Технология конструкционных материалов

Изучение состава, классификации и свойств пластмасс, полимеров, карбоволокнитов и органоволокнитов. Характеристика резиновых, лакокрасочных, керамических, композиционных и древесных материалов. Описания использования графита и неорганического стекла.

Рубрика Производство и технологии
Вид курсовая работа
Язык русский
Дата добавления 17.12.2010
Размер файла 276,4 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

Размещено на http://www.allbest.ru/

Содержание
Введение
Понятие о неметаллических материалах и классификация полимеров
Пластические массы. Состав, классификация и свойства пластмасс
Композиционные материалы
Карбоволокниты
Карбостекловолокниты
Бороволокниты
Органоволокниты
Резиновые материалы. Общие сведения, состав и классификация резин
Лакокрасочные материалы. Обще сведения, состав и классификация лакокрасочных материалов
Древесные материалы. Основные сведения о строении древесины
Разновидности древесных материалов
Неорганические материалы
Неорганическое стекло
Ситаллы (стеклокристалличекие материалы)
Керамические материалы
Графит
Список литературы
ВВЕДЕНИЕ
Понятие неметаллические материалы включает большой ассортимент материалов таких, как пластические массы, композиционные материалы, резиновые материалы, клеи, лакокрасочные покрытия, древесина, а также силикатные стекла, керамика и др.
Неметаллические материалы являются не только заменителями металлов, но и применяются как самостоятельные, иногда даже незаменимые материалы. Отдельные материалы обладают высокой механической прочностью, легкостью, термической и химической стойкостью, высокими электроизоляционными характеристиками, оптической прозрачностью и т. п. Особо следует отметить технологичность неметаллических материалов.
Применение неметаллических материалов обеспечивает значительную экономическую эффективность.
Основой неметаллических материалов являются полимеры, главным образом синтетические. Создателем структурной теории химического строения органических соединений является великий русский химик А. М. Бутлеров. Промышленное производство первых синтетических пластмасс (фенопластов) явилось результатом глубоких исследований, проведенных Г. С. Петровым (1907--1914 гг.). Блестящие исследования позволили С. В. Лебедеву впервые в мире осуществить промышленный синтез каучука (1932 г.). Н. Н. Семеновым разработана теория цепных реакций (1930--1940 гг.) и распространена на механизм цепной полимеризации.
Успешное развитие химии и физики полимеров связано с именами видных ученых: П. П.. Кобеко, В. А. Каргина, А. П. Александрова, С. С. Медведева, С. Н. Ушакова, В. В. Коршака и др. Важный вклад внесен К. А. Андриановым в развитие химии кремнийорганических полимеров, широко применяемых в качестве термостойких материалов.
ПОНЯТИЕ О НЕМЕТАЛЛИЧЕСКИХ МАТЕРИАЛАХ И КЛАССИФИКАЦИЯ ПОЛИМЕРОВ
Полимерами называют вещества, макромолекулы которых состоят из многочисленных элементарных звеньев (мономеров) одинаковой структуры. Молекулярная масса их составляет от 5000 до 1000 000. При таких больших размерах макромолекул свойства веществ определяются не только химическими составами этих молекул, но и их взаимным расположением и строением.
Макромолекулы полимера представляют собой цепочки, состоящие из отдельных звеньев. Поперечное сечение цепи несколько ангстрем, а длина несколько тысяч ангстрем, поэтому макромолекулам полимера свойственна гибкость (которая ограничена размером сегментов -- жестких участков, состоящих из нескольких звеньев). Гибкость макромолекул является одной из отличительных особенностей полимеров.
Атомы, входящие в основную цепь, связаны прочной химической (ковалентной) связью. Энергия химических связей (в ккал/моль) составляет вдоль цепи 80 для С -- С, 79 для С -- О, 66 для С -- N. Силы межмолекулярного взаимодействия, имеющие обычно физическую природу, значительно (в 10 -- 50 раз) меньше. Например, прочность межмолекулярных связей электростатического характера не превышает 9 ккал/моль. Однако в реальных полимерах такие суммарные силы имеют значение вследствие большой протяженности цепевидных макромолекул. Наиболее сильные межмолекулярные взаимодействия осуществляются посредством водородных связей (только в 4--10 раз слабее ковалентных). Таким образом, молекулы полимеров характеризуются прочными связями в самих макромолекулах и относительно слабыми между ними. В некоторых полимерах между звеньями, входящими в состав соседних макромолекул, действуют силы химической связи. Такие вещества характеризуются высокими свойствами во всех направлениях.
Макромолекулы полимеров, имея одинаковый химический состав, обычно отличаются по размерам. Это явление, вызывающее рассеяние физико-механических характеристик материала, называется полидисперсностью.
Макромолекулы могут быть построены из одинаковых по химическому строению мономеров или разнородных звеньев. В первом случае соединения называются гомоиолимерами (или полимерами), во втором -- сополимерами. Иногда макромолекула вещества состоит из чередующихся крупных химически однородных отрезков (блоков) разного состава (блок-сополимеры).
Можно в процессе синтеза к главной молекулярной цепи, состоящей из одних мономеров, «привить» отрезки из других мономеров, тогда получают так называемые привитые сополимеры.
Когда основная цепь построена из одинаковых атомов, полимер называют гомоцепным, из разных гетероцепным. Большое значение имеет стереорегулярность полимера, когда все звенья и заместители расположены в пространстве в определенном порядке. Это придает материалу повышенные физико-Механические свойства (по сравнению с нерегулярными полимерами).
Полимеры встречаются в природе -- натуральный каучук, целлюлоза, слюда, асбест, природный графит. Однако ведущей группой являются синтетические полимеры, получаемые в процессе химического синтеза из низкомолекулярных соединений. Возможности создания, новых полимеров и изменения свойств уже существующих очень велики. Синтезом можно получать полимеры с разнообразными свойствами и даже создавать материалы с заранее заданными характеристиками.
Классификация полимеров. Для удобства изучения связи состава, структуры со свойствами полимеров их можно классифицировать по различным признакам (составу, форме макромолекул, фазовому состоянию, полярности, отношению к нагреву). По составу все полимеры подразделяют на органические, элементоорганические, неорганические.
Органические полимеры составляют наиболее обширную группу соединений. Если основная молекулярная цепь таких соединений образована только углеродными атомами, то они называются карбоцепными полимерами. Углеродные атомы соединены с атомами- водорода или органическими радикалами.
В гетероцепных полимерах атомы других элементов, присутствующие в основной цепи, кроме углерода, существенно изменяют свойства полимера. Так, в макромолекулах атомы кислорода способствуют повышению гибкости цепи, что приводит к увеличению эластичности полимеров (например, для волокон, пленок), атомы фосфора и хлора повышают огнестойкость, атомы серы придают газонепроницаемость (для герметиков, резин), атомы фтора, даже в виде радикалов, сообщают полимеру высокую химическую стойкость и т. д.
Некоторые карбоцепные и гетероцепные полимеры могут иметь сопряженную систему связей, например:
... сн = сн - сн = сн - сн = сн ...
Энергия сопряженной связи 100 -- 110 ккал/моль выше одинарной, поэтому такие полимеры более устойчивы при нагреве.
Органическими полимерами являются смолы и каучуки. Элементоорганические соединения содержат в составе, основной цепи неорганические атомы кремния, титана, алюминия и других элементов, которые сочетаются с органическими радикалами (метальный, фенильный, этильный). Органические радикалы придают материалу прочность и эластичность, а неорганические атомы сообщают повышенную теплостойкость. В природе таких соединений не встречается. Представителями этой группы являются кремнийорганические соединения, разработанные советским ученым К.. А. Андриановым.
Между атомами кремния и кислорода существует прочная химическая связь; энергия силоксановой связи Si -- О равна 89,3 ккал/моль. Отсюда и более высокая теплостойкость кремнийорганических смол, каучуков, хотя их упругость и эластичность меньше, чем у органических. Полимеры, содержащие в основной цепи титан и кислород, называются полититаноксанами.
К неорганическим полимерам относятся силикатные стекла, керамика, слюда, асбест. В составе этих соединений углеродного скелета нет. Основу неорганических материалов составляют окислы кремния, алюминия, магния, кальция и др.
В силикатах существуют два типа связей: атомы в цепи соединены ковалентными связями (Si - О), а цепи между собой - ионными связями. Свойства этих веществ можно изменять в широких пределах, получая, например, из минерального стекла волокна и эластичные пленки. Неорганические полимеры отличаются более высокой плотностью, высокой длительной теплостойкостью. Однако стекла и керамика хрупкие, плохо переносят динамические нагрузки. К неорганическим полимерам относится также графит, представляющий собой карбоцепной полимер.
В конкретных технических материалах используются как отдельные виды полимеров, так и сочетание различных групп полимеров; такие материалы называют композиционными (например, стеклопластики).
Своеобразие свойств полимеров обусловлено структурой их макромолекул. По форме макромолекул полимеры делятся на линейные (цепевидные), разветвленные, плоские, ленточные (лестничные), пространственные или сетчатые. Линейные макромолекулы полимера представляют собой длинные зигзагообразные или закрученные в спираль цепочки (рис. 1 а).
Гибкие макромолекулы с высокой прочностью вдоль цепи и слабыми межмолекулярными связями обеспечивают эластичность материала, способность его размягчаться при нагревании, а при охлаждении вновь затвердевать. Многие такие полимеры растворяются в растворителях. На физико-механические и химические свойства линейного полимера влияет плотность упаковки молекул в единице объема. При плотной упаковке возникает более сильное межмолекулярное притяжение, что приводит к повышению плотности, прочности, температуры размягчения и уменьшению растворимости.
Рис.1а
рис1 г. д.
Линейные полимеры являются наиболее подходящими для получения волокон и пленок (например, полиэтилен, полиамиды и др.).
Разветвленные макромолекулы полимера, являясь также линейными отличаются наличием боковых ответвлений. Эти ответвления препятствуют сближению макромолекул, их плотной упаковке. Подобная форма макромолекул предопределяет пониженное межмолекулярноё взаимодействие и, следовательно, меньшую прочность и повышенную плавкости растворимость (полиизобутилен). К разветвленным относятся и привитые полимеры, в которых состав основной цепи и редко расположенных боковых ответвлений неодинаков.
Пространственные или сетчатые полимеры образуются при соединении («сшивке») макромолекул между собой в поперечном направлении прочными химическими связями непосредственно или через химические элементы или радикалы. В результате такого соединения макромолекул образуется сетчатая структура с различной густотой сетки (рис. 1 г). Редко сетчатые (сетчатые) полимеры теряют способность растворяться и плавиться, они обладают упругостью (например, мягкие резины). Густо сетчатые (пространственные) полимеры отличаются твердостью, повышенной теплостойкостью, нерастворимостью. Иногда образование пространственной структуры сопровождается даже возникновением хрупкости (смола в стадии резит). Пространственные полимеры лежат в основе конструкционных неметаллических материалов. К сетчатым полимерам относятся также пластинчатые полимеры, которые имеют плоскостное двухмерное строение. Примером такого полимера является графит. Пластинчатая (паркетная) структура показана на рис. 1, д.
По фазовому состоянию полимеры подразделяют на аморфные и кристаллические.
В результате рентгенографического и электронно-микроскопических исследований, проведенных В. А. Каргиным, А. И. Китайгородским и Г. Л. Слонимским, макромолекулы в полимерах, как правило, расположены не хаотично, а имеют упорядоченное взаимное расположение. Структуры, возникающие в результате различной укладки молекул, называют надмолекулярными. Упорядоченность в структурообразовании определяется гибкостью линейных и разветвленных (с короткими ответвлениями) макромолекул, способностью их менять форму, перемещаться по частям; большое влияние оказывают жесткость цепи и силы межмолекулярного притяжения.
Аморфные полимеры однофазны и построены из цепных молекул, собранных в пачки. Пачка состоит из многих рядов макромолекул, расположенных последовательно друг за другом. Пачки способны перемещаться относительно соседних элементов, так как они являются структурными элементами.
Аморфные полимеры могут, быть также построены из свернутых в клубки цепей, так называемых глобул. Глобулярная структура полимеров дает невысокие механические свойства (хрупкое разрушение по грани-дам глобул). При повышенных температурах глобула разворачивается в линейные образования, способствующие повышению механических свойств полимеров.
Вопрос о надмолекулярных структурах некристаллизующихся полимеров мало разработан. Структуры в этих полимерах являются флуктуационными, термодинамический нестабильными и характеризуются относительно небольшим временем жизни.
Кристаллические полимеры образуются в том случае, если их макромолекулы достаточно гибкие и имеют регулярную структуру. Тогда при соответствующих условиях возможны фазовый переход внутри пачки и образование пространственных решеток кристаллов.
Гибкие пачки складываются в ленты путем многократного поворота пачек на 180°С. Затем ленты, соединяясь друг с другом своими плоскими сторонами, образуют пластины (рис. 186, а). Эти пластины наслаиваются, в результате чего получаются правильные кристаллы.
В том случае, когда образование из более мелких структурных элементов правильных объемных кристаллов затруднено, возникают сферолиты. Сферолиты состоят из лучей, образованных чередованием кристаллических и аморфных участков. В процессе ориентации гибкоцепных полимеров получаются фибриллярные структуры, состоящие из микрофибрилл. Между кристаллитами находятся аморфные участки [1]. Кристаллические структуры являются дискретными, организованными, термодинамический стабильными. В отсутствии внешних силовых полей их время жизни т->со. Кристаллизующимися полимерами являются полиэтилен, полипропилен, полиамиды и др. Кристаллизация осуществляется в определенном интервале температур. В обычных условиях полной кристаллизации не происходит. В связи с этим в реальных полимерах структура обычно двухфазная: наряду с кристаллической фазой имеется и аморфная. Кристалличность придает полимеру повышенную. теплостойкость, большую жесткость и прочность. Через надмолекулярную структуру передаются механические и физические свойства полимеров. При переработке, а также в условиях длительного хранения и эксплуатации надмолекулярные структуры могут самопроизвольно или вынужденно претерпевать изменения.
По полярности полимеры подразделяют на полярные и неполярные. У неполярной молекулы электронное облако, скрепляющее атомы, распределено между ними в одинаковой мере; у таких молекул центры тяжести разноименных зарядов совпадают. У полярной молекулы общее электронное облако сдвинуто в сторону более электроотрицательного атома; центры тяжести разноименных зарядов не совпадают. Полярность вещества оценивается дипольным моментом и., равным произведению элементарного заряда (заряд электрона) q на расстояние / между центрами тяжести всех положительных и всех отрицательных зарядов. Таким образом,
i = q-l.
Заряд электрона q = 4,8-10 -10 эл.-ст. единиц; расстояние l порядка 10 -18 см (1 А). Значения дипольного момента имеют порядок 10 -18 эл.-ст. единиц-см. Эту величину иногда называют единицей Дебая (Д). Например, для связей С - Н, С - N, С - О, С - F, С - С1 m равно соответственно 0,2; 0,4'; 0,9; 1,83; 2,05Д.
Первым условием полярности полимеров является присутствие в них полярных связей (группировок - С1,-- F,- ОН), вторым - не симметрия в их структуре. Неполярные полимеры имеют симметричное расположение функциональных групп, и поэтому дипольные моменты связей атомов взаимно компенсируются, например:
1)не полярные:
полиэтилен [ - СН2 - СН2 -- ] - молекула симметрична;
полипропилен [ -- СН2 -- СНСН3 -- ] -- дипольные моменты С -- Н и С -- СН3 равны;
фторопласт-4 [ - CF2 - CF2 -- ]„ - дипольный момент связи С - F значителен, сумма моментов равна нулю, так как они компенсируют друг друга.
2)полярные:
поливинилхлорид [ - СН2 - СНС1 - ]„ - молекула несимметрична, дипольные моменты С --Н(0,2Д) и С -- О (2,05 Д) взаимно не компенсируются.
Полярность сильно влияет на свойства полимеров. Так; неполярные полимеры (в основном на основе углеводородов) являются высококачественными высокочастотными диэлектриками. Физико-механические свойства, а у неполярных полимеров при низких температурах ухудшаются незначительно, такие материалы обладают хорошей морозостойкостью (например, полиэтилен не охрупчивается до температуры -- 70°С). Полярность, увеличивая силы межмолекулярного притяжения, придает полимеру жесткость, теплостойкость. Однако диэлектрики на основе полярных полимеров могут работать без потерь только в ограниченной области частот (являются низкочастотными). Кроме того, полярные полимеры характеризуются низкой морозостойкостью (например, полихлорвинил до температуры -10- -20°С).
Все полимеры по отношению к нагреву подразделяют на термопластичные и термореактивные.
Термопластичные полимеры при нагревании размягчаются, даже плавятся, при охлаждении затвердевают; этот процесс обратим, т. е. никаких дальнейших химических превращений материал не претерпевает. Структура макромолекул таких полимеров линейная или разветвленная. Представителями термопластов являются полиэтилен, полистирол, полиамиды и др.
Термореактивные полимеры на первой стадии образования имеют линейную структуру и при нагревании размягчаются, затем вследствие протекания химических реакций затвердевают (образуется пространственная структура) и в дальнейшем остаются твердыми. Отвержденное состояние полимера называется термостабильным. Примером термореактивных смол могут служить фенолоформальдегидная, глифталевая и другие смолы.
Времени, и установление равновесия (релаксация) достигается не сразу. Например, для полимера в высокоэластическом состоянии время релаксации при конформационных.
ПЛАСТИЧЕСКИЕ МАССЫ
Пластмассами (пластиками) называют искусственные материалы, получаемые на основе органических полимерных связующих веществ. Эти материалы способны при нагревании размягчаться, становиться пластичными, и тогда под давлением им можно придать заданную форму, которая затем сохраняется. В зависимости от природы связующего переход отформованной массы в твердое состояние совершается или при дальнейшем ее нагревании, или при последующем охлаждении.
СОСТАВ, КЛАССИФИКАЦИЯ И СВОЙСТВА ПЛАСТМАСС
Обязательным компонентом пластмассы является связующее вещество. В качестве связующих для большинства пластмасс используются синтетические смолы, реже применяются эфиры целлюлозы. Многие пластмассы, главным образом термопластичные, состоят из одного связующего вещества, например полиэтилен, органические стекла и др.
Другим важным компонентом пластмасс является наполнитель (порошкообразные, волокнистые и другие вещества как органического, так и неорганического происхождения). После пропитки наполнителя связующим получают полуфабрикат, который спрессовывается в монолитную массу. Наполнители повышают механическую прочность, снижают усадку при. прессовании и. придают материалу те или иные специфические свойства (фрикционные, антифрикционные и т. д.). Для повышения пластичности в полуфабрикат добавляют пластификаторы (органические вещества с высокой температурой кипения и низкой температурой замерзания, например олеиновую кислоту, стеарин, дибутилфталат и др.). Пластификатор сообщает пластмассе эластичность, облегчает ее обработку. Наконец, исходная композиция может содержать отвердители (различные амины) или катализаторы (перекисные соединения) процесса отверждения термореактивных связующих, ингибиторы, предохраняющие полуфабрикаты от их самопроизвольного отверждения, а также красители (минеральные пигменты и спиртовые растворы органических красок, служащие для декоративных целей).
Свойства пластмасс зависят от состава отдельных компонентов, их сочетания и количественного соотношения, что позволяет изменять характеристики пластиков в достаточно широких пределах.
По характеру связующего вещества пластмассы подразделяют на термопластичные (термопласты), получаемые на основе термопластичных полимеров, и термореактивные (реактопласты) -- на основе термореактивных смол. Термопласты удобны для переработки в изделия, дают незначительную усадку при формовании (1-3%). Материал отличается большой упругостью, малой хрупкостью и способностью к ориентации. Обычно термопласты изготовляют без наполнителя. В последние годы стали применять термопласты с наполнителями в виде минеральных и синтетических волокон (органопласты).
Термореактивные полимеры после отверждения и перехода связующего в термостабильное состояние (пространственная структура) хрупки, часто дают большую усадку (до 10--15%) при их переработке, поэтому в их состав вводят усиливающие наполнители.
По виду наполнителя пластмассы делят на порошковые (пресс-порошки) с наполнителями в виде древесной муки, сульфитной целлюлозы, графита, талька, измельченных стекла, мрамора, асбеста, слюды, пропитанных связующими (часто их называют карболитами); волокнистые с наполнителями в виде очесов хлопка и льна (волокниты), стеклянного волокна (стекловолокниты), асбеста (асбоволокниты); слоистые, содержащие листовые наполнители (листы бумаги в гетинаксе, хлопчатобумажные, стеклянные, асбестовые ткани в текстолите, стеклотекстолите и асботекстолите, древесный шпон в древеснослоистых пластиках); крошкообразные (наполнитель в виде кусочков ткани или древесного шпона, пропитанных связующим); газонаполненные (наполнитель - воздух или нейтральные газы). В зависимости от структуры последние подразделяют на пенопласты и поропласты.
Современные композиционные материалы содержат в качестве наполнителей угольные и графитовые волокна (карбоволокниты); волокна бора (бороволокниты).
По применению пластмассы можно подразделить на силовые (конструкционные, фрикционные и антифрикционные, электроизоляционные) и не сидовые (оптически прозрачные, химически стойкие, электроизоляционные, теплоизоляционные, декоративные, уплотнительные, вспомогательные). Однако это деление условно, так как одна и та же пластмасса может обладать разными свойствами: например, полиамиды применяют в качестве антифрикционных и электроизоляционных материалов и т. д.
Пластмассы по своим физико-механическим и технологическим свойствам являются наиболее прогрессивными и часто незаменимыми материалами для машиностроения.
Недостатками пластмасс являются невысокая теплостойкость, низкие модуль упругости и ударная вязкость по сравнению с металлами и сплавами, а для некоторых пластмасс склонность к старению.
КОМПОЗИЦИОННЫЕ МАТЕРИАЛЫ
Композиционными называют искусственные материалы, получаемые сочетанием химически разнородных компонентов. Одним из компонентов является матрица (для полимеров -- связующее), другим -- упрочнители. Родоначальником композиционных материалов являются армированные стеклопластики. Их физическая природа, схемы армирования и расчетные особенности переносятся на композиционные полимерные материалы.
В качестве матриц используют полимерные, углеродные, керамические и металлические материалы. В качестве упрочнителей применяют волокна: стеклянные, углеродные, борные, органические, на основе нитевидных кристаллов (окислов, карбидов, боридов, нитридов и др.), а также металлические (проволоки), обладающие высокой прочностью и жесткостью. Свойства различных волокон, применяемых в качестве, упрочнителей, приведены в табл.2. Углеродные волокна на воздухе могут работать до температуры 450°С, в нейтральной и восстановительной среде они сохраняют прочность до 2200°С. Борные и керамические волокна обладают высокой твердостью и мало разупрочняются с повышением температуры. Органические волокна могут работать до температуры 200 -- 300°С.
Свойства композиционных материалов зависят от состава компонентов, их сочетания, количественного соотношения и прочности связи между ними. Армирующие упрочняющие материалы могут быть в виде волокон, жгутов, нитей, лент, многослойных тканей.
Содержание упрочнителя в ориентированных материалах составляет 60--80% об.%, в неориентированных (с дискретными волокнами. и нитевидными кристаллами) -- 20 -- 30% об.%. Чем выше прочность и модуль упругости волокон, тем выше прочность и жесткость композиционного материала. Свойства матрицы определяют прочность композиции при сдвиге и сжатии и сопротивление усталостному разрушению.
Повышение адгезии матрицы к волокнам достигается поверхностной' обработкой последних. С этой целью применяют вискеризацию -- введение нитевидных кристаллов в межволоконное пространство. Вискеризация осуществляется путем осаждения нитевидных кристаллов на поверхность волокон («мохнатые» волокна с выращенными на них перпендикулярно длине монокристаллами -- «усами»). Этим достигается повышение прочности материала при сдвиге в 1,5 -- 2 раза, модуля упругости при сдвиге и прочности при сжатии на 40 -- 50%. По характеру матрицы композиционные материалы подразделяют на полимерные, углеродные и металлические. По упрочнителю их можно классифицировать на карбоволокниты (углепласты), содержащие в качестве упрочняющего материала углеродные волокна; бороволокниты с упрочнителями в виде борных волокон; органоволокниты с синтетическими волокнами; металлы, армированные волокнами
Свойства армирующих волокон таблица 2

Плот

Предел

Модуль

Относи

Температура

Тип волокна

ность,

прочно

упругости,

тельное

стабильности.

г/см3

сти,

103

удлинение, %

СС

кгс/мм2

кгс/мм2

Стеклянные:

алюмоборосиликатные

2,5-2,6

140-220

6

2-3

700*

высокомодульные

2,5-2,6

390-470

9,5-11

4,4-5.

До 870

Углеродные высокомодульные

1,75-1,95

230-290

28-31

0,7-1

2200

Борные

2,5

280-320

39-40

0,7-0,8

пл = 2200)

Окись алюминия

3,97

210

17

--

1000 - 1500

Карбид кремния

3,18

350

42

_

(Tпл = 2050) 1200 - 1700

Синтетические:

(Tпл = 2090)

полиамидное (капрон)

1,14

77-85

0,32-0,35

13-17

196-216**

полиэфирное (лавсан)

1,38

48-62

1,02-1,1

14-15

235-255**

полиакрилонитрильное (нитрон)поливинилспиртовое (винол)

1,17

46-56

0,46-0,58

16-17

--

Поливинилспиртовое (винол)

1,26

60-100

2,5

7-12

-

Из ароматического полиамида

1,4

200-280

11-12

2-5

Проволоки:

вольфрамовая

19,3

220-430

35-42

--

--

молибденовая

10.2

215

36

_

__

титановая

4,72

190-200

12

_

стальная

7,9

420

20

--

-

*Температура плавления.
**Температура деструкции
Преимуществом композиционных материалов являются высокие прочность и жесткость (для карбоволокнитов Хв = 65 - 170 кгс/мм2, Е= 12000 - 18 000 кгс/мм2; для бороволокнитов Хв = 90 - 175 кгс/мм2, Е = 21400 - 27000 кгс/мм2), хорошее сопротивление хрупкому разрушению, жаропрочность и термическая стабильность. Плотность композиционных материалов составляет от 1,35 до 4,8 г/см3.
Композиционные материалы являются перспективными конструкционными материалами для различных отраслей машиностроения.
КАРБОВОЛОКНИТЫ
Карбоволокниты (углепласты) представляют собой композиции, состоящие из полимерного связующего (матрицы) и упрочнителей (наполнителей) в виде углеродных волокон (карбоволокон).
Углеродные волокна получают термообработкой органических волокон. В зависимости от температуры термообработки и содержащегося углерода волокна подразделяют на частично карбонизованные (900°С, 85-90%), карбонизованные (900-1500°С, 95-99%) и графитированные, (1500 -- 3000°С, >99.%). Два последних типа имеют наибольшее значение.
В зависимости от формы исходного сырья углеродные волокна могут быть в виде нитей, жгутов, войлока, тканей; волокна можно перерабатывать на обычном текстильном оборудовании.
Практическое применение нашли вискозные кордные волокна (ВК) и полиакрилонитрильные (П АН-вол окна).
Свойства волокон зависят от термообработки, с увеличением температуры происходит образование гексагональных углеродных слоев, их рост и упорядочение. Структура волокон фибриллярная. Каждая фибрилла состоит из лентообразных микрофибрилл, разделенных узкими и длинными продольными порами.
В результате вытяжки достигается ориентация кристаллитов, что позволяет получать высокопрочные и высокомодульные углеродные волокна.
Обычные углеродные волокна имеют Хв = 50 - 100 кгс/мм2 и Е = = 2000--7000 кгс/мм2; для высокопрочных и высокомодульных волокон Хв >150 кгс/мм2 и Е> 15000 кгс/мм2. По удельным прочности (Х/р) и жесткости (Е/р) последние превосходят все жаростойкие волокнистые материалы.
Высокая энергия связи С -- С углеродных волокон позволяет им сохранять прочность при очень высоких температурах (в нейтральной и восстановительной средах до 2200°С), а также при низких температурах. От окисления поверхности волокна предохраняют защитными, покрытиями (пиролитическими). В отличие от стеклянных волокон карбоволокна плохо смачиваются связующим (низкая поверхностная энергия), поэтому их подвергают травлению, аппретированию, вискеризации.
Связующими служат синтетические полимеры (полимерные карбоволокниты); синтетические полимеры, подвергнутые пиролизу (коксованные карбоволокниты); пиролитический углерод (пироуглеродные карбоволокниты).
В качестве полимерных связующих применяют эпоксидные, фенолоформальдегидные. смолы, полиимиды и др.
Эпоксифенольные карбоволокниты КМУ-1л, упрочненный углеродной лентой, и КМУ-lл на жгуте, вискеризованном нитевидными кристаллами, могут длительно работать при температуре до 200°С.
Карбоволокниты КМУ-3 и КМУ-Зл получают на эпоксианилиноформальдегидном связущем, их можно эксплуатировать при температуре до 100°С, они наиболее технологичны. Карбоволокниты КМУ-2 и КМУ-2л на основе полиимидного связущего можно применять при температуре до 300°С [43].
Карбоволокниты отличаются высокой статической и динамической выносливостью, сохраняют это свойство при нормальной и очень низкой температуре (высокая теплопроводность волокна предотвращает саморазогрев материала за счет внутреннего трения). Они водо- и химически стойки. После воздействия на воздухе рентгеновского излучения Хи и Еи почти не изменяются.
Теплопроводность углепластиков в 1,5-2 раза выше, чем у стеклопластиков. Они имеют следующие электрические свойства: р„ = 0,0024 4- 0,0034 Ом-см (вдоль волокон); Е=10 и tg д = 0,01 (при частоте 1010 Гц).
КАРБОСТЕКЛОВОЛОКНИТЫ
Содержат наряду с угольными стеклянные, волокна, что удешевляет материал.
Карбоволокниты с углеродной матрицей. Коксованные материалы получаются из обычных полимерных карбоволокнитов, подвергнутых пиролизу в инертной или восстановительной атмосфере. При температуре 800--1500°С образуются карбонизованные, при 2500-3000°С графитированные карбоволокниты. Для получения пироуглеродных материалов упрочнитель выкладывается по форме -изделия и помещается в печь, в которую пропускается газообразный углеводород (метан). При определенном режиме (1100°С и остаточном давлении 20 мм-рт. ст.) метан разлагается, и образующийся пиролитический углерод осаждается на волокнах упрочнителя, связывая их.
Образующийся при пиролизе связующего кокс имеет высокую прочность сцепления с углеродным волокном. В связи с этим композиционный материал обладает высокими механическими и абляционными свойствами, стойкостью к термическому удару.
Карбоволокнит на углеродной матрице типа КУП-ВМ: по значениям прочности и ударной вязкости в 5 --10 раз превосходит специальные графиты; при нагреве в инертной атмосфере и вакууме он сохраняет прочность до 2200°С, на воздухе окисляется при 450°С и требует защитного покрытия. Коэффициент трения одного карбоволокнита с углеродной матрицей по другому высок (0,35-0,45), а износ мал (0,7-1 мкм на торможение).
Полимерные карбоволокниты используют в судо- и автомобилестроении (кузова гоночных машин, шасси, гребные винты); из них изготовляют подшипники, панели отопления, спортивный инвентарь, части ЭВМ. Высокомодульные карбоволокниты применяют для изготовления деталей авиационной техники, аппаратуры для химической промышленности, в рентгеновском оборудовании и др.
Карбоволокниты с углеродной матрицей применяют для тепловой защиты, дисков авиационных тормозов, химически стойкой аппаратуры, заменяя различные типы графитов.
БОРОВОЛОКНИТЫ
Бороволокниты представляют собой композиции из полимерного связующего и упрочнителя -- борных волокон.
Бороволокниты отличаются высокой прочностью при сжатии, сдвиге и срезе, низкой ползучестью, высокими твердостью и модулем упругости, тепло- и электропроводностью.
Борное волокно получается осаждением бора из газовой фазы на поверхность разогретой вольфрамовой проволоки. Вследствие диффузии и взаимодействия между бором и вольфрамом последний превращается в бориды вольфрама. Таким образом, наружная оболочка волокна состоит из металлического бора, сердечник -- из кристаллических боридов переменного состава. Борные волокна имеют d = 90 -- 150 мкм, Х„ = 280 - 320 кгс/мм2, г = 0,7 - 0,8%, Е = 39000 -- 40000 кгс/мм2, выпускаются под марками БН и борофил (США). При температуре > 400°С волокна окисляются и требуют нанесения защитных покрытий (карбиды). Ячеистая микроструктура борных волокон обеспечивает высокую прочность при сдвиге на границе раздела с матрицей.
Помимо непрерывного борного волокна применяют комплексные боростеклонити, в которых несколько параллельных борных волокон оплетаются стеклонитью, придающей формоустойчивость. Применение боростеклонитей. облегчает технологический процесс изготовления бороволокнитов.
В качестве матриц для получения бороволокнитов используют модифицированные эпоксидные и полиимидные связующие. Бороволокниты КМБ-1 и КМБ-1к предназначены для длительной работы при температуре 200°С; КМБ-3 и КМБ-Зк не требуют высокого давления при переработке и могут работать при температуре не свыше 100°С; КМБ-2к работоспособен при 300°С .
Бороволокниты обладают высокой усталостной прочностью (до 35 -- 40 кгс/мм2), их свойства можно изменять за счет различной укладки упрочнителя. Бороволокниты стойки к воздействию проникающей радиации, к воде, органическим растворителям и горюче-смазочным материалам.
ОРГАНОВОЛОКНИТЫ
Представляют собой композиционные материалы, состоящие из полимерного связующего и упрочнителей в виде синтетических волокон. Они устойчивы в агрессивных средах и во влажном тропическом климате; диэлектрические свойства высокие, а теплопроводность низкая.
Органоволокниты применяют в качестве изоляционного и конструкционного материала в электрорадиопромышленности, авиационной технике, автостроении; из них изготовляют трубы, емкости.
РЕЗИНОВЫЕ МАТЕРИАЛЫ. ОБЩИЕ СВЕДЕНИЯ, СОСТАВ И КЛАССИФИКАЦИЯ РЕЗИН
Резиной называется продукт специальной обработки (вулканизации) смеси каучука и серы с различными добавками.
Резина как технический материал отличается от других материалов высокими эластическими свойствами, которые присущи каучуку -- главному исходному компоненту резины. Она способна к очень большим деформациям (относительное удлинение достигает 1000%), которые почти полностью обратимы. При комнатной температуре резина находится в высокоэластическом состоянии и ее эластические свойства сохраняются в широком диапазоне температур.
Модуль упругости лежит в пределах 0,1 -- 1 кгс/мм2, т. е. он в тысячи и десятки тысяч раз меньше, чем для других материалов. Особенностью резины является ее малая сжимаемость (для инженерных расчетов резину считают несжимаемой); коэффициент Пуассона равен 0,4 -- 0,5, тогда как для металла эта величина составляет 0,25 -- 0,30. Другой особенностью резины как технического материала является релаксационный характер деформации. При комнатной температуре время релаксации может составлять-10 ~ 4 с й более. При работе резины в условиях многократных механических напряжений часть энергии, воспринимаемой изделием, теряется на внутреннее трение (в самом каучуке и между молекулами каучука и частицами добавок); это трение преобразуется в теплоту и является причиной гистерезисных потерь. При эксплуатации толстостенных деталей (например, шин) вследствие низкой теплопроводности материала нарастание температуры в массе резины снижает ее работоспособность.
Кроме отмеченных особенностей для резиновых материалов характерны высокая стойкость к истиранию, газо- и водонепроницаемость, химическая стойкость, электроизолирующие свойства и небольшая плотность.
В результате совокупности технических свойств резиновых материалов их применяют для амортизации и демпфирования, уплотнения и герметизации в условиях воздушных и жидкостных сред, химической защиты деталей машин, в производстве тары для хранения масел и горючего, различных трубопроводов (шлангов), для покрышек и камер колес самолетов, автотранспорта и т. д. Номенклатура резиновых изделий насчитывает более 40000 наименований.
Состав и классификация резин. Основой всякой резины служит каучук натуральный (НК) или синтетический (СК), который и определяет основные свойства резинового материала. Для улучшения физико-механических свойств каучуков вводятся различные добавки (ингредиенты). Таким образом, резина состоит из каучука и ингредиентов, рассмотренных ниже. 1. Вулканизующие вещества (агенты) участвуют в образовании пространственно-сеточной структуры вулканизата. Обычно в качестве таких веществ применяют серу и селем, для некоторых каучуков перекиси. Для резины электротехнического назначения вместо элементарной серы (которая взаимодействует с медью) применяют органические сернистые соединения -- тиурам (тиурамовые резины).
Ускорители процесса вулканизации: полисульфиды, окислы свинца, магния и др. влияют как на режим вулканизации, так и на физико-механические свойства вулканизатов.. Ускорители проявляют свою наибольшую активность в присутствии окислов некоторых металлов (цинка и др.), называемых поэтому в составе резиновой смеси активаторами.
Противостарители (антиоксиданты) замедляют процесс старения резины, который ведет к ухудшению ее эксплуатационных свойств. Существуют противостарители химического и физического действия. Действие первых заключается в том, что они задерживают окисление каучука в результате окисления их самих или за счет разрушения образующихся перекисей каучука (применяются альдольнеозон Д и др.). Физические противостарители (парафин, воск) образуют поверхностные защитные пленки, ониприменяются реже.
Мягчители (пластификаторы) облегчают переработку резиновой смеси, увеличивают эластические свойства каучука, повышают морозостойкость резины. В качестве мягчителей вводят парафин, вазелин, стеариновую кислоту, битумы, дибутилфталат, растительные масла. Количествомягчителей 8 -- 30% от массы каучука.
Наполнители по воздействию на каучук подразделяют на активные (усиливающие) и неактивные (инертные). Усиливающие наполнители (углеродистая сажа и белая сажа -- кремнекислота, окись цинка и др.) повышают механические свойства резин: прочность, сопротивление истиранию, твердость. Неактивные наполнители (мел, тальк, барит) вводятся для удешевления стоимости резины.
Часто в состав резиновой смеси вводят регенерат -- продукт переработки старых резиновых изделий и отходов резинового производства. Кроме снижения стоимости регенерат повышает качество резины, снижая ее склонность к старению.
5.Красители минеральные или органические вводят для окраски резин. Некоторые красящие вещества (белые, желтые, зеленые) поглощают коротковолновую часть солнечного спектра и этим защищают резину от светового старения.
Любой каучук является непредельным высокополимерным соединением с двойной химической связью между углеродными атомами в элементарных звеньях макромолекулы. Молекулярная масса каучуков исчисляется в 400000 -- 450000. Структура макромолекул линейная или слаборазветвленная и состоит из отдельных звеньев, которые имеют тенденцию свернуться в клубок, занять минимальный объем, но этому препятствуют силы межмолекулярного взаимодействия, поэтому молекулы каучука извилистые (зигзагообразные). Такая форма молекул и является причиной исключительно высокой эластичности каучука (под небольшой нагрузкой происходит выпрямление молекул, изменяется их конформация). По свойствам каучуки напоминают термопластичные полимеры. Наличие в молекулах каучука непредельных связей позволяет, при определенных условиях, переводить его в термостабильное состояние. Для этого по месту двойной связи присоединяется двухвалентная сера (или другое вещество), которая образует в поперечном направлении как бы «мостики» между нитевидными молекулами каучука, в результате чего получается пространственно-сетчатая структура, присущая резине (вулканизату). Процесс химического взаимодействия каучука с серой в технике называется вулканизацией
В зависимости от количества вводимой серы получается различная частота сетки полимера. При введении 1-5% серы образуется редкая сетка, и резина получается высоко эластичной, мягкой. С увеличением процентного содержания серы сетчатая структура становится все более частой, резина более твердой, и при максимально возможном (примерно 30%) насыщении каучука серой образуется твердый материал, называемый эбонитом].
При вулканизации изменяется молекулярная структура полимера (образуется пространственная сетка), что влечет изменение его физико-механических свойств: резко возрастет прочность при растяжении и эластичность каучука, а пластичность почти полностью исчезает (например, натуральный каучук имеет Хв = 0,10 - 0,15 кгс/мм2, после вулканизации Хв = 3,5 кгс/мм2); увеличивается твердость, сопротивление износу. Многие каучуки растворимы в растворителях, резины только набухают в них и более стойки к химикатам. Резины имеют более высокую теплостойкость (НК размягчается при температуре 90°С, резина работает при температуре свыше 100эС).
На изменение свойств резины оказывает влияние взаимодействие каучука с кислородом, поэтому при вулканизации одновременно происходят два процесса: структурирование под действием вулканизующего агента и деструкция под влиянием окисления и температуры. Это особенно характерно для резин из НК. Для синтетических каучуков (СК) процесс вулканизации дополняется полимеризацией: под действием кислорода и температуры образуются межмолекулярные углеродистые связи, упрочняющие термостабильную структуру, что дает повышение прочности.
Термическая устойчивость вулканизата зависит от характера образующихся в процессе вулканизации связей. Наиболее прочные, а следовательно, термоустойчивые связи -- С -- С -- (62,7 ккал/моль), наименьшая прочность у полисульфидной связи -- С -- S -- С -- (27,5 ккал/моль).
Современная физическая теория упрочнения каучука объясняет повышение его прочности наличием сил связи (адсорбции и адгезии), возникающих между каучуком и наполнителем, а также образованием непрерывной цепочно-сетчатой структуры наполнителя вследствие взаимодействия между частицами наполнителя. Возможно и химическое взаимодействие каучука с наполнителем.
По назначению резины подразделяют на резины общего назначения и резины специального назначения (специальные).
ЛАКОКРАСОЧНЫЕ МАТЕРИАЛЫ. ОБЩИЕ СВЕДЕНИЯ, СОСТАВ И КЛАССИФИКАЦИЯ ЛАКОКРАСОЧНЫХ МАТЕРИАЛОВ
Лакокрасочные материалы принадлежат к группе пленкообразующих материалов. После нанесения в жидком состоянии на окрашиваемые поверхности они образуют пленки. Высохшие пленки называются покрытиями. Лакокрасочные материалы предназначены для защиты металлов от коррозии, а неметаллических материалов (древесины, пластмасс и т.д.) -от увлажнения и загнивания; они сообщают поверхности специальные свойства (электроизоляционные, теплозащитные и другие) и придают изделиям декоративный внешний вид.
Защита изделий от влияния внешней среды лакокрасочными покрытиями является наиболее доступной и широко применяется в машиностроении С помощью защитных покрытий срок эксплуатации аппаратуры, оборудования различных металлоконструкций увеличивается в несколько раз. К лакокрасочным материалам предъявляются определенные требования- высокая адгезия к защищаемым поверхностям, теплостойкость и химическая устойчивость, водонепроницаемость, светостойкость, гладкость твердость и эластичность пленки, хорошие защитные свойства.
Состав и классификация лакокрасочных материалов. Компонентами лакокрасочных материалов являются пленкообразующие вещества; смолы для увеличения адгезии, придания пленке твердости и блеска; растворители (скипидар, спирты, ацетон) и разбавители (бензол) для растворения пленкообразующего и других компонентов; пластификаторы (дибутилфталат и др.) сохраняющие эластичность покрытия, снижающие его воспламеняемость и улучшающие морозостойкость; отвердители термореактивных пленкообразующих (амины); пигменты и красители - придающие определенный цвет и обладающие защитными свойствами; наполнители (тальк, каолин) - для повышения вязкости материала и снижения блеска покрытия; специальные добавки для тропикостойкости, стабилизации свойств.
В качестве пленкообразующих веществ применяют в основном синтетические смолы, эфиры целлюлозы, реже высыхающие растительные масла.
По составу лакокрасочные материалы подразделяют на лаки, эмали, грунты шпатлевки; по пленкообразующему веществу они могут быть смоляными, эфироцеллюлозными (нитроцеллюлозные и этилцеллюлозные) и маслосодержащими (битумные, канифольные).
Лаки являются растворами пленкообразующих веществ в растворителях иногда с добавками пластификаторов, ускорителей, стабилизаторов (в составе лака обязательно присутствует смола). Лаки предназначены для защиты поверхности изделия от воздействия внешней среды.
Эмали состоят из лака и пигмента. Для получения не глянцевых, а матовых покрытий в эмали вводят наполнитель. Пигменты придают эмали цвет и некоторые специфические свойства, например белые пигменты (ZnO, TiO2) -- атмосферостойкость и водоупорность; алюминиевая пудра -- стойкость к действию влаги и ультрафиолетовых лучей; сажа -- токопроводимость и т. д.
Грунты защищают металл от коррозии и увеличивают адгезию последующих слоев. В состав грунта входят лак и пигмент, обладающий защитными свойствами. В зависимости от вида пигмента грунты подразделяют на следующие группы: содержащие соли хромовой кислоты, цинковый и стронциевый крон (образующие окисные пленки на металле); содержащие свинцовый или железный сурик (пассивирующие грунты); содержащие цинковую пыль (протекторные грунты) и инертные пигменты (соединения титана и т. д.), создающие изолирующие покрытия.
Хроматные грунты применяют для защиты магниевых и алюминиевых сплавов. Свинцовый сурик образует на поверхности металла гидрат закиси железа. Эти грунты применимы для защиты стальных деталей.
Защитное действие цинка основано па его более электроотрицательном потенциале по отношению к железу. Эти грунты применяют для защиты стальных деталей, работающих во влажных условиях.
Для защиты стальных деталей применяют также фосфатирующие грунты. Такой грунт реагирует с поверхностью стальных деталей и образует на стали фосфатно-хроматную пленку сложного состава.
Шпатлевки предназначены для выравнивания неровностей на поверхности изделий перед окраской. В состав шпатлевок входят лак, пигмент и наполнитель. Шпатлевки наносят на предварительно загрунтованную поверхность.
Для надежной защиты поверхности изделий в большинстве случаев применяют многослойное покрытие, состоящее из слоев разного назначения, называемое системой покрытия.
Непосредственно на деталь наносится грунт, затем шпатлевка, далее следует эмаль и покровный лак. Число слоев обычно составляет 2 -- 6, а иногда и 14.
Смоляные термопластичные лакокрасочные материалы. Из термопластичных смоляных материалов получили широкое распространение перхлорвиниловые и акриловые. Перхлорвиниловые эмали (ХВ, ХС) применяют для окраски металлов, древесины, бетона. Покрытия не горючи, водоустойчивы, химически стойки, могут работать в контакте с минеральным маслом и топливом, не поддаются действию тропических условий, имеют хорошие электроизоляционные свойства. Недостатки покрытий: невысокая адгезия к металлам, отсутствие глянца, низкая теплостойкость (60 -- 90°С), неприятный запах.
Материалы на основе акриловых смол термопластичны, но более теплостойки и дают покрытия эластичные, стойкие к ударным нагрузкам, с хорошей адгезией к металлам. Акриловые эмали (АК и АС) могут работать в условиях 98-100%-ной влажности при температуре 55-60°С. При нанесении на эпоксидный грунт покрытие сохраняет защитные свойства в течение 3 -- 6 лет.
Покрытия на основе термореактивных смол. Алкидные материалы вырабатывают на основе глифталевой (ГФ) и пентафталевой (ПФ) смол, часто модифицированных растительными маслами. Покрытия обладают высокой твердостью, прочностью, удовлетворительной адгезией к различным материалам. При введении алюминиевой пудры покрытия выдерживает длительно температуру 120°С и кратковременно температуру до 300°С. К недостаткам алкидных покрытий, относится склонность к старению, недостаточная устойчивость к условиям тропического климата и щелочным средам.
Эпоксидные лакокрасочные материалы на основе эпоксидных смол и их модификаций с различными отвердителями дают покрытия ЭП, обладающие хорошей адгезией к металлам и неметаллическим материалам, значительной твердостью, химической стойкостью к различным средам, в том числе к щелочным и, высокими электроизоляционными свойствами. Покрытия при сушке не дают усадки и стойки к колебаниям температуры.
Полиэфирным покрытиям присуща большая твердость, сильный блеск, удовлетворительная, прочность на истирание. Однако они плохо сопротивляются ударным нагрузкам и мало эластичны; используются главным образом при окраске деревянных (и бетонных) поверхностей, адгезия полиэфирных лаков к металлам невысокая.
Полиуретановые лаки, эмали, грунты имеют очень хорошую адгезию к различным материалам, хорошо сопротивляются истиранию, эластичны, атмосферостойкие, газонепроницаемы, могут работать в контакте с водой, маслами, бензином и растворителями, являются хорошими диэлектриками. Недостатком этих материалов, ограничивающих их применение, является токсичность.
Наиболее теплостойки лакокрасочные материалы на основе кремнийорганических полимеров (КО). Покрытия стойки к влаге, окислению, озону, солнечному свету и радиации, химически инертны, хорошие диэлектрики. Однако они имеют невысокую адгезию к различным материалам и требуют горячей сушки (200°С). Кремнийорганические лаки и эмали используют в основном в качестве электроизоляционных материалов. Модифицированные кремнийорганические лаки и эмали защищают металлические поверхности от длительного воздействия высоких температур. Полиимидные покрытия теплостойки, выдерживают тепловые удары от - 196 до + 340°С. Покрытия прочные, устойчивы к воздействию растворителей и кислот, стойки к радиации и обладают диэлектрическими свойствами. Получение этих покрытий требует высокой температуры и тщательного соблюдения технологии.

Подобные документы

  • Производство деталей из жидких полимеров (композиционных пластиков). Приготовление смеси и формообразование заготовок. Общие сведения о порошковой металлургии. Способы формирования резиновых деталей. Переработка пластмасс в высокоэластичном состоянии.

    реферат [397,5 K], добавлен 03.07.2015

  • Изучение понятия, видов и свойств керамических материалов и изделий. Характеристика сырья и процесса производства керамических изделий. Исследование использования в строительстве как стеновых, кровельных, облицовочных материалов и заполнителей бетона.

    реферат [17,6 K], добавлен 26.04.2011

  • Зависимость деформационных свойств пластмасс от температуры. Зависимость прочности полимеров от скорости нагружения. Усталостные свойства пластмасс. Проектирование экономически эффективных изделий из пластмасс. Метод механической обработки заготовок.

    реферат [20,9 K], добавлен 29.01.2011

  • Классификация композиционных материалов, их геометрические признаки и свойства. Использование металлов и их сплавов, полимеров, керамических материалов в качестве матриц. Особенности порошковой металлургии, свойства и применение магнитодиэлектриков.

    презентация [29,9 K], добавлен 14.10.2013

  • Разработка защитно-декоративного покрытия шкафа для хранения одежды. Спецификация деталей изделия, характеристика основных и вспомогательных лакокрасочных материалов, определение потребного количества. Технологическая карта процесса, расчет оборудования.

    курсовая работа [38,1 K], добавлен 04.10.2014

  • Характеристика оптических и механических свойств поликристаллических материалов. Изучение понятия, типов, технологий изготовления неорганического стекла. Ознакомление с масштабами производства керамики, определение перспективных направлений ее применения.

    контрольная работа [28,7 K], добавлен 07.07.2010

  • Исследование процесса изготовления пигментированных лакокрасочных материалов. Основные характеристики, конструкция и принцип работы используемого оборудования. Краткая характеристика основных видов материалов, используемых в лакокрасочной промышленности.

    реферат [426,6 K], добавлен 25.01.2010

  • Технико-экономическое обоснование производства. Характеристика готовой продукции, исходного сырья и материалов. Технологический процесс производства, материальный расчет. Переработка отходов производства и экологическая оценка технологических решений.

    методичка [51,1 K], добавлен 03.05.2009

  • Определение понятия и классификация свойств конструкционных материалов, из которых изготовляются детали конструкций, воспринимающих силовую нагрузку. Стеклокристаллические материалы, производство стали, классификация, графитизация и маркировка чугунов.

    контрольная работа [651,4 K], добавлен 14.01.2011

  • Исторические сведения о возникновении керамических материалов, область их применения. Основные физико-химические свойства керамики, применяемые сырьевые материалы. Общая схема технологических этапов производства керамических материалов, ее характеристика.

    курсовая работа [74,2 K], добавлен 02.03.2011

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.