Процесс перегонки и ректификации, оборудование и его использование

Особенности расчета тарельчатой ректификационной колонны. Пример ее расчета для перегонки смеси бензол-толуол. Материальный баланс колонны. Определение рабочего флегмового числа. Скорость пара и диаметр колонны, расчет ее высоты по кинетической кривой.

Рубрика Производство и технологии
Вид реферат
Язык русский
Дата добавления 28.12.2010
Размер файла 21,0 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

1

Размещено на http://www.allbest.ru/

Р Е Ф Е Р А Т

на тему:

Процесс перегонки и ректификации, оборудование и его использование
Содержание
Введение

1. Особенности расчета тарельчатой ректификационной колонны

2. Пример расчета ректификационной колонны для перегонки смеси бензол - толуол

2.1 Пример расчета ректификационной колонны для перегонки смеси бензол - толуол

2.1.1 Материальный баланс колонны

2.1.2 Определение рабочего флегмового числа

2.1.3 Построение рабочей линии на диаграмме “жидкость - пар”

2.1.4 Определение среднего массового расхода по жидкости

2.1.5 Определение среднего массового расхода по пару

2.2 Скорость пара и диаметр колонны

2.3 Определение высоты колонны

2.3.1 Определение высоты колонны по числу теоретических тарелок

2.3.2 Определение высоты колонны по кинетической кривой

Заключение

Список использованной литературы

Приложения

Введение

Для изучения процесса перегонки и ректификации ознакомимся сначала с правилом фаз.

«Фазой называется совокупность тех частей системы, которые одинаковы по всем свойствам и отделены от остальных частей системы поверхностью раздела. Система, состоящая из жидкости и ее паров, имеет две фазы: первая - жидкость, вторая - пары жидкости. » [ 6 с.158 ].

«Условия, при которых отдельные фазы системы находятся в равновесии друг с другом, выражаются законом равновесия фаз, называется правилом фаз.» [ 6 с.159 ].

“Компонент - это такая составляющая часть системы, которая является химически однородным веществом, может быть выделена из системы и существовать в изолированном виде в течение длительного времени” [ 6 с.159 ].

“Перегонкой называется процесс разделения смеси, состоящей из двух или большего числа компонентов, кипящих при различных температурах.” [ 6 с.159 ].

“За допомогою процесу перегонки багатокомпонентну рідку суміш розподіляють на фракції, що містять компоненти суміші в концентрованому вигляді. Ректифікацію називають процес багатократної перегонки, за допомогою якого з рідкої суміші вилучають незначні кількості небажаних домішок” [ 1 с.190 ].

Теперь переходим к процессу перегонки. Он основан на том, что компоненты обладают различной летучестью, т.е. при одной и той же температуре обладают различной упругостью пара.

«Переганяють і ректифікують суміші, що складаються з компонентів, які відрізняються своєю легкістю. Під час випаровування рідкої суміші окремі компоненти переходять у пароподібний стан інтенсивніше, завдяки чому їх вміст у паровій фазі більший, ніж у рідкій» [ 1 с.190 ].

“Ректифікація, по суті, є складним процесом багатократної перегонки, що дозволяє за допомогою ректифікаційної колони найбільш повно та дешево розділити багатокомпонентні рідинні суміші на окремі крмпоненти чи їх фракції.” [ 2 с. 627 ].

Перегонкой в спиртовом производстве называют выделение из зрелой бражки этилового спирта вместе с содержащимся в ней летучими примесями; в результате перегонки получают спирт-сырец.

«Ректификацией спирта называют очистку спирта-сырца от примесей… Очистка спирта от примесей путем перегонки основана на различии в коэффициентах испарения. Коэффициентом испарения называется отношение концентрации данного вещества в паровой фазе к концентрации его в жидкой фазе при условии, что рассматриваемые фазы находятся в равновесном состоянии.» [ 6 с.163 ].

Простая или однократная перегонка заключается в постепенном испарении загруженной в перегонный куб жидкости. При простой перегонке смесь загружается в куб, обогреваемый паром или дымовыми газами; после нагрева смеси до температуры кипения образующиеся пары отводят из куба и конденсируют в холодильнике.

Если подвергнуть простой перегонке водно-спиртовой раствор и сконденсировать выделяющиеся пары, то получится дистилят с более высоким содержанием спирта, чем в перегоняемой жидкости или 47,6%, а для получения 95,5 % нужно провести более 5 повторных перегонок. «Такая многократная перегонка, в результате которой получается крепкий спирт, называется сложной перегонкой» . [ 6 с.167 ].

Сложную перегонку проводят в колонных перегонных аппаратах, разделенных по высоте горизонтальными перегородками, которые называют тарелками. На каждой тарелке жидкость испаряется, поэтому каждая тарелка играет роль многокубового аппарата.

В дальнейшем в нашей работе приведен расчет тарельчатой ректификационной колонны для разделения бинарной смеси бензол - толуол.

Ректификация - массообменный процесс, который осуществляется в противоточных колонных аппаратах с контактными элементами (насадки, тарелки). В процессе ректификации происходит непрерывный обмен между жидкой и паровой фазой. Жидкая фаза обогащается более высококипящим компонентом, а паровая фаза - более низкокипящим. Процесс массообмена происходит по всей высоте колонны между стекающей вниз флегмой и поднимающимся вверх паром.

Чтобы интенсифицировать процесс массообмена применяют контактные элементы, что позволяет увеличить поверхность массообмена. В случае применения насадки жидкость стекает тонкой пленкой по ее поверхности, в случае применения тарелок пар проходит через слой жидкости на поверхности тарелок.

В данной работе приведен расчет тарельчатой ректификационной колонны для разделения бинарной смеси бензол - толуол.

1. Особенности расчета тарельчатой ректификационной колонны

Как правило, расчет ректификационной колонны производится для заданных:

составе исходной смеси, кубового остатка, дистиллята, производительности и рабочем давлении в колонне.

В начале определяется материальный баланс колонны и рабочее флегмовое число. Для этого используется диаграмма y - x . Затем подбирается тип тарелок, определяется скорость пара, диаметр колонны, коэффициенты массопередачи, высота колонны, гидравлическое сопротивление тарелок. После этого можно провести расчет эксплуатационных свойств, а также экономические показатели ее использования.

2 Пример расчета ректификационной колонны для перегонки смеси бензол - толуол

Для примера, рассчитаем колонну при содержании легколетучего компонента (т.е. бензола) в исходной смеси 35%(масс.), в дистилляте 98%, в кубовой жидкости 1,7%. Производительность по исходной смеси 5кг/с.

2.1 Материальные расчеты

2.1.1 Материальный баланс колонны

Производительность по дистилляту P и кубовому остатку W определяется из уравнения материального баланса ректификационной колонны:

[pic]

[pic] (1)

Откуда:

[pic][pic] (2)

[pic][pic] (3)

Все расчеты в данном случае ведутся для легкокипящего компонента, а значит х есть концентрация бензола. Для дальнейших расчетов необходимо пересчитать составы фаз из массовых в мольные по соотношению :

[pic] (4)

где x - мольная доля компонента А, [pic]

[pic]- массовая доля компонента А, % (масс.)

МА - мольная масса компонента А, [pic]

МВ - мольная масса компонента В, [pic]

Подставив мольные массы бензола и толуола получаем:

[pic][pic]

[pic][pic]

[pic][pic]

2.1.2 Определение рабочего флегмового числа

Нагрузки ректификационной колонны по пару и жидкости определяются значением рабочего флегмового числа R. Флегмовое число являет собой отношение количества флегмы к количеству дистиллята. Оно может находиться в интервале от Rmin до (. При минимальном флегмовом числе можно получить максимальное количество дистиллята, но число тарелок становится бесконечно большим. Если флегмовое число принять равным бесконечности, то получится, что колонна работает сама на себя. При флегмовом числе меньше минимального мы ни при каких условиях не сможем получить конечный продукт с заданными свойствами. [pic]

Вообще флегмовое число отражает угол наклона рабочей линии к оси абсцисс для верхней части колонны и входя в уравнение рабочей линии.

Уравнение рабочей линии для верхней части колонны выглядит как:

[pic](5)

yD, как впрочем и yW определяются равными xD и xW соответственно. Иначе говоря предполагается что состав паровой и жидкой фазы одинаков как для низа так и для верха колонны. Все это можно увидеть на рисунке 1.

Минимальное флегмовое число определяется по следующей формуле:

[pic] (6)

где [pic]- мольная доля спирта в паре, находящемся в равновесии с исходной смесью, определяется по y-x диаграмме .

Тогда:

[pic]

Рабочее значение флегмового числа примем равным 2,1. Для определения рабочего флегмового числа существует множество рекомендаций, мы их упускаем, но их можно найти в [3].

2.1.3 Построение рабочей линии на диаграмме “жидкость - пар”

Рабочая линия процесса ректификации, в отличие от процесса абсорбции, представляет собой совокупность рабочих линий для верхней и для нижней части колонны и характеризуется изломом в точке соответствующей составу питательной смеси.

Для верхней части колонны можно воспользоваться уравнением (5), а для нижней части колонны существует уравнение:

[pic] (6)

ректификационный колонна пар перегонка

2.1.4 Определение среднего массового расхода по жидкости

Средние массовые расходы по жидкости для верхней и нижней частей колонны определяются из соотношений :

[pic] (7)

[pic] (8)

где МP и МF - мольные массы дистиллята и исходной смеси, [pic]

МВ и МН - мольные массы жидкости в верхней и нижней частях, [pic]

Мольная масса жидкости в верхней и нижней частях колонны соответственно равна :

[pic] (9)

[pic] (10)

где Мб и Мт - мольные массы бензола и толуола

xср.в и xср.н - средний мольный состав жидкости соответственно в верхней и нижней частях колонны:

[pic][pic]

[pic][pic]

Тогда

[pic][pic]

[pic][pic]

Аналогично находится мольная масса исходной смеси:

[pic][pic]

Мольную массу дистиллята можно принять равной мольной массе бензола.

Подставив результаты соотношения в (7) и (8) получаем:

[pic][pic]

[pic][pic]

2.1.5 Определение среднего массового расхода по пару

Средние массовые потоки пара в верхней и нижней частях колонны соответственно равны :

[pic] (11)

[pic] (12)

где [pic] и[pic] - средние мольные массы паров в верхней и нижней частях колонны:

[pic] (13)

[pic] (14)

где средние значения состава паровой фазы рассчитываются аналогично жидкой фазе и равны:

[pic][pic]

[pic][pic]

Тогда из формул (13) и (14) следует

[pic][pic]

[pic][pic]

Подставив результаты в (11) и (12) получаем:

[pic][pic]

[pic][pic]

2.2 Скорость пара и диаметр колонны

На этой стадии необходимо выбрать тип тарелки. Поскольку предполагается, что жидкость не содержит взвешенных частиц выберем используем ситчатые тарелки.

Допустимая скорость в верхней и нижней части колонны определяется по формуле:

[pic] (15)

Поскольку плотности бензола и толуола близки, то плотность жидкой фазы может быть приближенно определена как 796 кг/м3.

Средняя плотность пара для нижней и для верхней части колонны может быть определена по формуле:

[pic] (16)

где t - температура для верхней или для нижней части колонны.

Температура в колонне, в свою очередь, определяется по диаграмме t - x,y, [pic]

По средним составам фаз определим температуру в верхней части колонны 89(С, в нижней части колонны 102(С.

Тогда по формуле (16) рассчитываем плотность паровой фазы соответственно в нижней и верхней части колонны.

[pic][pic]

[pic][pic]

Сейчас можно рассчитать допустимые скорости как в верхней, так и в нижней части колонны:

[pic][pic]

[pic][pic]

Диаметр колонны может быть определен по формуле:

[pic] (17)

Диаметр колонны принимается одинаковым по всей ее высоте и как правило равен большему из определенных. Однако, в данном случае различия между скоростями в верхней и нижней части колонны не велики поэтому можно использовать средние значения:

[pic][pic]

[pic][pic]

[pic][pic]

Подставив их в формулу (17) получим:

[pic]м

Приняв стандартный размер обечайки равным 1,8м уточним рабочую скорость пара. Она будет равной 0,82м/с.

На данном этапе необходимо выбрать тарелку из ряда стандартных. Опуская процесс выбора, отметим, что это тарелка ТС-Р с ниже приведенными характеристиками:

|Диаметр отверстий в тарелке d0 |8мм |

|Шаг между отверстиями t |15мм |

|Свободное сечение тарелки Fc |18,8% |

|Высота переливного порога hпер |30мм |

|Ширина переливного порога b |1050мм |

|Рабочее сечение тарелки Sт |2,294м2 |

Скорость пара в рабочем сечении тарелки:

[pic][pic]

2.3 Определение высоты колонны

Количество тарелок в колонне может быть определено либо по числу теоретических тарелок, либо по кинетической кривой.

2.3.1 Определение высоты колонны по числу теоретических тарелок

Суть этого метода сводится к построению ступеней на диаграмме y - x.

Каждая ступень представляет собой одну тарелку. При построении предполагается, что на каждой тарелке достигается равновесие между жидкой и паровой фазой. [pic]

Как видно число теоретических тарелок в данном случае составляет 8 для нижней части колонны и 7 для верхней, в сумме 15. Для определения действительного числа тарелок это число необходимо поделить на к.п.д. отдельно взятой тарелки. Несмотря на то, что существуют методы оценки к.п.д. тарелок, этот метод не является точным, поскольку для каждой тарелки к.п.д. может отличаться от среднего.

Высота колонны определяется исходя из числа действительных тарелок и расстояния между тарелками. Обычно расстояние между тарелками стандартизовано и может быть выбрано из каталога.

2.3.2 Определение высоты колонны по кинетической кривой

Данный метод точнее, чем предыдущий. Он состоит в определении эффективности тарелок по Мэрфи с учетом продольного перемешивания, межтарельчатого уноса и доли байпасирующей жидкости. Для определения значений эффективности тарелок используются критериальные уравнения, которые здесь не приводятся, вследствие их громоздкости и узкой специализации.

Зная эффективность по Мэрфи, можно определить концентрацию легколетучего компонента в паре на выходе из тарелки yк по соотношению:

[pic] (18)

Исходя из этой формулы на диаграмме y - x строится кинетическая кривая, представляющая собой зависимость yк от x , а затем аналогично предыдущему методу графически выстраиваются ступени. Графическую иллюстрацию этого метода можно увидеть на рисунке 4.

[pic]

В итоге мы получили 9 тарелок в нижней части колонны и 9 в верхней.

Приняв расстояние между тарелками 0,5м, расстояние между нижней тарелкой и дном 2м, расстояние между верхом колонны и верхней тарелкой 1м, получим полную высоту колонны 11,5м.

Заключение

Мы кратко описали процесс расчета ректификационной колонны для разделения бинарных смесей. Процесс расчета или проектирования на этом не заканчивается. В дальнейшем рассчитывается гидравлическое сопротивление колонны и подбирается вспомогательная аппаратура.

Однако, стоит отметить, что для массообменного процесса, коим является процесс ректификации, в первую очередь необходимо описать обмен между фазами. Делается это при помощи диаграммы состояния “жидкость-пар”, которой мы пытались уделить повышенное внимание, быть может, в ущерб другим, не менее важным сторонам процесса.

Список использованной литературы

Остапчук М.В., Рибак А.И. «Система технологій» (за видами діяльності). Київ. 2003.

Желібо Є.П. та ін. «Основи технологій виробництва в галузях народного господарства». Київ. 2005.

Березівський П.С., Михалюк Н.І. «Системи технологій». Київ. 2006.

Дубровська Г.М., Ткаченко А.П. «Системи сучасних технологій». Київ. 2004.

5. http: // ref.net.ua/work/det-36634.html

6. Фертман Г.И., Шойхет М.И. Технология спиртового и ликероводочного производства. Москва. 1973.

7. Гельперин Н.И. Основные процессы и аппараты химической технологии - М.: Химия, 1981.

8. Кувшинский М.Н.,Соболева А.П. Курсовое проектирование по предмету “Процессы и аппараты химической промышленности”. М.: Высшая школа, 1980.

9. Основные процессы и аппараты химической технологии: Пособие по проектированию/Г.С. Борисов, В.П. Брыков, Ю.И. Дытнерский и др. Под ред. Ю.И. Дытнерского, М.:Химия, 1991.

10. Павлов К.Ф., Романков П.Г., Носков А.А. Примеры и задачи по курсу процессов и аппаратов химической технологии. Учебное пособие для вузов/Под ред. чл.-корр. АН СССР П.Г. Романкова. Л.:Химия, 1987.

11.Фиркович В.С. Автоматизация технологических процессов гидролизных производств. Москва. 1980.

Размещено на Allbest.ru


Подобные документы

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.