входит в синхронизм.
2. Электрический привод
Современное промышленное и сельскохозяйственное производство характеризуется большим многообразием технологических процессов. Для их осуществления человеком созданы тысячи самых разнообразных машин и механизмов.
Рабочая машина состоит из множества взаимосвязанных деталей и узлов, один из которых непосредственно выполняет заданный технологический процесс или операцию, и поэтому называется исполнительным органом (ИО).
Для совершения исполнительным органом технологической операции к нему должна быть подведена определенная механическая энергия от устройства, которое в соответствии со своим назначением получило название привода. Привод вырабатывает механическую энергию, преобразуя её из других видов энергии. В современном промышленном производстве, коммунальном хозяйстве и в других областях наибольшее применение имеет электрический привод (ЭП).
Такое широкое применение электроприводов объясняется целым рядом его преимуществ по сравнению с другими видами приводов: использование электрической энергии, распределение и преобразование которой в другие виды энергии наиболее экономично; большой диапазон мощности и скорости движения; разнообразие конструктивных исполнений и др.
Энергетическую основу производства составляет электрический привод, технический уровень которого определяет эффективность функционирования технологического оборудования. Развитие электрического привода идет по пути повышения экономичности и надежности за счет дальнейшего совершенствования двигателей, аппаратов, преобразователей, аналоговых и цифровых средств управления. Прогрессивным явлением в этом процессе является применение микропроцессоров и микроЭВМ, позволяющих существенно расширить функциональные возможности автоматизированного электропривода и улучшить его технические и экономические характеристики.
Электрический привод включает в себя ряд электротехнических, электронных и механических устройств, в результате чего он представляет собой электромеханическую систему. Общая структурная схема, где утолщенными линиями показаны силовые каналы энергии, а тонкими линиями - маломощные ( информационные) цепи.
Основным элементом любого электропривода 6 является электрический двигатель 1, который вырабатывает механическую энергию (МЭ) за счет потребляемой электрической энергии (ЭЭ), являясь электромеханическим преобразователем энергии.
От электродвигателя механическая энергия через передаточное устройство 9 подается на исполнительный орган 7 рабочей машины 8, за счет чего он совершает механическое движение. Функция передаточного устройства заключается в согласовании движения электродвигателя и исполнительного органа 7. Прогрессивным направлением развития электрического привода является непосредственное соединение электродвигателя с исполнительным органом, что позволяет повысить технико-экономические показатели работы комплекса «электропривод --рабочая машина».
Электрическая энергия потребляется электроприводом от источника 3 электроэнергии. Для получения электроэнергии требуемых для электродвигателя параметров и управления потоком этой энергии, что необходимо для управления движением исполнительного органа, между двигателем и источником электроэнергии включается силовой преобразователь 2.
Управление преобразователем 2 осуществляется от маломощного блока 4 управления с помощью сигнала управления Uу, который в общем случае формируется от сигнала Uз, задающего характер движения исполнительного органа, и ряда дополнительных сигналов Uдс, дающих информацию о реализации технологического процесса рабочей машины и характере движения исполнительного органа, работе отдельных узлов электропривода, возникновении аварийных ситуаций и т.д. Преобразователь 2 вместе с блоком 4 управления образуют систему 5 управления.
Отсюда следует, что:
Электрическим приводом называется электромеханическая система, состоящая из электродвигательного, преобразовательного, передаточного и управляющего устройств, предназначенная для приведения в движение исполнительных органов рабочей машины и управления этим движением.
В электроприводе наиболее характерным является использование следующих типов:
электродвигателей: постоянного тока независимого, параллельного и смешанного возбуждения, асинхронных, синхронных, шаговых и др.
механических передаточных устройств: цилиндрических и червячных редукторов, цепных и ременных передач, электромагнитных муфт;
силовых преобразователей: управляемых выпрямителей, инверторов тока и напряжения, регуляторов частоты и напряжения и импульсных регуляторов напряжения;
блоков управления: кнопок управления, командо-аппаратов, реле, логических элементов, микропроцессоров и управляющих электронных машин.
Реализация электроприводов может быть весьма разнообразной, что находит отражение в классификации электроприводов. Электроприводы классифицируют по характеру движения, видам и реализации силового преобразователя, количеству используемых электродвигателей, видам источников электроэнергии, способам управления, наличию или отсутствию механической передачи и т.д.
По характеристике движения различают электроприводы вращательного и поступательного движения, при этом скорость исполнительного органа может быть регулируемой или нерегулируемой, а само движение - непрерывным или дискретным, однонаправленным, двунаправленным (реверсивным) или вибрационным (возвратно-поступательным).
По количеству используемых двигателей различают групповой, индивидуальный и взаимосвязанный электропривод.
Групповой электрический привод характеризуется тем, что один двигатель приводит в движение несколько исполнительных органов одной или один исполнительный орган нескольких рабочих машин.
Индивидуальный электрический привод обеспечивает движение одного исполнительного органа рабочей машины.
Взаимосвязанный электрический привод представляет собой два или несколько электрически или механически связанных между собой индивидуальных электрических приводов, работающих совместно на один или несколько исполнительных органов. Если двигатели связаны между собой механически и работают на общий вал, то такой взаимосвязанный электрический привод называется многодвигательным, а если двигатели связаны электрическими цепями, то такой взаимосвязанный электропривод называется электрическим валом.
По виду силового преобразователя электрический привод отличается большим многообразием. По характеру преобразования напряжения можно выделить четыре вида силовых преобразователей: управляемые и неуправляемые выпрямители, которые преобразуют напряжение переменного тока в напряжение постоянного (выпрямленного) тока; инверторы, выполняющие обратное преобразование; преобразователи частоты и напряжения переменного тока, изменяющие параметры напряжения переменного тока; импульсные преобразователи напряжения постоянного тока с различным видом модуляции выходного напряжения постоянного тока.
Названные виды силовых преобразователей могут быть выполнены на различной элементной базе, а именно, с использованием электрических машин, ионных и полупроводниковых элементов. Современные силовые преобразователи являются, как правило, полупроводниковыми, в которых используются главным образом силовые транзисторы, диоды, тиристоры и их разновидности.
Конкретная реализация электрического привода может быть очень разнообразной. Тем не менее, работа электрического привода подчиняется общим закономерностям, связанным с процессом преобразования энергии, определением характера механического движения и его управления.
Разомкнутые схемы управления электропривода
К разомкнутым относятся схемы, в которых для управления электрическим приводом не используются обратные связи по его координатам или технологическим параметрам приводимых в движение рабочей машины или производственного механизма. Эти схемы, отличаясь простотой своей реализации, широко используются там, где не требуется высокое качество управления движением электропривода, в частности для пуска, реверса и торможения.
Разомкнутые схемы, осуществляя управление электрическим приводом, обеспечивают защиту электропривода, питающей сети и технологического оборудования при возникновении различных ненормальных режимов - коротких замыканий, перегрузке двигателей, исчезновении питающего напряжения или обрыва фазы питающей сети и т.д. Для этого они содержат соответствующие аппараты и устройства, находящиеся во взаимодействии с устройствами управления двигателями. В разомкнутых схемах управления главным образом используется релейно-контакторная аппаратура, в состав которой входят командные маломощные аппараты, силовые коммутационные аппараты с ручным и дистанционным управлением, реле управления и защиты.
Подобные документы
Исходные данные и технические характеристики станка; разработка электрической схемы. Расчет мощности электродвигателей приводов. Обоснование выбора электроаппаратов управления и пускозащитной аппаратуры. Монтаж и наладка электрооборудования станка.
курсовая работа [646,3 K], добавлен 23.08.2013Электрический привод с тиристорными преобразователями и двигателями постоянного тока как основной тип привода станков с ЧПУ, преимущества, назначение. Анализ эквивалентной схемы подключения высоко моментного двигателя, особенности элементов защиты.
курсовая работа [2,0 M], добавлен 25.12.2012Защита электродвигателей от перегрузки. Применение, технические данные реверсивных магнитных пускателей, электромагнитных аппаратов. Обеспечение эффективной грозозащиты от перенапряжения электроустановок. Безопасность труда электромонтера на производстве.
курсовая работа [60,6 K], добавлен 10.09.2014Назначения, применение и устройство насосной станции Grundfos SL 1.50. Принцип работы электрической принципиальной схемы. Техника безопасности при обслуживании насосной станции очистных сооружений, техническое обслуживание и ремонт оборудования.
курсовая работа [794,5 K], добавлен 15.07.2013Основные понятия, общие сведения из теории измерений. Понятие о погрешностях измерений, классах точности. Назначение, структура, принцип действия милливольтметра Ф5303. Техническое обслуживание, ремонт милливольтметра. Организация ремонтной службы КИПиА.
дипломная работа [951,3 K], добавлен 06.10.2009Тип подъемника, назначение, его технические данные. Расчет мощности электродвигателей приводов механизма. Циклограмма работы электроприводов и цепи управления. Выбор питающего напряжения и рода тока. Возможные неисправности в работе схемы управления.
дипломная работа [3,3 M], добавлен 18.11.2016Общее устройство системы питания дизелей: механизмы и узлы магистрали низкого давления, турбонаддув. Диагностирование, техническое обслуживание, ремонт и устранение простейших неисправностей системы питания двигателя. Охрана труда и техника безопасности.
дипломная работа [13,0 M], добавлен 19.06.2012Общее описание устройства дуговой электропечи переменного тока. Шихтовые материалы для печей переменного тока. Дуговые печи постоянного тока и их преимущество. Регуляторы электрического режима при плавке в ДСП. Основные тенденции развития дуговых печей.
курсовая работа [325,4 K], добавлен 17.04.2011Строение электродвигателя постоянного тока. Расчет основных параметров, построение естественной и искусственной механических характеристик. Особенности поведения показателей при изменении некоторых данных: магнитного потока, добавочного сопротивления.
контрольная работа [3,8 M], добавлен 08.12.2010Технические характеристики проектируемого станка и его функциональные особенности. Разработка и описание электрической схемы. Расчет мощности электродвигателей приводов, пускозащитной аппаратуры, электроаппаратов управления. Монтаж и наладка станка.
курсовая работа [38,3 K], добавлен 08.02.2014