Строение металлов

Схема точечных несовершенств кристалла и краевой дислокации в кристаллической решетке. Диффузионное перемещение атомов под действием тепловых колебаний. Влияние плотности дислокаций на прочность. Первичная кристаллизация сплавов системы железо-углерод.

Рубрика Производство и технологии
Вид контрольная работа
Язык русский
Дата добавления 01.02.2011
Размер файла 550,9 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

Вариант 41

Опишите виды несовершенства кристаллического строения реальных металлов

Технические металлы состоят из большого количества кристаллов (зерен), т.е. являются поликристаллическими. Кристаллы в поликристаллическом металле не имеют правильной формы и идеально правильного расположения атомов. В них встречаются различного рода несовершенства кристаллического строения, которые оказывают большое влияние на свойства. Увеличение количества дефектов кристаллического строения способствует повышению прочности реальных кристаллов.

Различают следующие несовершенства кристаллического строения - точечные, линейные и поверхностные.

Точечные несовершенства малы во всех трех измерениях. К ним относят вакансии, междоузельные (дислоцированные) атомы (рисунок 1).

Рисунок 1 - Схема точечных несовершенств кристалла:

а - междоузельный (дислоцированный) атом, б - вакансия

Образование точечных несовершенств связано с диффузионным перемещением атомов под действием тепловых колебаний.

Процесс диффузии в кристаллическом теле возрастает с увеличением температуры. Под влиянием тепловых колебаний отдельные атомы с повышенной кинетической энергией покидают свои места в узлах решетки и выходят в междоузлия решетки или на поверхность металла. Атом, вышедший из равновесного положения в междоузлие, называют дислоцированным или междоузельным, а образовавшееся в узле решетки свободное место - «дыркой» или вакансией. С повышением температуры металла число вакансий растет.

Точечные дефекты оказывают значительное влияние на некоторые физические свойства металлов (электропроводность, магнитные свойства и т.д.) и на фазовые превращения в металлах и сплавах.

Линейные несовершенства имеют малые размеры в двух измерениях и большую протяженность в третьем измерении. Эти несовершенства называются дислокациями. Различают краевые, винтовые и смешанные дислокации.

Рисунок 2 - Схема краевой дислокации в кристаллической решетке

На рисунке 2 показана краевая дислокация, представляющая собой местное искажение кристаллической решетки, причиной которой явилась лишняя полуплоскость атомов, так называемая экстраплоскость. Для краевой дислокации характерно, что направление движения перпендикулярно линии дислокации.

Дислокации образуются в процессе кристаллизации, но главным образом при деформации металла. Дислокации в металле распределены неравномерно. Плотность дислокаций на границах зерен выше, чем в самих зернах.

Плотность дислокаций в кристалле определяется как среднее число линий дислокаций, пересекающих внутри тела площадку площадью 1 м2, или как суммарная длина линий дислокаций в объеме 1 м3:

(см-2; м-2)

Плотность дислокации в значительной мере определяет пластичность и прочность материала (рисунок 3).

Рисунок 3 - Влияние плотности дислокаций на прочность

кристалл решетка сплав

Поверхностные, или плоские, несовершенства малы только в одном измерении и велики в двух в двух других измерениях. К ним относятся границы зерен (кристаллитов) и блоков мозаики (субзерен).

Зерна металла разориентированы относительно друг от друга на величину от нескольких долей градуса (малоугловые границы) до нескольких градусов или нескольких десятков градусов (высокоугловые гра­ницы).

Граница между отдельными зернами представляет собой тонкую переходную зону (5-10 атомных диа­метров) с максимальным нарушением порядка в расположении атомов (рисунок 4).

Рисунок 4 - Модель размещения атомов в объеме и на границе зерна

Это нарушение усугубляется концентрацией на этих участках различного рода посторонних примесей. Зерна металлов не являются однородными и состоят из мозаики однородных блоков (субзерен) размерами 10-5-10-3 см. Блоки повернуты по отношению друг к другу на угол от нескольких секунд до нескольких минут. В пределах каждого блока решетка почти идеальна, если не принимать во внимание точечные дефекты. Атомы, расположенные на границах зерен, обладают повышенной энергией вследствие нескомпенсированности сил межатомного взаимодействия. Это обстоятельство приводит к тому, что многие процессы развиваются или осуществляются на границах зерен и субзерен.

С увеличением угла разориентации субзерен и уменьшением их величины плотность дислокаций в металле повышается, соответствующим образом изменяются и свойства (рисунок 3).

Как изменяются эксплуатационные характеристики деталей после дробеструйной обработки и почему?

Поверхностное упрочение при дробеструйном наклепе достигается за счет кинетической энергии потока чугунной или стальной дроби. Поток дроби на обрабатываемую поверхность направляется или скоростным потоком воздуха, или роторным дробеметом.

Поверхностное деформирование повышает плотность дислокаций в упрочненном слое, измельчает субструктуру (величину блоков), а при обработке закаленных поверхностей уменьшает количество остаточного аустенита.

При поверхностной пластической деформации (ППД) происходит увеличение поверхности, которому препятствуют нижележащие недеформированные слои. Как следствие этого, на поверхности образуются остаточные сжимающие напряжения, а в середине растягивающие.

Упрочнение поверхности и образование сжимающих остаточных напряжений резко повышает предел выносливости. Поверхностный наклеп создает реальные возможности применения высокопрочных сталей (после закалки и низкого отпуска) для деталей с конструктивными и технологическими концентраторами напряжений при действии значительных циклических нагрузок. Важно, что ППД повышает сопротивление коррозионной и контактной усталости.

ППД повышает твердость поверхности, в результате чего возрастает сопротивление износу, одновременно возрастает сопротивление схватыванию и фреттинг-коррозии.

Вычертите диаграмму состояния железо - карбид железа, укажите структурные составляющие во всех областях диаграммы, опишите процессы кристаллизации и превращений в твердом состоянии для сплава, содержащего 2, 7 % С, напишите для этих процессов фазовые реакции с указанием составов реагирующих фаз и температурных интервалов превращений, изобразите схему кривой охлаждения заданного сплава и обоснуйте ее вид с применением правила фаз. Какова структура этого сплава при комнатной температуре и как такой сплав называется?

Первичная кристаллизация сплавов системы железо-углерод начинается по достижении температур, соответствующих линии ABCD (линии ликвидус), и заканчивается при температурах, образующих линию AHJECF (линию солидус).

При кристаллизации сплавов по линии АВ из жидкого раствора выделяются кристаллы твердого раствора углерода в б-железе (д-раствор). Процесс кристаллизации сплавов с содержанием углерода до 0,1% заканчивается по линии АН с образованием б (д)-твердого раствора. На линии HJB протекает перитектическое превращение, в результате которого образуется твердый раствор углерода в г-железе, т. е. аустенит. Процесс первичной кристаллизации сталей заканчивается по линии AHJE.

При температурах, соответствующих линии ВС, из жидкого раствора кристаллизуется аустенит. В сплавах, содержащих от 4,3% до 6,67% углерода, при температурах, соответствующих линии CD, начинают выделяться кристаллы цементита первичного. Цементит, кристаллизующийся из жидкой фазы, называется первичным. B точке С при температуре 1147°С и концентрации углерода в жидком растворе 4,3% образуется эвтектика, которая называется ледебуритом. Эвтектическое превращение с образованием ледебурита можно записать формулой ЖР4,3Л[А2,14+Ц6,67]. Процесс первичной кристаллизации чугунов заканчивается по линии ECF образованием ледебурита.

Таким образом, структура чугунов ниже 1147°С будет: доэвтектических - аустенит + ледебурит, эвтектических - ледебурит и заэвтектических - цементит (первичный)+ледебурит.

Превращения, происходящие в твердом состоянии, называются вторичной кристаллизацией. Они связаны с переходом при охлаждении г-железа в б-железо и распадом аустенита.

Линия GS соответствует температурам начала превращения аустенита в феррит. Ниже линии GS сплавы состоят из феррита и аустенита.

Линия ЕS показывает температуры начала выделения цементита из аустенита вследствие уменьшения растворимости углерода в аустените с понижением температуры. Цементит, выделяющийся из аустенита, называется вторичным цементитом.

В точке S при температуре 727°С и концентрации углерода в аустените 0,8% образуется эвтектоидная смесь состоящая из феррита и цементита, которая называется перлитом. Перлит получается в результате одновременного выпадения из аустенита частиц феррита и цементита. Процесс превращения аустенита в перлит можно записать формулой А0,8П[Ф0,03+Ц6,67].

Линия PQ показывает на уменьшение растворимости углерода в феррите при охлаждении и выделении цементита, который называется третичным цементитом.

Следовательно, сплавы, содержащие менее 0,008% углерода (точкаQ), являются однофазными и имеют структуру чистого феррита, а сплавы, содержащие углерод от 0,008 до 0,03% - структуру феррит + цементит третичный и называются техническим железом.

Доэвтектоидные стали при температуре ниже 727єС имеют структуру феррит + перлит и заэвтектоидные - перлит + цементит вторичный в виде сетки по границам зерен.

В доэвтектических чугунах в интервале температур 1147-727єС при охлаждении из аустенита выделяется цементит вторичный, вследствие уменьшения растворимости углерода линия ES). По достижении температуры 727єС (линия PSK) аустенит, обедненный углеродом до 0,8% (точка S), превращаясь в перлит. Таким образом, после окончательного охлаждения структура доэвтектических чугунов состоит из перлита, цементита вторичного и ледебурита превращенного (перлит + цементит).

Структура эвтектических чугунов при температурах ниже 727єС состоит из ледебурита превращенного. Заэвтектический чугун при температурах ниже 727єС состоит из ледебурита превращенного и цементита первичного.

Правило фаз устанавливает зависимость между числом степеней свободы, числом компонентов и числом фаз и выражается уравнением:

C = K + 1 - Ф,

где С - число степеней свободы системы;

К - число компонентов, образующих систему;

1 - число внешних факторов (внешним фактором считаем только температуру, так как давление за исключением очень высокого мало влияет на фазовое равновесие сплавов в твердом и жидком состояниях);

Ф - число фаз, находящихся в равновесии.

Сплав железа с углеродом, содержащий 3,8% С, называется доэвтектическим чугуном. Его структура при комнатной температуре - перлит + цементит (вторичный) + ледебурит (перлит + цементит).

Вычертите диаграмму изотермического превращения аустенита для стали У8. Нанесите на нее кривую режима изотермической обработки, обеспечивающей получение твердости 150 HB. Укажите, как этот режим называется, опишите сущность превращений и какая структура получается в данном случае.

Изотермической обработкой, достаточной для получения твердости НВ = 150 для стали У8, является изотермический отжиг (рисунок 5). Структура после отжига - крупнопластинчатый перлит. При изотермическом отжиге сталь У8 нагревают до температуры на 30-50°С выше точки Ас1 (Ас1 = 730°С) и после выдержки охлаждают до температуры 650-680°С. Структура после отжига - крупнопластинчатый перлит.

Рисунок 5 - Диаграмма изотермического превращения аустенита стали У8

Перлитное превращение переохлажденного аустенита протекает при температурах Ar1 = 500єC. В процессе превращения происходит полиморфное г>б-превращение и диффузионное перераспределение углерода в аустените, что приводит к образованию ферритно-цементитной структуры: А>Ф + Fe3C = Перлит.

Аустенит, практически однородный по концентрации углерода, распадается с образованием феррита и цементита, содержащего 6,67%С, т.е. состоит из двух фаз, имеющих различную концентрацию углерода. Ведущей, в первую очередь возникающей фазой при этом является карбид (цементит). Его зародыши, как правило, образуются на границах зерен аустенита.

В результате роста частиц этого карбида прилегающий к нему объем аустенита обедняется углеродом, снижает свою устойчивость и испытывает полиморфное г>б-превращение. При этом кристаллики феррита зарождаются на границе с цементитом, который облегчает этот процесс.

Последующий рост ферритных пластинок ведет к обогащению окружающего аустенита углеродом, что затрудняет дальнейшее развитие г>б-превращения. В обогащенном таким образом углеродом аустените зарождаются новые и растут ранее возникшие пластинки цементита. Вследствие этих процессов образования и роста частиц карбидов вновь создаются условия для возникновения новых и роста имеющихся кристалликов (пластинок) феррита. В результате происходит колониальный (совместный) рост кристалликов феррита и цементита, образующих перлитную колонию.

Опишите структуру и свойства стали 45 и У12 после закалки от температуры 760 и 840° С (объясните с применением диаграммы состояния железо-цементит). Выберите оптимальный режим нагрева под закалку каждой стали.

Исходная структура среднеуглеродистой конструкционной стали 45 до нагрева под закалку - перлит + феррит.

Критические точки для стали 45: АС1=725єС, АС3=770єС.

При нагреве до 700єС в стали 45 не происходят аллотропические превращения и мы имеем ту же структуру - перлит + феррит, быстро охлаждая (т.к. закалка), имеем также после охлаждения перлит + феррит с теми же механическими свойствами (примерно), что и в исходном состоянии до нагрева под закалку. Например, после нормализации: уТ=36 кгс/мм2, уВ=61 кгс/мм2, д=16%, ш=40%, НВ?180.

Оптимальный режим нагрева под закалку для доэвтектоидных сталей (%С<0,8%) составляет АС3+(30ч50є), т.е. для Ст45 - 800-820єС. При этом после закалки имеем мелкое зерно, обеспечивающее наилучшие механические свойства стали 45.

Нагрев и выдержка стали 45 при температуре 840єС перед закалкой приводит к росту зерна и ухудшению механических свойств стали после термической обработки. Крупнозернистая структура вызывает повышенную хрупкость стали.

Исходная структура высокоуглеродистой инструментальной стали У12 до нагрева под закалку - перлит + карбиды.

Критические точки для стали У12: АС1=730єС, АС3=820єС.

При нагреве до 700єС в стали У12 не происходят аллотропические превращения и мы имеем ту же структуру - перлит + карбиды, быстро охлаждая (т.к. закалка), имеем также после охлаждения перлит + карбиды с теми же механическими свойствами (примерно), что и в исходном состоянии до нагрева под закалку.

Оптимальный режим нагрева под закалку для заэвтектоидных сталей (%С>0,8%) составляет АС1+(30ч50є), т.е. для У12 - 760-780єС. При этом после закалки имеем мелкое зерно, обеспечивающее наилучшие механические свойства стали У12.

Нагрев и выдержка стали У12 при температуре 840єС перед закалкой приводит к росту зерна и ухудшению механических свойств стали после термической обработки. Крупнозернистая структура вызывает повышенную хрупкость стали, иногда приводит к трещинам.

Назначьте режим термической и химико-термической обработки шестерен из стали 20ХН с твердостью зуба 58...62 НRС. Опишите микроструктуру и свойства поверхности зуба и сердцевины шестерни после термической обработки.

Термическая обработка - самый распространенный в технике способ изменения свойств металлов и сплавов. На металлургических и машиностроительных= заводах термическая обработка является одним из важнейших звеньев технологического процесса производства полуфабрикатов и деталей машин. Термообработку п´ 212i81bc 088;именяют как промежуточную операцию для придания металлу или сплаву такого комплекса механических, физических и химических свойств, который обеспечивает необходимые эксплуатационные характеристики изделия. Чем ответственней конструкция, тем, как правило, больше в ней термически обработанных деталей.

Любой процесс термической обработки деталей можно описать графиком, показывающим изменение температуры во времени. По такому графику можно определить температуру нагревания, время нагревания и охлаждения, средние и истинные= скорости нагревания и охлаждения, время выдержки при температуре нагревания и= общую продолжительность производственного цикла. Но по форме этого графика ничего нельзя сказать о том, с каким видом термообработки мы имеем дело. Вид термообработки определяется не характером изменения температуры во времени,= а типом фазовых и структурных изменений в металле.

Термическая обработка подразделяется на собственно термическую, термомеханическую и химико-термическую. Собственно термическая обработка= заключается только в термическом воздействии на металл или сплав, термомеханическая - в сочетании термического воздействия= и пластической деформации, химико-термическая - в сочетании термического и химического воздействия.

Отжиг. Отжиг заключается в нагревании стальных деталей до определенной температуры (обычно 750 - 900¦С в зависимости от содержания в стали углерода) и выдержке при этой температуре с последующим медленным охлаждением вместе с печью. Отжиг производится для повышения ударной вязкости стали, получения однородности структуры, улучшения обрабатываемости, а также для снятия внутренних напряжений в изделиях после различных видов обработки.

Объясните физическую природу высокой конструктивной прочности трип-сталей (ПНП-сталей). Опишите особенности ее термической обработки и физическую сущность процесса образования мартенсита деформации.

ТРИП-Стали по сравнению с обычными (конструкционными низколегированными) сталями обладают повышенной прочностью и одновременно пластичностью, т.е при равной прочности (пределом текучести) обладают в 2-3 раза большей пластичностью, что обеспечивают им преимущества в процессе штамповки и формования. Применяется для изготовления высоконагруженных деталей: проволоки, тросов, крепежных деталей. В наибольшей степени данные свойства стали востребованы в современной автомобильной промышленности[1] так как может быть использована для производства более сложных деталей, обеспечивая большую свободу инженерам при выборе дизайна, оптимизации (снижении) веса и общей технологии производства автомобиля. Широкому применению данных сталей препятствует высокая легированность (стоимость производства) и сложная технология изготовления. В будущем, ТРИП-стали вполне вероятно уступят место так называемым сталям типа ТВИП (англ. TWIP от Twinning-Induced Plasticity).

Размещено на Allbest.ru


Подобные документы

  • Точечные дефекты в кристаллической решетке реальных металлов: вакансии, дислоцированные атомы и примеси. Образование линейных дефектов (дислокаций). Роль винтовой дислокации в формировании растущего кристалла. Влияние плотности дислокаций на прочность.

    презентация [205,4 K], добавлен 14.10.2013

  • Первичная кристаллизация сплавов системы железо-углерод. Расшифровка марки стали У12А, температура полного и неполного отжига, закалки, нормализации. Влияние легирующих элементов на линии диаграммы Fe-Fe3C, на термическую обработку и свойства стали.

    курсовая работа [1,4 M], добавлен 16.05.2015

  • Классификация дефектов кристаллической решетки металлов. Схема точечных дефектов в кристалле. Дислокация при кристаллизации или сдвиге. Расположение атомов в области винтовой дислокации. Поверхностные или двухмерные дефекты. Схема блочной структуры.

    лекция [4,4 M], добавлен 08.08.2009

  • Физико-химические основы термической и химико-термической обработки материалов. Структуры и превращения в системе железо-углерод. Защитно-пассивирующие неорганические и лакокрасочные покрытия. Основы строения вещества. Кристаллизация металлов и сплавов.

    методичка [1,2 M], добавлен 21.11.2012

  • Структура краевой и винтовой дислокаций. Контур и вектор Бюргерса. Виды точечных дефектов. Взаимодействие дислокаций с вакансиями, атомами внедрения и замещения. Примесные атмосферы, зуб текучести и полосы Людерса. Динамическое деформационное старение.

    курсовая работа [1,6 M], добавлен 08.07.2014

  • Виды ликвации, причины возникновения и способы устранения. Определение ударной вязкости. Характеристики механических свойств металла. Первичная кристаллизация сплавов системы железо-углерод. Диаграмма изотермического превращения аустенита для стали У8.

    контрольная работа [1,2 M], добавлен 22.09.2013

  • Характерные особенности диаграммы железо-углерод. Обработка металлов давлением: ковка, штамповка, прокатка, прессование. Правила работы с электролитом для кислотных аккумуляторов. Понятие системы электросвязи, канала связи. Радиостанция Моторола Р040.

    контрольная работа [959,0 K], добавлен 11.10.2010

  • Свойства и атомно-кристаллическое строение металлов. Энергетические условия процесса кристаллизации. Строение металлического слитка. Изучение связи между свойствами сплавов и типом диаграммы состояния. Компоненты и фазы железоуглеродистых сплавов.

    курсовая работа [871,7 K], добавлен 03.07.2015

  • Перемещение дислокаций при любых температурах и скоростях деформирования в основе пластического деформирования металлов. Свойства пластически деформированных металлов, повышение прочности, рекристаллизация. Структура холоднодеформированных металлов.

    контрольная работа [1,2 M], добавлен 12.08.2009

  • Основные характеристики кристаллической решетки. Скорость охлаждения при закалке и факторы влияющие на выбор скорости. Диаграмма состояния системы медь-серебро. Свойства сплавов в данной системе. Диаграмма состояния железо-углерод и ее описание.

    курсовая работа [545,6 K], добавлен 13.11.2008

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.