Введение в нанотехнологию

Краткая справка по истории нанотехнологий. Туннельный микроскоп, электронные элементы на основе нанотехнологий, наноботы. Чрезвычайно точные и безотходные методы изготовления продукции, исключающие загрязнение сpеды - важнейший признак нанотехнологий.

Рубрика Производство и технологии
Вид реферат
Язык русский
Дата добавления 03.02.2011
Размер файла 39,7 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

Содержание

Введение

1. Введение в нанотехнологию

2. Краткая справка по истории нанотехнологий

3. История развития нанотехнологий

3.2 Туннельный микроскоп

3.3 Электронные элементы на основе нанотехнологий

3.4 Наноботы

4. Перспективы развития нанотехнологий

Заключение

Список использованных источников

Введение

Область науки и техники, именуемая нанотехнологией, как и соответствующая терминология, появились сравнительно недавно. Однако её перспективы настолько грандиозны для нашей цивилизации, что необходимо широкое распространение основных идей нанотехнологии, прежде всего среди молодежи. Поскольку всё передовое и перспективное часто популяризируется в обществе, то сегодня приставку “нано” в рекламных целях стали использовать все, кому не лень, и даже в тех областях, где ей, казалось бы, совсем нечего делать.

На самом деле “нано” означает одну миллиардную (109) долю чего-либо. Например, нанометр - одна миллиардная доля метра. Примерно таковы размеры молекул (поэтому часто нанотехнологию называют также молекулярной технологией). Для сравнения, человеческий волос приблизительно в шестьдесят тысяч раз толще одной молекулы.

Если мы внимательно проанализируем историю науки (как и человечества в целом), мы увидим, что многие революционные изменения в обществе были связаны с большими трудностями, вызванными нежеланием людей принять новую информацию, особенно если она противоречит уже устоявшейся, привычной большинству, картине мира. Так, западная цивилизация благополучно просуществовала несколько столетий в твердом убеждении, что Земля плоская. Это хоть и не соответствовало действительности, но и не мешало людям составлять карты и вполне успешно ориентироваться по ним. Утверждения Галилея и других ученых о том, что Земля круглая, дорого им обошлись. В частности, в 1600 году за подобную “ересь” Джордано Бруно был сожжен по приказу “святой” католической инквизиции. Итак, обществу потребовалось еще около 200 лет для того, чтобы признать этот факт…

Аналогично более 2000 лет просуществовала уверенность в том, что атом является мельчайшей единицей всего сущего. И когда в XX веке наука открыла субатомные элементарные частицы (электрон, протон, нейтрон и др.), это полностью изменило все базовые представления о Вселенной. Кстати, некоторые субатомные частицы (в частности, позитрон) были как бы “придуманы” физиками: сначала рассчитаны, а потом обнаружены экспериментально, что еще раз говорит в пользу человеческой способности постигать разумом то, что неочевидно.

После открытия субатомных частиц прежний логический мир распался. Оказалось, что субатомные частицы “ведут себя” не так, как, по мнению ученых, им “положено” себя вести. Основной постулат Аристотелевской логики - основы основ всей научной мысли - утверждающий, что один объект не может быть одновременно “А” и “не А”, не мог объяснить того, что, например, свет является одновременно и волной, и потоком частиц. Квантовая физика вступила в спор с Аристотелем и выиграла его. Казалось, что механика великого Ньютона способна безупречно объяснить все видимые и невидимые законы Вселенной.

И ничто не предвещало создания теории относительности. Однако ее открытие привело к коренному изменению представлений о мире и такому научному прорыву, о котором даже не мечтали - чего стоит одна только атомная энергия. Своей выдающейся работой Эйнштейн не отверг полностью ньютоновскую механику, но отвел ей более скромное место частного случая, справедливого только для движений, медленных по сравнению со скоростью света…

Одним словом, “все течет, все изменяется”, и сегодня человечество снова стоит на пороге новых революционных решений и технологических прорывов, которые принесут такие изменения в нашу жизнь, которые нам и не снились.

1. Введение в нанотехнологию

Когда в 1980-х годах буревестник нанотехнологической революции Эрик Дрекслер начал публиковать книги и статьи с описанием своего видения будущего, реакция научного сообщества была крайне скептической. Целенаправленное создание новых и перестройка уже существующих молекулярных структур материи любыми способами, не входящими в противоречие с законами физики, спору нет, сулили невиданный прогресс в освоении природы, но уж слишком все это казалось далеким и фантастичным [1]. Дрекслер писал, что человек, научившись манипулировать атомами с высочайшей точностью, радикально изменит производство практически всех нужных ему продуктов. В игольное ушко можно будет упаковать вычислительную мощь суперкомпьютера. Материалы с новой структурой, легкие, как перышко, и твердые, как алмаз, революционизируют транспорт и аэрокосмическую индустрию. Наконец, появятся медицинские инструменты, размером и точностью попадания в нужное место организма сопоставимые с молекулами, способные непосредственно воздействовать на возбудителя болезни. Еще один важнейший признак нанотехнологий - это чрезвычайно точные и безотходные методы изготовления продукции, исключающие загрязнение среды. Все это выглядело слишком уж хорошо, чтобы быть правдой. А посему многие ученые провозгласили, что возвещаемые Дрекслером технологические новации попросту невозможны.

Однако годы шли, технологии развивались своим чередом, и постепенно беспристрастный анализ стал все более подтверждать глубокую правоту Дрекслера. Стремительный прогресс технологий наиболее очевиден в компьютерной области: вычислительная мощь нарастает экспоненциально, а размеры мельчайших элементов электронных схем все глубже уходят в субмикронную область. Экстраполируя эти на редкость стабильные тенденции, легко показать, что если мы можем укладывать атомы в молекулярных компьютерах, то ничто не мешает проделывать то же самое и с прочими продуктами. Ныне у аналитиков, знакомых с ситуацией в области перспективных исследований и разработок, практически нет сомнений, что в обозримом будущем нанотехнологии «станут не только возможны, но и неизбежны». Уже в течение ближайших 10-20 лет появятся «наноботы», или нанотехнологические роботы, собирающие механизмы из отдельных молекул или атомов. Причем это будут не демонстрационные, а промышленные устройства.

Эрик Дрекслер в книге «Орудия творения», вышедшей в 1986 году, писал, что наноботы позволят преодолеть проблему «толстых пальцев» и манипулировать материей на нанометровом уровне, то есть на уровне молекул или молекулярных кластеров размером от 1 до 100 нанометров (10-9 -10-7 м; для сравнения, диаметр человеческого волоса - несколько десятков тысяч нанометров) [2]-[4]. Любые обычные инструменты слишком велики для работы с такими предметами, а значит, для построения нанообъектов потребуются специальные устройства сопоставимых размеров. И в настоящее время, вместе с созданием новых микротехнологических систем и автоматов, попутно создается и мощный задел для будущих сборщиков-наноботов.

2. Краткая справка по истории нанотехнологий

Дедушкой нанотехнологий можно считать греческого философа Демокрита. 2400 лет назад он впервые использовал слово “атом” для описания самой малой частицы вещества [5].

1905 Швейцарский физик Альберт Эйнштейн опубликовал работу, в которой доказал, что размер молекулы сахара составляет примерно 1 нанометр.

1931 Немецкие физики Макс Кнолл и Эрнст Руска создали электронный микроскоп, который впервые позволил исследовать нанообъекты.

1959 Американский физик Ричард Фейнман впервые опубликовал работу, где оценивались перспективы миниатюризации.Основные положения нанотехнологий были намечены в его легендарной лекции “Там внизу - много места” (“There's Plenty of Room at the Bottom”), произнесенной им в Калифорнийском Технологическом Институте. Фейнман научно доказал, что с точки зрения фундаментальных законов физики нет никаких препятствий к тому, чтобы создавать вещи прямо из атомов.

Тогда его слова казались фантастикой только лишь по одной причине: еще не существовало технологии, позволяющей оперировать отдельными атомами (то есть опознать атом, взять его и поставить на другое место). Чтобы стимулировать интерес к этой области, Фейнман назначил приз в $1000, тому, кто впервые запишет страницу из книги на булавочной головке, что, кстати, осуществилось уже в 1964 году.

1968 Альфред Чо и Джон Артур, сотрудники научного подразделения американской компании Bell, разработали теоретиеские основы нанообработки поверхностей.

1974 Японский физик Норио Танигучи ввел в научный оборот слово “нанотехника”, предложив называть так механизмы размером менее 1 микрона.

1981 Германские физики Герд Бинниг и Генрих Рорер создали сканирующий туннельный микроскоп -прибор, позволяющий осуществлять воздействие на вещество на атомарном уровне. Через четыре года они получили Нобелевскую премию.

1985 Американский физики Роберт Керл, Хэрольд Крото и Ричард Смолли создали технологию, позволяющую точно измерять предметы диаметром в один нанометр.

1986 Создан атомно-силовой микроскоп, позволяющий, в отличие от туннельного микроскопа, осуществлять взаимодействие с любыми материалами, а не только с проводящими.

1986 Нанотехнология стала известна широкой публике. Американский футуролог Эрик Дрекслер опубликовал книгу, в которой предсказал, что нанотехнология в скором времени начнет активно развиваться.

1989 Дональд Эйглер, сотрудник компании IBM, выложил название своей фирмы атомами ксенона.

1998 Голландский физик Сеез Деккер создал нанотранзистор.

2000 Администрация США объявила “Национальную нанотехнологическую инициативу” (National Nanotechnology Initiative). Тогда из федерального бюджета США было выделено

$500 млн. В 2002 сумма ассигнований была увеличена до $604 млн. На 2003 год “Инициатива” запросила $710 млн., а в 2004 году правительство США приняло решение увеличить финансирование научных исследований в этой области до $3,7 млрд. в течение четырех лет. В целом, мировые инвестиции в нано в 2004 году составили около $12 млрд.

2004 Администрация США поддержала “Национальную наномедицинскую инициативу” как часть National Nanotechnology.

Стремительное развитие нанотехнологий вызвано еще и потребностями общества в быстрой переработке огромных массивов информации.

Современные кремниевые чипы могут при всевозможных технических ухищрениях уменьшаться ещё примерно до 2012года. Но при ширине дорожки в 40-50 нанометров возрастут квантовомеханические помехи: электроны начнут пробивать переходы в транзисторах за счет туннельного эффекта (о нем речь пойдет ниже), что равнозначно короткому замыканию.

Выходом могли бы послужить наночипы, в которых вместо кремния используются различные углеродные соединения размером в несколько нанометров. В настоящее время ведутся самые интенсивные разработки в этом направлении.

3. История развития нанотехнологий

Для понятия нанотехнология, пожалуй, не существует исчерпывающего определения, но по аналогии с существующими ныне микротехнологиями следует, что нанотехнологии - это технологии, оперирующие величинами порядка нанометра. Поэтому переход от "микро" к "нано" - это качественный переход от манипуляции веществом к манипуляции отдельными атомами [6].

Когда речь идет о развитии нанотехнологий, имеются в виду три направления:

изготовление электронных схем (в том числе и объемных) с активными элементами, размерами сравнимыми с размерами молекул и атомов;

разработка и изготовление наномашин;

манипуляция отдельными атомами и молекулами и сборка из них макрообъектов.

Разработки по этим направлениям ведутся уже давно. В 1981 году был создан туннельный микроскоп, позволяющий переносить отдельные атомы. С тех пор технология была значительно усовершенствована. Сегодня эти достижения мы используем в повседневной жизни: производство любых лазерных дисков, а тем более DVD невозможно без использования нанотехнических методов контроля.

Однако принято считать, что нанотехнология "началась" когда 70 лет назад Г. А. Гамов впервые получил решения уравнения Шредингера, описывающие возможность преодоления частицей энергетического барьера даже в случае, когда энергия частицы меньше высоты барьера. Новое явление, называемое туннелированием, позволило объяснить многие экспериментально наблюдавшиеся процессы. Найденное решение позволило понять большой круг явлений и было применено для описания процессов, происходящих при вылете частицы из ядра - основы атомной науки и техники. Многие считают, что за грандиозность результатов его работ, ставших основополагающими для многих наук, Г. А. Гамов должен был быть удостоен нескольких Нобелевских премий.

Развитие электроники подошло к использованию процессов туннелирования лишь почти 30 лет спустя: появились туннельные диоды, открытые японским ученым Л. Есаки, удостоенным за это открытие Нобелевской премии. Еще через 5 лет Ю. С. Тиходеев, руководивший сектором физико-теоретических исследований в московском НИИ "Пульсар", предложил первые расчеты параметров и варианты использования приборов на основе многослойных туннельных структур, позволяющих достичь рекордных по быстродействию результатов. Спустя 20 лет они были успешно реализованы. В настоящее время процессы туннелирования легли в основу технологий, позволяющих оперировать со сверхмалыми величинами порядка нанометров (1нанометр=10-9 м).

До сих пор создание миниатюрных полупроводниковых приборов основывалось, в основном, на технике молекулярно-лучевой эпитаксии (выращивания слоев, параллельных плоскости подложки), позволяющей создавать планарные слои из различных материалов с толщиной вплоть до моноатомной.

Однако эти процессы имеют значительные ограничения, не позволяющие создавать наноскопические структуры. К этим ограничениям относится высокая температура процессов эпитаксии - до нескольких сотен градусов, при которой хоть и обеспечивается рост высококачественных пленок, однако не обеспечивается локальность формируемых областей. Кроме того, высокие температуры поверхности подложки стимулируют диффузионные процессы, "размывающие" планарные структуры. Более "холодные" технологии осаждения, типа напыления, из-за одновременности осаждения материала на всю подложку, одновременного роста в разных местах зерен осаждаемого материала и последующего образования дефектов на их границах раздела также не позволяли создавать бездефектные наноструктуры.

Формирование элементов нанометрового размера первоначально планировалось осуществлять методами электронно-лучевой литографии, дополняемой методами ионного травления. Однако высокоэнергетичный электронный луч, рассеиваясь в подложке, вызывает значительные разрушения в материале, расположенном как под, так и в районе области фокусировки, практически перечеркивая возможность создания многослойных схем с нанометровыми размерами элементов. Возникла тупиковая ситуация, решение которой было найдено в 1981 году.

3.2 Туннельный микроскоп

В 1981 году кардинально новым шагом, открывающим возможность создания высоколокальных - с точностью до отдельных атомов - низкоэнергетичных технологических процессов, явилось создание Г. Бинингом и Г. Рорером, сотрудниками швейцарского отделения компании IBM, сканирующего туннельного микроскопа, за которое они в 1985 году были удостоены Нобелевской премии. Основой изобретенного микроскопа является очень острая игла, скользящая над исследуемой поверхностью с зазором менее одного нанометра. При этом электроны с острия иглы туннелируют через этот зазор в подложку. Исключительно резкая зависимость тока туннелирующих электронов от расстояния (при изменении зазора на одну десятую нанометра ток изменяется в 10 раз) обеспечила высокую чувствительность и высокую разрешающую способность микроскопа. Стабильное удержание иглы на столь малом расстоянии от подложки обеспечивается применением электронной следящей системы, под воздействием результатов измерения туннельного тока управляющей пьезоманипулятором, перемещающим иглу, что позволяет удерживать зазор с точностью выше сотых долей нанометра. Измеряя величины управляющих сигналов, при известной чувствительности пьезоманипулятора к перемещению под действием напряжения, определяют высоту исследуемой области поверхности. Сканируя над исследуемой поверхностью, по результатам измерений высот различных областей определяют профиль поверхности с точностью до отдельных атомов.

Однако кроме исследования поверхности, создание нового типа микроскопов открыло принципиально новый путь формирования элементов нанометровых размеров. Были получены уникальные результаты по перемещению атомов, их удалению и осаждению в заданную точку, а также локальной стимуляции химических процессов

3.3 Электронные элементы на основе нанотехнологий

Новые потенциальные технологические возможности нанотехнологии открыли пути к реализации новых типов транзисторов и электронных функциональных устройств, выполняющих соответствующие радиотехнические функции за счет особенности взаимодействия электронов с наноструктурами. К транзисторам новых типов относятся одноэлектронные транзисторы, предложенные К. Лихаревым, в которых доминируют эффекты поодиночного прохождения электронов через транзистор и управления параметрами данного процесса под действием потенциала управляющего электрода. Достоинством транзистора данного типа и функциональных приборов на его основе является исключительно низкое энергопотребление. К сравнительным недостаткам - наивысшие по трудности реализации требования создания нанометровых областей наименьших размеров, позволяющих осуществить работу данных устройств при комнатной температуре.

К принципиально другому типу транзисторов следует отнести транзисторы Ааронова-Бома, в которых используются волновые свойства электронов.

В 1993 г. было разработано новое семейство цифровых переключающих приборов на атомных и молекулярных шнурах. На этой основе разработаны логические элементы НЕ-И и НЕ-ИЛИ. Размер такой структуры ~ 10 нм, а рабочая частота ~ 1012 Гц.

Одним из важнейших достоинств нанотехнологии, реализующей процесс послойной сборки, является возможность трехмерного изготовления наноэлектронных схем. Наличие такого свойства у разрабатываемой технологии исключительно важно, так как полупроводниковая микроэлектроника, фактически, так и осталась планарной, позволив реализовать очень ограниченное число уровней металлизации для формирования межсоединений.

Данный недостаток технологии порождал проблему, названную Я. А. Федотовым "тиранией межсоединений". Она не только сдерживает развитие прогрессивных интегральных схем с большим числом элементов, но и не позволяет аппаратно реализовать исключительно важные типы нейронных схем, в которых доминирует большое число связей между элементами.

3.4 Наноботы

нанотехнология микроскоп электронный безотходный

MEMS-технологии и мини-роботы Сандиа. Многие эксперты склонны отсчитывать историю микротехнологий от знаменитой лекции нобелевского лауреата Ричарда Фейнмана, прочитанной им в 1959 году перед Американским физическим обществом. Богатейшая фантазия Фейнмана и талантпопуляризатора позволили ему обрисовать потенциал микротехнологий в самых ярких красках: в его лекции были и крошечные компьютеры, и системы хранения данных, электронные компоненты и даже микроскопический инструментарий миниатюрных роботов. Но если пророчества Фейнмана в области микроэлектроники начали обрастать плотью очень быстро - уже в 1960-70-е годы, - то прогресс в электромеханических микросистемах шел гораздо медленнее. Лишь в 1980-е годы ведущие университеты и правительственные лаборатории начали осваивать сравнительно недорогие способы изготовления и сборки крошечных механических деталей, для чего была разработана технология микроэлектромеханических систем, или MEMS, использующая методы литографии и инструментарий полупроводниковой промышленности [7].

Фактически, понадобилось больше тридцати лет на то, чтобы появилось первое коммерческое приложение MEMS. Одной из первых MEMS-технологий, получивших повсеместное распространение, стали сенсоры ускорения, устанавливаемые сейчас практически во все современные автомобили для детектирования столкновения и выпуска защитных воздушных подушек.

Массачусетская компания Analog Devices, изготовившая первые такие сенсоры в 1993 году, сейчас продает автомобилестроителям около 50 миллионов MEMS- чипов в год. Есть и еще целый ряд успешных MEMS-изделий, таких как головки микроструйных принтеров или сенсоры давления, которые компания Motorola сотнями миллионов поставляет медицинской и автомобильной промышленности.

Или, скажем, цифровые проекторы высокого разрешения Texas Instruments, построенные на основе MEMS-массивов микрозеркал. За последние годы удалось достичь заметных успехов в изготовлении моторов, насосов и зажимов, сенсоров давления и смещения - короче, множества самых разных по назначению механических агрегатов, настолько малых, что их не видно невооруженным глазом. Однако запустить подобные продукты в массовое производство оказалось гораздо труднее, чем полагали оптимисты.

Сейчас самой перспективной областью внедрения MEMS принято считать телекоммуникации. Так, в конце 2000 года от Национальной лаборатории Сандиа, принадлежащей министерству энергетики США, отпочковалась частная компания MEMX, занимающаяся вопросами коммерческого применения создаваемых в лаборатории MEMS-технологий. Компания сфокусировалась в своей деятельности на оптических коммутаторах для оптоволоконных телекоммуникационных систем. В их основу положена фирменная технология Сандиа под названием SUMMiT V (от Sandia Ultraplanar Multilevel MEMS Technology). Это микромашинный процесс обработки поверхности чипа напылением и травлением, охватывающий пять независимых слоев поликристаллического кремния - четыре «механических» слоя для построения механизмов и один электрический для обеспечения межсоединений электросхемы.

Технология позволяет доводить размеры механических элементов до 1 мкм. Опыт, накопленный разработчиками Сандиа в миниатюризации электромеханических систем, помог создать и весьма эффектных микроскопических роботов. Построенная в середине 1990-х годов модель автономного робота MARV (Miniature Autonomous Robotic Vehicle) имела объем около 1 кубического дюйма, хотя робот почти целиком был изготовлен из коммерчески доступных компонентов. К 2000 году его размеры удалось уменьшить в четыре с лишним раза. Эта крошечная машина на гусеничном ходу имеет полимерный каркас, шесть колес, два электромотора, процессор с 8 Кбайт памяти, датчик температуры, микрофон, видеокамеру, химический сенсор и три батарейки от часов. Надо сказать, именно бытовые элементы питания помешали сделать устройство еще миниатюрнее. Машины планируется оборудовать системой беспроводной связи, после чего группа микророботов сможет объединяться для совместного решения задач под управлением центрального компьютера. По замыслу разработчиков, основной областью применения таких роботов может стать поиск и обезвреживание бомб и мин, опасных биологических и химических материалов. Благодаря малым размерам и высокой проходимости микророботы очень перспективны для решения разведывательных задач. Однако емкость современных батарей катастрофически мала, ее хватает лишь на преодоление десятка метров.

Трезвомыслящие ученые прекрасно понимают, что нанотехнология способна породить серьезные проблемы. Любая технология может быть использована для нанесения ущерба, а не только для всеобщего блага. По масштабам будущего воздействия на человечество нанотехнологии наверняка не уступят индустриальной революции.

В калифорнийском Пало-Альто в 1989 году была создана специальная некоммерческая организация «Предусмотрительный институт» (Foresight Institute) и девизом «Готовясь к нанотехнологиям» (основатель и глава института - Эрик Дрекслер). Здесь был подготовлен набор правил «техники безопасности» для разработчиков и изготовителей молекулярных систем. Среди руководящих принципов, например, такие: искусственные системы-репликаторы не должны иметь способность к воспроизводству в естественной, неконтролируемой окружающей среде. Они должны быть абсолютно зависимыми от источника искусственного питания или от искусственных компонентов, не встречающихся в природе. Они должны использовать коды выявления ошибок и шифрование, предотвращающее непреднамеренные изменения в их конструкции.

Все эти правила выкристаллизовались из бурных дискуссий о самых разных сценариях возможного развития нанотехнологий. Очевидно, что наше понимание развивающейся технологии эволюционирует, а значит, претерпевают изменения и рекомендации, отражая степень осмысления учеными того, как обеспечивать безопасное развитие нанотехнологий. Но в конечном счете диктовать реальный спектр нанотехнологических приложений будут вовсе не ученые, а правительства и индустрия.

4. Перспективы развития нанотехнологий

На данный момент, возможно, наметить следующие перспективы нанотехнологий [8]:

1. Медицина. Создание молекулярных роботов-врачей, которые "жили" бы внутри человеческого организма, устраняя или предотвращая все возникающие повреждения, включая генетические.

Срок реализации - первая половина XXI века.

2. Геронтология. Достижение личного бессмертия людей за счет внедрения в организм молекулярных роботов, предотвращающих старение клеток, а также перестройки и улучшения тканей человеческого организма. Оживление и излечение тех безнадежно больных людей, которые были заморожены в настоящее время методами крионики.

Срок реализации: третья - четвертая четверти XXI века.

3. Промышленность. Замена традиционных методов производства сборкой молекулярными роботами предметов потребления непосредственно из атомов и молекул. Срок реализации - начало XXI века.

4. Сельское хозяйство. Замена природных производителей пищи (растений и животных) аналогичными функционально комплексами из молекулярных роботов. Они будут воспроизводить те же химические процессы, что происходят в живом организме, однако более коротким и эффективным путем. Например, из цепочки "почва - углекислый газ - фотосинтез - трава - корова - молоко" будут удалены все лишние звенья. Останется "почва - углекислый газ - молоко (творог, масло, мясо)". Такое "сельское хозяйство" не будет зависеть от погодных условий и не будет нуждаться в тяжелом физическом труде. А производительности его хватит, чтобы решить продовольственную проблему раз и навсегда.

Срок реализации - вторая - четвертая четверть XXI века.

5. Биология. Станет возможным внедрение наноэлементов в живой организм на уровне атомов. Последствия могут быть самыми различными - от "восстановления" вымерших видов до создания новых типов живых существ, биороботов. Срок реализации: середина XXI века.

6. Экология. Полное устранение вредного влияния деятельности человека на окружающую среду. Во-первых, за счет насыщения экосферы молекулярными роботами-санитарами, превращающими отходы деятельности человека в исходное сырье, а во-вторых, за счет перевода промышленности и сельского хозяйства на безотходные нанотехнологические методы. Срок реализации: середина XXI века.

7. Освоение космоса. По-видимому, освоению космоса "обычным" порядком будет предшествовать освоение его нанороботами. Огромная армия роботов-молекул будет выпущена в околоземное космическое пространство и подготовит его для заселения человеком - сделает пригодными для обитания Луну, астероиды,ближайшие планеты, соорудит из "подручных материалов" (метеоритов, комет)космические станции. Это будет намного дешевле и безопаснее существующих ныне методов.

8. Кибернетика. Произойдет переход от ныне существующих планарных структура объемным микросхемам, размеры активных элементов уменьшаться до размеров молекул. Рабочие частоты компьютеров достигнут терагерцовых величин. Получат распространение схемные решения на нейроноподобных элементах.

Появится быстродействующая долговременная память на белковых молекулах, емкость которой будет измеряться терабайтами. Станет возможным "переселение" человеческого интеллекта в компьютер.

Срок реализации: первая - вторая четверть XXI века.

9. Разумная среда обитания. За счет внедрения логических наноэлементов вовсе атрибуты окружающей среды она станет "разумной" и исключительно комфортной для человека. Срок реализации: после XXI века.

Заключение

Развитие нанотехнологий ставит ряд очень важных вопросов. В первую очередь философского характера.

Эдуард Теллер, один из создателей термоядерной бомбы заметил: «Тот, кто раньше овладеет нанотехнологией, займет ведущее место в техносфере следующего столетия». Нужно опасаться такого хода мыслей. Высказывание, безусловно, верное, но нанотехнология не должна становиться предметом соперничества. Она обладает столь мощным потенциалом, что нужно вести разработки в этой области полностью открыто, с тщательным контролем, исключающем создание оружия.

Молекулярные нанотехнологии, которые могут убить цивилизацию, с другой стороны обладают большим потенциалом созидания, чем разрушения. В этом их отличие, скажем, от ядерной энергии, неудержимая мощь которой гораздо больше подходит для разрушения. В этом смысле прорыв человека в микромир очень похож на изобретение колеса, которое имеет гораздо большее применение в мирных целях, чем при создании оружия, где оно обычно работает лишь косвенно. Остаётся опасность непредсказуемого поведения наносистем, их выхода из- под контроля человека. Сколько статей и рассказов было написано, где компьютер взбунтовался против человека. Но практика развития компьютерных систем показывает, что ничего подобного не происходит и не собирается происходить. Опасность такого рода возникнет только тогда, когда система осознает саму себя и у неё появятся собственные цели. На современном этапе развития поведение компьютерных систем слишком жёстко ограничивается алгоритмическими программами.

Развитие молекулярной нанотехнологии даст возможность тщательно изучить процессы, протекающие внутри клеток организма. Есть большие основания полагать, что точное знание того, как функционируют клетки, позволит создать наномашины ликвидирующие негативные изменения происходящие в клетках и тканях живого организма с течением времени. Возможно, удастся переделать программу, записанную в ДНК, так, чтобы «выключить» старение и улучшить генетические параметры организма.

Но не нарушит ли человек гармонию мира, искусственным путём достигнув бессмертия? Кроме проблемы перенаселённости Земли, которую, в принципе, можно решить, расселяясь по Вселенной, есть другие доводы против бессмертного человека.

Во-первых, поколение людей несёт с собой определённые моральные устои, мировоззренческие взгляды, и длительная жизнь одного поколения может привести к застою в развитии общества.

Во-вторых, с возрастом человек проявляет всё меньше интереса к жизни, в нём растёт усталость, груз накопленных знаний и переживаний гнетёт его, так что смена поколений необходима для поддержания активности всё время на высоком уровне.

В-третьих, опыт говорит нам, что любой развивающийся процесс в природе имеет своё начало и свой конец. Бесконечным может быть лишь стационарный или циклический процесс. Так как неотъемлемым атрибутом жизни является развитие, то любой жизненный процесс рано или поздно должен заканчиваться смертью.

Но отрицание возможности бессмертия не означает невозможность долголетия. Нет никаких принципиальных ограничений на длительность жизни человека, допустим, в 1000 лет. Таким долгожителем, скорее всего, можно стать с помощью молекулярной нанотехнологии. А дальнейшее увеличение длительности жизни будет зависеть от состояния общества и настроения каждого человека лично.

«Истинному» - временному долголетию человека можно противопоставить альтернативный вариант «внутреннего» долголетия, которое может дать молекулярная нанотехнология. В этом случае, внедрённые в мозг наносистемы так изменяют процессы мышления, что ход внутреннего времени человека многократно ускоряется. За прежний промежуток времени человек субъективно будет проживать во много раз больше. Но такому мозгу будет казаться, что весь мир впал в дрёму, так как для него все физические перемещения будут выполняться очень медленно, будто в вязком сиропе. Вряд ли такое долголетие придётся по вкусу многим людям.

Переделка человеческого организма с целью излечения от болезней и увеличения продолжительности жизни с помощью молекулярных нанотехнологий будет возможна в достаточно отдалённом будущем (хотя, по оптимистическим прогнозам это произойдёт в конце следующего века).

Нанотехнология - без сомнения самое передовое и многообещающее направление развития науки и техники на сегодняшний день. Возможности её поражают воображение, мощь - вселяет страх. Видимо будущее развитие технологии будет основываться на балансе между созиданием и разрушением. Но и многообразие мирных задач, поставленных перед нанотехнологией сегодня, не даст покоя учёным. Нанотехнология в корне изменит нашу жизнь. Появятся новые возможности, идеи, вопросы и ответы.

Список использованных источников

1. Киви Б. Микроботы: технология будущего сегодня / Б.Киви//Журнал «Компьютера».-2002.-№14 http://www.computerra.ru/offline/2002/439/17343/

2. Drexler K. E. Engines of Creation. The Coming Era of Nanotechnology. / К.Е. Drexler. - New York : Anchor Books, 1986. - 298 p.

3. Drexler K. E. Nanosystems: Molecular Machinery, Manufacturing, and Computation / К.Е. Drexle. - New York : Wiley.- 1986. - 297 p.

4. Drexler K. E Unbounding the Future- the Nanotechnology Revolution / K. E. Drexler K. E, Ch. Peterson, G Pergamit.- New York : Wiley Morrow.- 1991.-56 p.

5. Рыбалкина М. Введение в нанотехнологии для всех. Большое в малом / М. Рыбалкина.-М: nanonewsnet.ru.-2005.-444 c.

6. Лускинович П. Нанотехнология / П. Лускинович //Журнал «Компьютера». -1997.- №41 http://www.computerra.ru/offline/1997/218/828/

7. Соловьёв М. Нанотехнология - ключ к бессмертию и свободе» / М. Соловьев // Журнал «Компьютера» . -1997.- №41 http://www.computerra.ru/offline/1997/218/829/

8. Ратнер М. Нанотехнология. Простое объяснение очередной гениальной идеи / М. Ратнер, Д.Ратнер .-М:Вильямс.-2004.-234 с.

Размещено на Allbest.ru


Подобные документы

  • Понятие нанотехнологий. Нанотехнология как научно-техническое направление. История развития нанотехнологий. Современный уровень развития нанотехнологий. Применение нанотехнологий в различных отраслях. Наноэлектроника и нанофотоника. Наноэнергетика.

    дипломная работа [569,7 K], добавлен 30.06.2008

  • Нанотехнология - высокотехнологичная отрасль, направленная на изучение и работу с атомами и молекулами. История развития нанотехнологий, особенности и свойства наноструктур. Применение нанотехнологий в автомобильной промышленности: проблемы и перспективы.

    контрольная работа [3,8 M], добавлен 03.03.2011

  • Использование нанотехнологий в пищевой промышленности. Создание новых пищевых продуктов и контроль за их безопасностью. Метод крупномасштабного фракционирования пищевого сырья. Продукты с использованием нанотехнологий и классификация наноматериалов.

    презентация [4,6 M], добавлен 12.12.2013

  • Развитие нанотехнологий в XXI веке. Нанотехнологии в современной медицине. Эффект лотоса, примеры использования его уникального свойства. Интересное в нанотехнологиях, виды нанопродукции. Сущность нанотехнологий, достижения в этой отрасли науки.

    реферат [21,4 K], добавлен 09.11.2010

  • Понятие нанотехнологий и области их применения: микроэлектроника, энергетика, строительство, химическая промышленность, научные исследования. Особенности использования нанотехнологий в медицине, парфюмерно-косметической и пищевой промышленностях.

    презентация [4,5 M], добавлен 27.02.2012

  • Режимы работы сканирующего туннельного микроскопа. Углеродные нанотрубки, супрамолекулярная химия. Разработки химиков Уральского государственного университета в области нанотехнологий. Испытание лабораторного среднетемпературного топливного элемента.

    презентация [9,3 M], добавлен 24.10.2013

  • Материальная основа и функции технического сервиса пути его развития. Современное состояние предприятий ТС, направления их реформирования. Виды и применение наноматериалов и нанотехнологий при изготовлении, восстановлении и упрочнении деталей машин.

    реферат [397,6 K], добавлен 23.10.2011

  • Измерение рельефа проводящих поверхностей с высоким пространственным разрешением как одна из основных задач сканирующего туннельного микроскопа. Модельные виды идеальных твердотельных наноструктур. Характеристика самоорганизованных квантовых точек.

    курс лекций [1,3 M], добавлен 18.06.2017

  • Современная тенденция к миниатюризации, применение нанотехнологий. Материалы на основе наночастиц. Обеззараживающие и самодезинфицирующие свойства наночастиц серебра. Принцип действия самоочищающихся нанопокрытий. Свойства наночастиц оксида цинка.

    курсовая работа [1,0 M], добавлен 18.11.2009

  • Лидерство стран в области нанотехнологий. Перспективы использования новых технологий в областях энергетики, вычислительной техники, химической и биомолекулярной технологии, в оптике и электронике, медицине. Примеры научных достижений и разработок.

    презентация [1,1 M], добавлен 14.04.2011

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.