Нарезание резьбы

Обработка резьбовых поверхностей. Винтовое движение плоского профиля по цилиндрической или конической поверхности. Крепежная резьба с асимметричным профилем. Режущая кромка резца, осевая плоскость. Кинематические связи при копировании режущей кромки.

Рубрика Производство и технологии
Вид доклад
Язык русский
Дата добавления 03.01.2011
Размер файла 454,6 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

Исторические сведения

Обработка материалов резанием известна с древних времён: деталь вращали вручную, обработка велась кремнёвым резцом. В 12 в. появились токарные и сверлильные станки с ручным приводом, а в 14 в. -- с приводом от водяных мельниц. Механические станки для токарных работ изготовлялись главным образом в Италии, Франции, откуда были завезены в Россию. Медальерными станками славились петербургские мастера. В 1711 в Россию из Флоренции привезли станок, сделанный мастером Зингером, приглашенным на службу Петром I. В придворной токарне были изготовлены станки, в разработке конструкций и создании которых принимал участие А.К. Нартов. Позднее Нартов построил другие станки (гравёрные, копировальные, гильотинные), ему же принадлежит создание первого в мире токарно-винторезного станка с механическим суппортом и сменными зубчатыми колёсами (1738). Основные промышленные типы М. с. разрабатывались позднее (Г. Модсли и др.) в Великобритании, первой вступившей на путь капиталистического развития. В дальнейшем конструкция их совершенствовалась в Германии, Франции, Швейцарии (точное станкостроение), позже (во 2-й половине 19 в.) в США (в частности, автоматические станки для массового производства). В России в 1712--14 на Тульском оружейном заводе мастер Я. Батищев создал прототип современных агрегатных станков для одновременного сверления 24 ружейных стволов, в 1714 В.И. Генин построил на Олонецких заводах многопозиционный станок. Значительный вклад в развитие конструкции М. с. внёс М.В. Ломоносов, который в середине 18 в. построил и применил в своих мастерских оригинальные шлифовальные и др. станки. Вклад в создание новых конструкций станков внесли также русские инженеры и изобретатели И. Осипов, М. Сидоров, И. Ползунов, И. Кулибин, П. Захаво (первые автоматы для нарезания резьбы, 1810), В. Игнатов, Г. Горохов. Но, несмотря на отдельные выдающиеся изобретения, станкостроение в царской России развивалось медленно. Только после Великой Октябрьской социалистической революции в процессе индустриализации машиностроительные предприятия стали получать новые станки. В 1932 завод «Красный пролетарий» выпустил первый современный токарно-винторезный станок. В 1933 основан Экспериментальный научно-исследовательский институт металлорежущих станков (ЭНИМС), где было начато проектирование новых типов станков, изготовление гамм станков токарных, револьверных, сверлильных, фрезерных и др. К 1970 в СССР освоено 1817 типоразмеров М. с. Годовой выпуск составил 230 тыс. станков.

Большая заслуга в развитии станкостроения в СССР принадлежит советским учёным В.И. Дикушину, Н.С. Ачеркану, Д.Н. Решетову, А.П. Владзиевскому, Б.С. Балакшину, Г.М. Головину, Г.А. Шаумяну, В.С. Васильеву, А.С. Проннкову, В.А. Кудинову, А.С. Бриткину, Б.Л. Богуславскому, конструкторам Н.А. Волчеку, В.Н. Кедринскому, И.А. Ростовцеву, Ю.Б. Эрпшеру и др.

Совершенствование производства М. с. идёт в нескольких направлениях. Намечается увеличение выпуска агрегатных автоматических и полуавтоматических М. с. и автоматических линий. Обеспечивающих автоматизацию технологических процессов в крупносерийном и массовом производстве (в СССР выпуск таких М. с. за период 1966--70 увеличился на 22,6% при общем росте выпуска М. с. за этот период на 12%). В 1973 выпущено 211 тыс. М. с. Перспективно освоение прецизионных станков, обусловливающих высокую точность и качество обработки деталей. Предусматривается дальнейшее расширение производства М. с. с числовым программным управлением (ЧПУ) для обеспечения автоматизации механической обработки изделий в индивидуальном и серийном производстве. В 1968--70 в серийном производстве освоено 23 типоразмера таких станков, в 1970 -- 15 типов опытных образцов; их выпуск в 1973 составил 3800 шт. Внедрение М. с. с использованием адаптивных систем управления открывает новые пути повышения точности обработки и производительности. Для удовлетворения разнообразных потребностей народного хозяйства намечается увеличение числа типов тяжёлых уникальных станков. К 1970 создано около 500 типов тяжёлых уникальных металлорежущих станков.

Резьбовые поверхности

резьба профиль поверхность

Резьбовой называют поверхность, получаемую на детали при винтовом движении плоского профиля по цилиндрической или конической поверхности.

Резьбовые поверхности бывают наружные и внутренние. Наружная резьба образована на наружной цилиндрической или конической поверхности, а внутренняя - соответственно на внутренней.

В резьбовом соединении наружная резьба является охватываемой поверхностью и называется болтом или винтом, а внутренняя резьба - охватывающей поверхностью и называется гайкой.

В машиностроении наибольшее применение получили цилиндрические (крепежные и ходовые), а также конические резьбы. Основной разновидностью цилиндрической резьбы является метрическая треугольного профиля с углами 60.

По эксплуатационному назначению резьбы разделяют:

1. крепежные универсальные, к которым относится метрическая и дюймовая;

2. специальные, к которым относятся трапецеидальные, упорные, трубные, конические и др.

Основные способы формообразования резьбовых поверхностей с указанием границ степеней точности резьбы и параметров шероховатости. Резьбы могут быть однозаходные и многозаходные, правые и левые. Нарезание резьб осуществляется на резьбонарезных и резьбофрезерных станках и полуавтоматах, гайконарезных автоматах, резьбонакатных, резьбошлифовальных, токарных и других станках.

Универсальные резьбы используют для крепления деталей и как регулировочные элементы. Специальные резьбы применяют при передаче движения в винтовых механизмах, например в винтовых домкратах, для создания плотного соединения деталей, для передачи особо высоких нагрузок. В ходовых винтах токарно-винторезных станков находит применение специальная прямоугольная резьба, воспринимающая значительные осевые нагрузки.

Для получения посадок резьбовых деталей с, гарантируемымзазором стандартом предусмотрено пять (d, е, а, п, р) основних отклонении для наружной и четыре (Е, F,Г,Н) для внутренней резьб. Эти отклонения одинаковы для всех диаметров резьб. Степени точности изготовления диаметральных размеров резьбовых деталей следующие:

1. наружный диаметр болта - 4, 6, 8-я;

2. средний диаметр болта- 3, 4, 5, 6, 7,8, 9-я;

3. внутренний диаметр гайки-4, 5, 6, 7, 8, 9-я.

Стандартом предусмотрены также соединения резьбовых деталей с гарантированным натягом и с переходными посадками.

Несмотря на то, что резьба, как элемент деталей машин, известна на протяжении многих веков и в наши дни регламентирована многочисленными национальными и международными стандартами, тайны ее до конца не раскрыты и возможности далеко не исчерпаны.

Остановимся на новых направлениях в совершенствовании резьбы, крепежных деталей и промышленных способов их изготовления.

Для современной 60-градусной резьбы характерно стремление к уменьшению рабочей высоты профиля за счет увеличения внутреннего диаметра резьбы болта и гайки.

При неизменном притуплении, высоты головки профиля резьбы болта увеличивают притупление впадины и получают более низкую нитку. Резьба с высотой нитки 0,75Н, т.е. с притуплением вершины и впадины профиля, принимается за 100%. Поэтому резьба по ГОСТ9150-59 является 83%. В настоящее время для ответственных соединений применяют 75%-ную, и 60%-ную резьбу.

Плокосрезанная впадина профиля резьбы болта уступает место скругленной радиусом r.

Увеличение притупления впадины профиля резьбы болта, повышает его прочность на разрыв, а скругление впадины - резко понижает коэффициент концентрации напряжения и повышает циклическую прочность.

Многочисленные исследования показали, что увеличение внутренних диаметров резьбы гаек до размеров -, Н, не отражается на прочности резьбового соединения, если достаточна длина свинчивания.

Модернизация резьбы распространяется и на другие элементы профиля. Представляет интерес несимметричная резьба болтов, у которых нитка со стороны, воспринимающей нагрузку, срезана дополнительно под углом 5, т.е. половина угла профиля равна 35, а вторая половина, как обычно, 30 (рис.1).

Рис.1.Крепежная резьба с асимметричным профилем

Благодаря этому усилие затяжки распространяется более благоприятно от ножки профиля к головке, и прочность болта с 75%-ной резьбой при циклической нагрузке возрастает на 20%.

Общеизвестно, что при затяжке резьбового соединения типа болт-гайка нагрузка распределяется неравномерно, возрастая к нижним виткам. Свыше 30% нагрузки воспринимает первый виток резьбы у опорного торца гайки и далее нагрузка уменьшается от витка к витку. Существуют разнообразные способы борьбы с этим вредным явлением:

1. разношаговость резьбового соединения (шаг резьбы болта меньше шага резьбы гайки на величинуS-0,0025S);

2. переменный зазор в резьбовом соединении (зазор по среднему диаметру возрастает по направлению к опорному торцу гайки, т.е. резьба гайки имеет конусность К-0,003);

3. увеличение угла профиля резьбыдо 90 или применение радиусной резьбы с гарантированным зазором по внутреннему и наружному диметрам (ри.2);

4. применение гаек и болтов переменного сечения;

5. применение гаек и болтов из различного материала (модуль упругости материала гайки меньше модуля упругости материала болта).

Рис.2 Резьба с радиусным профилем

Наряду с обычной крепежной резьбой в промышленность внедряются и другие типы резьб:

· самотормозящие - с конической впадиной профиля резьбы болта;

· модернифинорованная прямоугольная резьба с углом профиля =10;

· шариковые резьбы, практически исключают трение в резьбовой паре;

· резьбы для самонарезающих винтов, гвоздей и т.п.

Преимущества резьбовых соединений:

1. обеспечение 100% собираемости в условиях автоматизированной сборки;

2. повышение циклической прочности;

3. повышение работоспособности при высоких температурах;

4. создание условий для антикоррозионных покрытий.

Исключительная массовость крепежных деталей и та ответственная роль, которую они играют в современных механизмах, требуют значительно большего внимания, чем им уделяют.

Необходимо улучшить качество, расширить ассортимент и организовать в широких масштабах централизованное производство крепежных деталей. Требования к крепежным деталям повышается. Следует разработать и организовать изготовление болтов и специальных сортов сплавов и сталей с сопротивлением разрывов свыше 200кгс/мм, способных работать при температурах более 1000 и ниже -200С, с высокими антикоррозийными свойствами.

Усовершенствование болта и гайки, отказ от шайб, затрудняющих автоматизацию сборки, создает наиболее благоприятные условия для его эксплуатации. Как головки болта, так и гайка имеет цилиндрический буртик (рис.3), рассчитанный на контактное напряжение при затяжке 1760кгс/см.

Рис.3. Новый крепеж

Обычные болтовые соединения из-за податливости материала под головкой болта или гайкой не способны сохранить постоянство расчетного усилия затяжки. При контактном напряжении 1760 кгс/см не превосходится предел текучести соединяемых материалов, и постоянство усилия затяжки сохраняется.

Новые болты и гайки изготовляются по5 кл. прочности, с резьбой 2 кл. точности и с кругленной впадиной профиля радиусом r=(0,-0,14)S. Гайки имеют высоту около 1,2d и буртик диаметром примерно 2d. Для облегчения «наживления» гайки на болт, в процессе автоматической сборки на конце болта делается проточка, а на торце гайки - выточка. Опорные торцы бортиков составляют с осью угол 89-90, что способствует самоторможению после затяжки. Уделяется также внимание факторам технологичности изготовления крепежа методом холодной высадки.

Все большее распространение получают самоконтрящиеся крепежные детали, предохраняющее резьбовые соединения от самопроизвольного развертывания в процессе эксплуатации.

Широко применяются винты, сами нарезающие резьбу в отверстиях сопряженных деталей непосредственно при сборке, а также разнообразные виды специального крепежа для труднодоступных мест, различные виды быстродействующего крепежа.

Образования резьбовых поверхностей

При образовании резьбовых поверхностей образующая линия воспроизводится либо по методу копирования режущей кромки, либо по методу огибания, а винтовая направляющая линия - по методу копирования, геометрического и кинематического профилирования. Применение того или иного метода профилирования, как образующей, так и направляющей линий обусловливается формой обрабатываемой винтовой поверхности.

Формы винтовых поверхностей.

Выделим две наиболее распространенные формы винтовых поверхностей:

1. Архимедова винтовая поверхность (закрытая винтовая поверхность);

2. Эвольвентная винтовая поверхность (открытая винтовая поверхность).

Архимедова винтовая поверхность образуется прямой линией (рис.4 а), расположенной под углом в осевой плоскости, проходящей через ось вращения ОО.

Рис.4. Винтовые поверхности

При вращении вокруг оси ОО и одновременном перемещении с равномерной скоростью вдоль оси линия 1 образует винтовую поверхность 2 с шагом t. В сечении плоскостью, перпендикулярной к оси, винтовая поверхность дает след 3, представляющий собой спираль Архимеда.

Линия 1 является образующей линией архимедовой винтовой поверхностью; так как эта линия прямая, то ее легко произвести по методу копирования режущей кромки инструмента. Однако по условиям процесса резания я режущую кромку нередко приходится располагать в плоскости, перпендикулярной к винтовой линии, расположенной на цилиндре, диаметр которого равен среднему диаметру резьбы. След c-d рассматриваемой плоскости (рис.4 в) на плоскости YZ образует с осью Z угол, равный углу подъема винтовой линии.

Кривая, которая получается в сечении архимедовой винтовой поверхности плоскостью, расположенной под углом , и которая является производящей линией имеет криволинейную форму. Величина отклонения производящей образующей линии зависит от величины угла , параметра р и других факторов. При малом угле и параметре р отклонение от прямой столь мало, что инструмент может быть выполнен с прямолинейной режущей кромкой. С увеличением и р отклонения возрастают, что вызывает необходимость применения инструмента с криволинейной режущей кромкой, стоимость которого значительно возрастает. Указанные обстоятельства необходимо учитывать при выборе методов профилирования.

Эвольвентная винтовая поверхность (рис.4.б) образуется как след движения прямой 1, расположенной в плоскости, проходящей параллельно осевой линии на расстоянии r. При вращении прямой плоскость, в которой расположена образующая, остается все время касательной к цилиндру радиуса r. Этот цилиндр называется основным цилиндром. Эвольвентная винтовая поверхность получается в том случае, когда угол наклона образующей равен углу подъема винтовой линии на основном цилиндре.

В сечении осевой плоскостью Эвольвентная винтовая поверхность оставляет след в виде кривой линии 2.

Эвольвентная винтовая поверхность называется открытой, так как в пределах основного цилиндра винтовая поверхность не образуется.

Существенное различие между архимедовой и эвольвентой винтовой поверхностями заключается в том, что к архимедовой винтовой поверхности нельзя провести касательную плоскость, а к эвольвентой винтовой поверхности можно. Поэтому архимедову винтовую поверхность нельзя обрабатывать инструментом, который контактирует с ней плоскостью, а эвольвентную винтовую поверхность можно обрабатывать подобным инструментом. Благодаря указанному обстоятельству оказывается возможным шлифовать эвольвентную винтовую поверхность торцом тарельчатого круга.

Архимедову винтовую поверхность имеют резьбы крепежных деталей, ходовых винтов, червяков червячных передач; резьбы многозаходных червяков обычно выполняют с эвольвентной винтовой поверхностью.

В ряде случаев применяют резьбы с переменным шагом, например винтовые поверхности подающих шнеков и другие, более сложные виды винтовых поверхностей.

Образование винтовых поверхностей при воспроизведении производящей линии по методу копирования режущей кромки.

Для воспроизведения образующей по методу копирования режущей кромки применяются различные инструменты: резцы, дисковые и пальцевые фрезы, дисковые и пальцевые шлифовальные круги (рис.5.).

При работе резцами режущая кромка может располагаться в осевой плоскости (рис.5а), при этом либо каждая из кромок резца 1 имеет свой передний угол, либо для каждой стороны витка используется свой инструмент.

Рис.5а. Режущая кромка резца располагается в осевой плоскости

Таким образом, получается теоретически правильная винтовая поверхность. Однако создание необходимой геометрии режущей части резца представляется затруднительным, поэтому в большинстве случаев пользуются вторым вариантом установки резца 2. Прямолинейные режущие кромки резца располагаются в плоскости, перпендикулярной винтовой линии, вследствие чего форма образующей в осевой плоскости оказывается искаженной.

При фрезеровании резьбы дисковой фрезой (рис.5б.) нужно установить под углом подъема витков .

Рис.5б. Фрезерование резьбы дисковой фрезой

В этом случае прямолинейные режущие кромки фрезы также располагаются в плоскости, наклоненной под углом, и истинная форма архимедовой винтовой поверхности искажается.

Аналогичное явление имеет место при шлифовании резьбы дисковым кругом (рис.5в.)

Рис.5в. Шлифование резьбы дисковым кругом.

При малых углах подъема указанное искажение не имеет практического значения, однако с увеличением угла подъема глубины профиля искажение может выйти за пределы допустимого.

При воспроизведении направляющей винтовой линии используется профилирование по копиру и кинематическое профилирование.

В случае профилирования по копиру винтовой копир 1 (рис. 6а), сообщающий движение рабочему органу 2, получает вращение либо непосредственно от шпинделя, либо через промежуточную зубчатую передачу. Если копир непосредственно связан со шпинделем, то его шаг равен шагу нарезаемой резьбы.

Наиболее широко применяется метод кинематического профилирования (рис. 6б). Рабочий орган 2, перемещающий режущий инструмент, получает движение от шпинделя 1 через сменные зубчатые колеса, от которых вращение передается ходовому винту.

Рис.6. Основные движения и кинематические связи при копировании режущей кромки в процессе образования винтовых поверхностей

Образование винтовых поверхностей при воспроизведении производящей образующей линии по методу огибания.

Воспроизведение образующей по методу огибания имеет место при обработке винтовых поверхностей зубьев, зубчатых колес, винтовых поверхностей резьб, нарезаемых долбяками. Винтовая направляющая линия воспроизводится при этом по методу геометрического профилирования, профилирование по копиру и кинематического профилирования.

Геометрическое профилирование винтовой направляющей линии осуществляется при работе зубчатой рейки (рис.7).

Рис.7. Геометрическое профилирование

Направляющая; 2. Заготовка; 3.Перемещение рабочего органа.

Метод профилирования по копиру используется при нарезании винтовых зубьев долбяком. Долбяк в этом случае выполняют с винтовыми режущими зубьями (рис.8).

Рис.8. Профилирование по копиру

1.Винтовой копир; 2.Ролик; 3.Червячное колесо.

Кинематическое профилирование винтовой направляющей линии осуществляется пи фрезеровании косозубых цилиндрических колес червячной фрезой по методу огибания (рис.9).

Рис.9. Кинематическое профилирование

1. Червячная фреза; 2.Суппорт; 3.Винт сменных шестерен; 4. Сменная шестерня; 5.Коническая шестерня; 6. Сателлиты; 7,8. Конические шестерни; 9.Вал; 10.Заготовка.

Промышленные способы изготовления резьбы

Способы изготовления резьбы совершенствуются на протяжении многих веков. От ручного выпиливания трехгранным напильником по разметке наружных резьб и метчиков, которыми потом нарезалась внутренняя резьба, от отливки резьб и их последующей притирки вручную, осуществленных в конце ХV в. Леонардо да Винчи, от нарезания резьбы на токарных станках. Найдены в первой половине XVIII в. до массового производства резьбы на деталях в наши дни - таков в беглых чертах путь совершенствования процесса резьбообразования.

Таблица 1 дает общее представление о методах изготовления резьбы, традиционно установившихся в промышленности, в зависимости от масштабов производства. Унификация резьбовых деталей и организация группового потока позволяют в индивидуальном и серийном производстве использовать более производительное оборудование.

Перед промышленностью в целом стоит задача повысить качество резьбы, обеспечить централизованное изготовление в широком ассортименте резьбообразующего инструмента и оснастки, а также надёжность. Так как -- его свойство выполнять заданные функции, т. е. обрабатывать изделия с сохранением в необходимых пределах эксплуатационных показателей, главным образом точности и производительности, в течение требуемого промежутка времени. Надёжность определяется его безотказностью, долговечностью, ремонтопригодностью и сохраняемостью. Назрела острая необходимость строительства специализированных предприятий для производства крепежных деталей, оборудования и оснастки.

Таблица 1.

Типовой инструмент и оборудование для изготовления резьбы

Инструмент

Станок

Характер производства

Индивидуальный

Серийный

Массовый

1

2

3

4

5

Плашка (лерка), плашка винтонакатная

Вручную.

Токарно-винторезный.

Токарно-револьверный.

Токарный автомат

+

+

+

-

-

-

+

+

-

-

-

-

Резец резьбовой

Токарно-винторезный.

Резьботокарный полуавтомат.

Резьботокарный автомат.

+

-

-

-

+

-

-

+

+

Гребенка резьбовая

Токарно-винторезный

Токарно-револьверный

+

-

+

+

-

-

Фреза резьбовая

Резьбофрезерный

+

+

-

Фреза вихревая

Токарно-винторезный

-

+

-

Резьбонакатной ролик

Резьбонакатной полуавтомат.

Резьбонакатной автомат.

-

-

+

-

-

+

Резьбонакатная плашка

Резьбонакатной автомат

-

+

+

Резьбонакатной сегмент

Резьбонакатной автомат

-

-

+

Абразивный круг

Резьбошлифовальный

Бесцентровый Резьбошлифовальный

+

-

+

-

-

+

Пресс-форма

Автомат линейный

-

-

+

Метчик ручной

Вручную

+

-

-

Метчик-протяжка

Токарно-винторезный

+

+

-

Метчик машинный, накатник, гайкорезная головка

Токарно-револьверный

Токарный автомат

Сверлильный

Агрегатный

+

-

+

-

+

+

+

+

-

+

+

+

Метчик гаечный

Сверлильный

Гайкорезный автомат

+

-

+

+

-

+

Размещено на Allbest.ru


Подобные документы

  • Общая характеристика резьб, их разновидности и отличительные признаки, основные элементы. Методика и технология нарезания наружной и внутренней резьбы. Этапы и способы накатывания и фрезерования резьбы, назначение данных операций в производстве.

    реферат [200,0 K], добавлен 23.12.2009

  • Техника безопасности при работе на токарном станке. Обработка конических, цилиндрических и торцовых поверхностей. Нарезание резьбы на токарных станках. Сверление и расточка отверстий. Обработка деталей на шлифовальном, строгальном и фрезерном станке.

    контрольная работа [5,6 M], добавлен 12.01.2010

  • Определение резьбы, ее строение и применение как самого распространенного вида разъемных соединений. Способы изготовления и недостатки резьбовых деталей. Стандартизация диаметров стержней под накатывание и нарезание, сбегов, недорезок, проточек и фасок.

    реферат [1,9 M], добавлен 16.11.2010

  • Проектирование фасонного резца. Подготовка исходных данных для расчета профиля резца. Определение конструкции калибрующей части протяжки. Выбор конструкции метчика. Назначение степени точности метчика. Определение размеров профиля резьбы метчика.

    курсовая работа [3,1 M], добавлен 15.06.2012

  • Виды резьбы. Плосковыемчатая резьба. Плоскорельефная резьба. Рельефная резьба. Прорезная резьба. Скульптурная резьба. Домовая резьба. Инструмент. Геометрическая резьбе. Элементы геометрической резьбы. Подготовка заготовки к резьбе.

    реферат [2,7 M], добавлен 18.04.2007

  • Схема механической обработки поверхности заготовки на круглошлифовальных станках. Схема нарезания резьбы резьбовым резцом. Обработка поверхностей заготовок деталей с периодически повторяющимся профилем. Физическая сущность обработки металлов давлением.

    курсовая работа [415,9 K], добавлен 05.04.2015

  • Расчёт переднего и заднего углов режущей части. Расчёт общей длины профиля резца, наибольшей глубины профиля детали. Определение высоты заточки и высоты установки резца. Коррекционный расчет профиля: диаметр отверстия и длина фрезы, величина затылования.

    контрольная работа [63,4 K], добавлен 04.11.2014

  • Техническая характеристика токарного станка. Разработка конструкции устройства для нарезания конической резьбы и технологического маршрута. Расчет предохранительной муфты, размеры направляющей угольника. Меры по обеспечению безопасных условий труда.

    дипломная работа [1,3 M], добавлен 12.08.2017

  • Подготовка исходных данных для расчета профиля фасонного резца. Определение геометрии режущих кромок фасонных резцов. Геометрия режущих кромок, обрабатывающих радиально-расположенные поверхности деталей. Аналитический расчет профиля фасонных резцов.

    курсовая работа [1,6 M], добавлен 13.12.2010

  • Расчет рационального режима резания при обтачивании валика на станке. Выбор геометрических параметров режущей части резца, инструментального материала. Выбор углов в плане, угла наклона главной режущей кромки. Расчетное число оборотов шпинделя станка.

    контрольная работа [697,4 K], добавлен 20.02.2011

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.