Проектирование эвольвентной зубчатой передачи
Кинематический анализ плоского рычажного механизма. Анализ специфики привода конвейера. Исследование установившегося режима движения машины и подбор маховика. Синтез кулачкового механизма. Проектирование эвольвентной цилиндрической зубчатой передачи.
Рубрика | Производство и технологии |
Вид | курсовая работа |
Язык | русский |
Дата добавления | 30.03.2011 |
Размер файла | 87,5 K |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
Размещено на http://www.allbest.ru/
Размещено на http://www.allbest.ru/
Расчетно-пояснительная записка к курсовому проекту по предмету
«Теория механизмов и машин»
Проектирование эвольвентной зубчатой передачи
2011г.
Введение
проектирование эвольвентная цилиндрическая передача
В данном курсовом проекте рассматривается кинематическая схема привода конвейера. В первой части курсового проекта производится кинематический расчет и построение планов скоростей и ускорений (первый лист). Во втором части производится кинетостатический анализ механизма, определяется реакции связей между звеньями и уравновешивающий момента (второй лист). Исследуется установившийся режим движения и подбирается маховик в третьей части курсового проекта (третий лист). В четвертой части производится синтез кулачкового механизма (четвертый лист). Проектируется цилиндрическая эвольвентная зубчатая передача (пятый лист)
Кинематический анализ плоского рычажного механизма
Планы скоростей механизма
Построим план скоростей и ускорений для нулевого положения механизма, ведущего звена. Поскольку ведущее звено (кривошип ) совершает вращательное движение, то скорость любой его точки перпендикулярна радиусу и направлена в сторону вращения звена. Найдем модуль скорости точки
м/с.
Вектор отложим от произвольно выбранного полюса р (см лис 1). Вектор изображает скорость . Очевидно, что
.
Длина отрезка (план скоростей звена ) выбирается произвольно.
Определим масштаб скоростей
0,015
Переходим к построению плана скоростей первой присоединенной группы, состоящей из звеньев 2 и 3. Скорости центров внешних кинематических пар известны: скорость точки изображена на плане скоростей (см лист 1), а скорость точки равна нулю.
Звено 2 (шатун) совершает сложное плоское движение. Сложное плоское движение звена может быть разложено на составляющие: поступательное и вращательное. В соответствии с этим положением скорость любой точки равна сумме скоростей, состоящей из известной скорости полюса и скорости вращения данной точки вокруг полюса.
Для скорости точки составим следующее векторное уравнение, приняв в качестве полюса точку , так как ее скорость уже известна
.
Векторное уравнение (2) решаем графическим путем. Вектор уже известен. Вращательная скорость точки вокруг полюса будет перпендикулярна радиусу вращения . Кроме того, скорость точки , принадлежащей звену 3 также является вращательной скоростью. В связи с этим вектор будет перпендикулярен . Таким образом, известны линии действия двух векторов и . Проводим из точки А линию действия перпендикулярно . Так как скорость является абсолютной, то линии ее действия проводим перпендикулярно из полюса . Точка пересечения этих прямых и является искомой точкой . Поэтому
= 1,06 м/с,
а
= 0,050 м/с.
Для построения плана скоростей следующей группы Ассура (звенья 4 и 5) в начале определим скорость шарнирной точки . Выбрав в качестве полюса точку В, для скорости точки (считая ее принадлежащей звену 4) составим следующее векторное уравнение:
,
В этом уравнении известен вектор , а также линии действия векторов и . Решаем это уравнение графически. Из точки проводим линию действия вращательной скорости точки вокруг полюса ; она будет перпендикулярна . Линия действия скорости точки ; принадлежащей звену 5, будет параллельна траектории этой точки. Поэтому из полюса р проводим прямую параллельную траектории точки .
Пересечение проведенных прямых определяет положение точки с ,а вектор представляет собою искомую скорость точки . Звено 5 совершает поступательное движение, для которого скорости всех точек определяются вектором . По построенному плану скоростей вычисляем величины следующих скоростей:
1,11 м/с,
0,050 м/с.
Совокупность построенных планов скоростей для отдельных звеньев представляет собою план скоростей рассматриваемого механизма в его определенном положении. При построении плана скоростей звеньев, совершающих поступательное или вращательное движение, достаточно найти скорость лишь для одной из точек этих звеньев. Определение скоростей других точек осуществляется на основе принципа подобия, имея ввиду следующее положение: план скоростей звена подобен плоской фигуре самого звена и повернут относительно этой фигуры на 90 в направлении вращения звена.
Планы ускорений механизма
Ускорение точки звена совершающего вращательное движение, представляет собой геометрическую сумму нормального и тангенциального ускорений этой точки:
.
Нормальное ускорение направленно по радиусу к центру вращения; в случае плоскопараллельного движения таким центром является выбранный полюс, вокруг которого рассматривается движение звена. Нормальное ускорение можно определить, если известна скорость рассматриваемой точки:
.
Касательное ускорение перпендикулярно нормальному. Следовательно, его линия действия всегда известна. Величина определяется по следующей формуле:
,
где угловое ускорение звена.
Т.к. векторы и перпендикулярны ,то модуль ускорения во вращательном движении
.
Согласно уравнению (8) ускорение точки определяем следующим образом:
.
Т.к. , то е1 = 0 и следовательно (см. флу (0)). Т.о.
Вектор ,определяющий направление, направлен к центру вращения О.
Вектор ускорения точки откладываем от произвольно выбранного полюса плана ускорений , в виде отрезка (см. лист 1).
Масштаб построений вычисляем по формуле
.
Переходим к построению плана ускорений первой группы Ассура. Для шарнирной точки В напишем два следующих векторных уравнения
Заменим уравнения (15) одним:
.
В уравнении (16) вектор известен, а также направление векторов и , величины которых определим по следующим формулам:
,
.
Линии действия векторов и перпендикулярны и соответственно. Т.о. в уравнении (16) неизвестны лишь величины только двух векторов, следовательно, его можно решить графически.
Для определения скорости точки графически решаем векторное уравнение
Кинетостатический анализ привода конвейера
Определение сил инерции звеньев механизма
Использование при решении задач принципа Даламбера предполагает учет кроме внешних сил, действующих на звенья механизма, также и сил инерции. Силы эти надлежит вычислить и ввести в уравнения равновесия, используемые для определения реакций в кинематических парах.
Если звено совершает в плоскости сложное (плоскопараллельное) движение, то вся система элементарных сил инерции, действующих на различные материальные точки указанного звена, может быть сведена к главному вектору сил инерции:
, (1.)
приложенному в центре тяжести s i-го звена и направленному противоположно ускорению его центра тяжести и к паре сил с моментом
, (2.)
направленному противоположно угловому ускорению.
Вектор определяется следующим способом: на плане ускорений находим изображающую точу, соответствующую точке центра тяжести на звене и соединяем ее с полюсом плана.
Если звено движется поступательно, то угловое ускорение звена равно нулю и система сил приводится к одной силе инерции, приложенной в центре тяжести звена
Если звено, двигаясь в плоскости, вращается около оси, проходящей через центр тяжести, то и система сил инерции приводится к паре сил с моментом
, (3.)
В случае же, если одновременно имеет место и , о силы инерции отсутствуют.
Кинетостатический анализ
Произведем кинетостатический анализ привода конвейера для положения 3.
Предварительно вычислим необходимые для расчета силы тяжести звеньев механизма.
Н;
Н;
Н;
Н;
Н.
Силы инерции звеньев определим по формуле (1).
Н;
Н;
Н;
Н.
Инерционные моменты рассчитываем по формуле (2), предварительно определив моменты инерции звеньев.
Момент инерции первого звена (кривошипа ОА):
кгм2.
Момент инерции второго звена (шатуна АВ):
кгм2.
Момент инерции третьего звена (коромысла ВО3):
кгм2.
Момент инерции четвертого звена (шатуна ВС):
кгм2.
Инерционные моменты:
Нм;
Нм;
Нм.
Результаты вычислений заносим в табл.
Параметры для кинетостатического расчета (положения 3)
Звено |
, рад/с2 |
, м/с2 |
, кгм2 |
, Н |
, Н |
, Нм |
|
1 |
0,00667 |
19,62 |
|||||
2 |
63,0 |
11,5 |
0,0525 |
68,67 |
80,5 |
3,3075 |
|
3 |
86,8 |
6,6 |
0,01875 |
98,1 |
66 |
1,6275 |
|
4 |
7,14 |
12,6 |
2,09916 |
686,7 |
882 |
14,988 |
|
5 |
12,0 |
686,7 |
840 |
Определяем силу полезного сопротивления, приложенную к ползуну 5.
Н.
рис. 1 Диаграмма сил полезного сопротивления.
Рассмотрим первую группу Ассура включающую в себя ползун 5 и кривошип 4. Изобразим ее в выбранном масштабе и силы, действующие на ее звенья в соответствии с точками приложения и направлением. К ползуну 5 прилажена сила тяжести , сила полезного сопротивления направленная против его скорости, сила инерции , направленная против ускорения, а также сила реакции со стороны неподвижной станины . Поскольку предполагается, что ползун движется без трения, то линия действия направлена перпендикулярно траектории движения ползуна. Направление выбираем произвольно, (оно повлияет только на знак определяемой величины вектора )
К центру масс кривошипа ВС, расположенного на расстоянии от ползуна прилажена сила его тяжести и сила инерции , а к точке В приложена реакция связи , направление которой пока неизвестно и инерционный момент , направленный против углового ускорения .
Для определения величины реакции запишем следующее уравнение равновесия сил приложенных к системе звеньев 53:
,
из которого находим.
Н.
Для определения реакции запишем векторное уравнение равновесия сил приложенных к рассматриваемой группе Ассура:
.
Решая его графически определяем величину и направление вектора :
2340 Н.
Внутреннюю силу взаимодействия звеньев 4 и 5 определяем из уравнения равновесия сил приложенных к одному из звеньев:
,
1735 Н.
Теперь рассмотрим вторую группу Ассура, звенья 3 и 2. Вычертим его в выбранном масштабе и изобразим силы, действующие на звенья с учетом направлений.
На звено 3 действуют следующие силы: со стороны звена 4 , приложенная в точке В, равная по величине вектору и направленная противоположно; сила тяжести , приложенная в центре масс в точке ; сила инерции , направленная против ускорения и приложенная в центре масс звена 3, а также реакция связи приложенная в точке О2. Вектор разложим на две составляющие: , направленный вдоль ВО2 и , направленный перпендикулярно ВО2. Помимо перечисленных сил на звено 3 действует инерционный момент , направленный против углового ускорения .
На звено 2 действуют сила тяжести , приложенная в центре его масс точке , расположенной в середине звена; сила инерции , также приложенная к центру масс и направленная против ускорения ; момент сил инерций направленный против углового ускорения и реакция со стороны звена 1, приложенная в точке А. Аналогично тому как мы раскладывали вектор разложим вектор на нормальную и касательную составляющие.
Запишем уравнение равновесия моментов сил приложенных к каждому из звеньев 2, 3 относительно точки В.
Для звена 2:
,
из которого находим
Н.
Для звена 3:
,
откуда
Н.
Для определения неизвестных составляющих векторов и запишем следующее векторное уравнение:
.
Решая данное векторное уравнение графически, определяем величины следующих векторов:
1135 Н.
2425 Н.
Внутренние реакции связи , для рассматриваемой группы Ассура находим из следующих векторных уравнений:
;
;
2290 Н;
1830 Н;
Рассмотрим последнее звено 1. Силы действующие на него: сила тяжести приложенная к центру масс точке О1; сила действия со стороны звена 2 , приложенная к точке А равная по величине вектору и направленная противоположно; реакция со стороны неподвижной станины , приложенная к точке О и уравновешивающий момент .
Из уравнения равновесия
находим
Нм.
Запишем векторное уравнение равновесия сил приложенных к звену 1:
,
из которого определяем величину и направление вектора :
2430 Н.
Таким образом, определены все внутренние реакции связей механизма и уравновешивающий момент.
Аналогично произведенному кинетостатическому анализу механизма для положения 3 производим анализ для 7-го положения.
табл. 2 Величины реакций связей и уравновешивающего момента.
Положение |
||||||||||
Н |
Нм |
|||||||||
3 |
2425 |
2290 |
1830 |
2340 |
1735 |
1530 |
1135 |
2430 |
160 |
|
7 |
495 |
486 |
298 |
465 |
465 |
763 |
345 |
493 |
48,5 |
Исследование установившегося режима движения машины и подбор маховика
Исходные данные и постановка задачи
Рассмотрим решение задачи об исследовании установившегося режима движения машины, находящейся под действием заданных сил и его регулировании при заданном коэффициенте неравномерности хода. Заданы следующие параметры:
схема механизма;
средняя угловая скорость вращения главного звена при установившемся движении;
массы звеньев и положения центров их тяжести;
закон изменения сил полезного сопротивления, приложенных к рабочему органу машины;
закон изменения момента движущих сил, приложенного к главному звену;
механический КПД машины, учитывающий потери энергии на преодоление трения в кинематических парах;
коэффициент неравномерности движения , который должен быть обеспечен в машине;
цикл работы машины соответствует одному обороту кривошипа.
Предварительно проведен кинематический анализ механизма и соответственно построены разметка его положений и паны скоростей.
Момент движущих сил задан постоянным.
Исследование установившегося режима движения
Для этого решаем графически уравнение движения машины (1.4). Запишем это уравнение:
. (4.)
Решаем сначала левую часть уравнения, в результате чего определяется избыточная работа, идущая на изменение кинетической энергии механизма.
Используя разметку положений (лист 1) фиксируем положение рабочего органа машины (ползуна С) для всех рассмотренных положений (положения 1 8) на оси абсцисс диаграммы сил полезного сопротивления. На этой же диаграмме изображаем кривую зависимости абсолютного значения скорости точки С в тех же положениях. Выбираем масштабный коэффициент для угла поворота кривошипа:
0,035 рад/мм.
По формуле (1.3а) для всех рассматриваемых положений механизма определяем величину момента приведенных к кривошипу сил полезного сопротивления, принимая .
;
для положения (0):
Нм;
и так далее для остальных положений.
По полученным значениям строим диаграмму его зависимости за один цикл от угла поворота кривошипа ц, к которому этот момент формально приложен. Произвольно выбираем масштабный коэффициент для данной диаграммы:
2 Нм/мм.
Графически интегрируя диаграмму момента сил полезного сопротивления, приведенных к кривошипу, строим диаграмму работ этих сил. Масштабный коэффициент работы определится следующим образом:
Дж/мм,
где 40 мм длинна отрезка соединяющего полюс с началом координат.
В этой же координатной системе строим диаграмму работ движущих сил. Поскольку момент этих сил постоянен, то диаграмма работ за цикл будет представлена прямой линией в соответствии с уравнением
.
Так как за один цикл , то эта прямая проходит через начальную и конечную точки диаграммы работ сил полезного сопротивления.
Разница ординат диаграмм работ движущих сил и сил полезного сопротивления определяет величину избыточной работы (совершенную со времени начала цикла). Измеряя для каждого положения эту разницу, строим диаграмму избыточной работы.
Таким образом, оказывается решенной левая часть уравнения (0).
Теперь перейдем к решению левой части уравнения (0). Для каждого из рассматриваемых положений механизма определяем значение приведенного к кривошипу момента инерции, который определяется по формуле (1.7). В нашем случае она имеет вид.
. (5.)
Собственные моменты инерции определены во второй части курсового проекта По формуле (0) вычисляем приведенный к кривошипу момент инерции механизма во всех рассмотренных положениях. Результаты вычислений сводим в
табл. 3 Значения приведенного моментов и приведенного момента инерции
Положение |
, Нм |
, кгм2 |
|
0 |
85,7 |
0,891 |
|
1 |
82,6 |
0,318 |
|
2 |
139,1 |
10,05 |
|
3 |
22,4 |
0,483 |
|
4 |
3,86 |
0,051 |
|
5 |
16,23 |
0,228 |
|
6 |
36,3 |
0,447 |
|
7 |
69,6 |
0,966 |
По полученным результатам строим диаграмму приведенного момента инерции механизма в зависимости от угла поворота кривошипа.
Исключая из двух диаграмм и общую для них координату ц, строим диаграмму энергомасс. Определяем значение угловой скорости главного звена машины.
Подбор маховика и определение скорости главного звена машины
По заданному коэффициенту д неравномерности хода и известному значению средней за цикл угловой скорости, определяем значение максимальной и минимальной скоростей главного звена внутри одного цикла установившегося движения:
рад/с;
рад/с.
Определяем углы наклона лучей и :
Эти два луча проводятся таким образом, что они полностью охватывают диаграмму.
Определяем точку пересечения лучей, проведенных под углами и к диаграмме энергомасс. Точка их пересечения определяет положение начала координат системы: полная кинетическая энергия механизма с маховиком приведенный к кривошипу момент инерции механизма с маховиком.
Величина момента инерции маховика определяется отрезком:
6330,05 = 31,7 32 кгм2.
Зависимость между массой маховика и средним диаметром его обода и моментом инерции выражается формулой:
.
Из этого соотношения подбираем маховик:
512 кг.
0,5 м.
Определяем скорость главного звена для всех рассмотренных положений по следующей формуле:
.
Значения определяем по диаграмме с учетом масштабного коэффициента.
табл.4 Отклонения угловой скорости главного звена
Положение |
, рад/с |
, рад/с |
е, рад/с2 |
|
0 |
11,78 |
0,78 |
1,343 |
|
1 |
11,91 |
0,91 |
11,315 |
|
2 |
10,01 |
0,99 |
5,706 |
|
3 |
11,72 |
0,72 |
14,474 |
|
4 |
11,91 |
0,91 |
2,263 |
|
5 |
11,98 |
0,98 |
0,683 |
|
6 |
11,97 |
0,97 |
0,910 |
|
7 |
11,83 |
0,83 |
2,23 |
Далее строим зависимость отклонения угловой скорости главного звена (кривошипа) от угла его поворота .
Графически дифференцируя диаграмму , строим график аналога углового ускорения звена в зависимости от угла его поворота. Масштабный коэффициент при графическом дифференцирование определяем следующим образом:
с1.
Перемножая и определяем угловое ускорение главного звена и строим график этого ускорения в зависимости от угла поворота главного звена.
Синтез кулачкового механизма
Исходные данные для построения
Задан закон движения толкателя:
на участке удаления
на участке приближения .
Предельные углы давления: , .
Угол удаления: .
Угол дальнего стояния: .
Угол приближения: .
Ход толкателя: мм
Построение диаграммы для синтеза кулачкового механизма
Определим отношения максимальных ординат для фаз удаления и приближения. Поскольку , то из формулы (4.1):
.
Строим заданный закон изменения аналога ускорений в соответствии с определенным отношением максимальных ординат.
Графически интегрируя диаграмму аналога ускорений по углу поворота, получаем диаграмму аналога скорости , и далее интегрируя диаграмму аналога скорости получаем зависимость перемещения точки кулачка от угла его поворота.
По известному значению хода толкателя определяем масштабный коэффициент диаграммы перемещения:
0,405 мм/мм,
0,516 мм/мм,
0,657 мм/мм.
В одинаковом масштабном коэффициенте строим диаграмму -- из которой по заданным предельным углам давления определяем положение эксцентриситета и радиус наименьшей окружности кулачка.
По методике, описанной в 4 строим профиль кулачка.
Минимальный радиус ролика определяется из условий:
= 15 мм.
Скорости точки ускорения точки толкателя в различных положениях вычисляем по формулам:
;
,
где угловая скорость толкателя.
Результаты вычислений приведены в таблице на листе 4.
Таким образом, построен профиль кулачка. Определены скорости и ускорения точки толкателя и определен минимальный размер ролика.
Проектирование эвольвентной цилиндрической зубчатой передачи
Исходные данные для построения профилей зуба и картины зацепления:
передаточное отношение 1,1;
межосевое расстояние 60 мм;
модуль 4мм;
угол профиля .
Расчет геометрических параметров прямозубой цилиндрической передачи с внешним зацеплением
Произведем расчет геометрических параметров зубчатой передачи.
табл..5 Расчет геометрических параметров зубчатой передачи.
Расчетные параметры |
Шестерни |
Зубчатого колеса |
|
Начальный диаметр |
60,38 мм |
99,62 мм |
|
Суммарное число зубьев |
40 |
||
Число зубьев |
15 |
25 |
|
Делительный диаметр |
60,00 мм |
100,00 мм |
|
Диаметр основной окружности |
56,38 мм |
93,97 мм |
|
Делительное межосевое расстояние |
80 мм |
||
Угол зацепления |
=20 |
||
Эвольвентный угол профиля зуба |
0,014904 |
||
Эвольвентный угол зацепления |
0,014904 |
||
Суммарный коэффициент смещения |
0 |
||
Коэффициент смещения |
0 |
0 |
|
Коэффициент воспринимаемого смещения |
0 |
||
Коэффициент уравнительного смещения |
0 |
||
Диаметр вершин зубьев |
= 68 мм |
= 108,00 мм |
|
Диаметр впадин зубьев |
= 50,00 мм |
= 90,00 мм |
|
Толщина зуба по делительной окружности |
= 6,28 мм |
= 6,28 мм |
|
Шаг по делительной окружности |
12,57 мм |
||
Ширина впадин между зубьями |
6,28 мм |
6,28 мм |
|
Радиус кривизны переходной кривой зуба |
= 0,38 мм |
Построение профиля зуба
После расчета геометрических параметров зубчатой передачи, строим профили зубьев шестерни и колеса (методика построения подробно изложена в 5), предварительно выбрав масштабный коэффициент построения так, чтобы он составлял 4050 мм.
0,16 мм/мм.
Определение коэффициента перекрытия
Коэффициент перекрытия учитывает непрерывность и плавность зацепления зубьев шестерни и колеса. Для обеспечения непрерывности зацепления каждая последующая пара зубьев должна войти в зацепления еще до того, как предыдущая пара выйдет из зацепления.
Коэффициент перекрытия определяется по формуле:
,
где угловой шаг.
Коэффициент перекрытия можно также представить в форме:
4,485,
где шаг по основной окружности,
5,128 мм.
Значение находится в пределах нормы.
Построение диаграммы изнашивания
Влияние геометрических и кинематических параметров передачи на величину изнашивания рабочих поверхностей учитывается коэффициентом скольжения.
Коэффициенты скольжения определяются по следующим формулам:
,
.
По формулам рассчитываем значения коэффициента скольжения для крайних точек зацепления.
;
;
;
;
.
По данным расчета строим диаграмму коэффициентов скольжения в выбранном масштабе.
Оценка контактной прочности
По мере перемещения точки контакта изменяются сила взаимодействия между профилями зубьев и коэффициент удельного давления , учитывающий изменение радиусов кривизны эвольвентных поверхностей в связи с переменой точки контакта:
,
где приведенный радиус кривизны эвольвентных профилей в точке контакта.
.
Тогда
табл. 6 Значения коэффициента удельного давления
Положение |
с1 |
с2 |
г |
|
0 |
23,6 |
10,6 |
0,5469 |
|
1 |
21,3 |
12,9 |
0,4979 |
|
2 |
19 |
15,2 |
0,4737 |
|
3 |
16,7 |
17,5 |
0,4681 |
|
4 |
14,4 |
19,8 |
0,4798 |
|
5 |
12,1 |
22,1 |
0,5116 |
|
6 |
9,8 |
24,4 |
0,5721 |
|
7 |
7,5 |
26,7 |
0,6831 |
|
8 |
5,2 |
29 |
0,9072 |
|
9 |
2,9 |
31,3 |
1,5071 |
|
10 |
0,6 |
33,6 |
6,7857 |
Заключение
В курсовом проекте произведен кинематический анализ брикетировочного автомата, построены планы скоростей и ускорений точек звеньев механизма.
Определены динамические реакции между звеньями механизма и уравновешивающий момент для положений 1 и 3.
Произведено исследование установившегося движения машины и подобран маховик с параметрами 512 кг; 0,5 м.
Также произведен синтез кулачкового механизма.
Спроектирована зубчатая эвольвентная передача.
Список литературы
1. Матюшин Е.Г. «Кинематический анализ плоских рычажных механизмов»; методические указания к курсовому проектированию по теории механизмов и машин для студентов инженерно-кибернетического факультета. СПбГТИ 2001.
2. Матюшин Е.Г. «Кинетостатический (силовой) анализ плоского рычажного механизма»; методические указания к курсовому проектированию по курсу «Теория механизмов и машин». Ленинград 1979.
3. Маркелов Б.А. «Исследование установившегося режима движения и подбор маховика»; методические указания к курсовому проектированию по теории механизмов и машин. Ленинград 1980.
4. Маркелов Б.А. «Синтез кулачковых механизмов»; методические указания к курсовому проектированию по теории механизмов и машин. Ленинград 1980
5. Заплетохин В.А. «Проектирование цилиндрической эвольвентой зубчатой передачи»; методические указания к курсовому проектированию по теории механизмов и машин. СПбГТИ 1992.
6. Артоболевский И.И. «Теория механизмов и машин» М. Наука, 1985, 538с
Размещено на Allbest
Подобные документы
Структурный, кинематический и динамический анализ плоского рычажного механизма методом планов скоростей и ускорений. Определение параметров маховика. Силовой расчет плоского шестизвенного рычажного механизма и входного звена. Синтез зубчатой передачи.
курсовая работа [604,1 K], добавлен 13.10.2012Определение закона движения механизма. Кинестетический силовой расчет основного рычажного механизма. Проектирование цилиндрической эвольвентной зубчатой передачи. Построение графика углового ускорения звена приведения в функции обобщенной координаты.
курсовая работа [1,1 M], добавлен 05.12.2012Механизм долбёжного станка: действующие силовые факторы в кинематических парах механизма с учетом геометрии масс звеньев. Проектирование цилиндрической эвольвентной зубчатой передачи, планетарного редуктора, кулачкового механизма с качающимся толкателем.
курсовая работа [1,7 M], добавлен 25.10.2012Структурный анализ стержневого механизма. Построение планов положений и скоростей механизма. Динамический анализ и синтез машинного агрегата. Кинематический расчет передаточного механизма. Геометрический синтез эвольвентной цилиндрической передачи.
курсовая работа [172,0 K], добавлен 19.05.2011Краткое описание работы механизмов мотоцикла. Алгоритм расчета эвольвентной передачи. Построение проектируемой зубчатой передачи и эвольвенты. Проектирование кривошипно-ползунного механизма. Проектирование многосателлитного планетарного редуктора.
курсовая работа [558,8 K], добавлен 19.02.2009Проектирование схемы, структурное и кинематическое исследование рычажного механизма, силовой расчет. Расчет геометрических параметров неравносмещенной эвольвентной зубчатой передачи внешнего зацепления из условия отсутствия подрезания. Расчет маховика.
курсовая работа [216,2 K], добавлен 24.03.2010Динамический анализ рычажного механизма по коэффициенту неравномерности движения. Силовое исследование рычажного механизма. Проектирование зубчатой передачи и планетарного редуктора. Проектирование и расчет кулачкового механизма и его составляющих.
курсовая работа [88,8 K], добавлен 18.01.2010Определение степени подвижности кинематической цепи и класса механизма. Расчет перемещений, скоростей и ускорений, звеньев механизма и отдельных его точек. Проектирование цилиндрической, прямозубой, эвольвентной, корригированной зубчатой передачи.
курсовая работа [619,4 K], добавлен 22.10.2011Синтез и анализ рычажного механизма. Силовой анализ механизма: расчёт кривошипа, определение мощностей. Геометрический расчет зубчатой передачи. Проектирование планетарного редуктора. Синтез и анализ кулачкового механизма. Результаты работы программы.
курсовая работа [439,5 K], добавлен 29.10.2009Динамический синтез и анализ плоского механизма. Расчет планетарной ступени и синтез цилиндрической зубчатой передачи эвольвентного профиля. Синтез кулачкового механизма. Графическое интегрирование заданного закона движения. Построение профиля кулачка.
курсовая работа [793,0 K], добавлен 18.01.2013